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Abstract Imbalanced data classification has become a critical challenge in the field of machine learning. Traditional
oversampling approaches often suffer from synthetic sample inaccuracy or aggravated class overlap problems. To better
address these challenges, this paper proposes an oversampling method that integrates noise detection with adaptive sample
generation. Specifically, we first introduce a noise detection strategy based on the average k-nearest neighbor distance, which
identifies and removes high-interference noisy samples through local density analysis. Next, we design a weight allocation
mechanism that jointly evaluates each instance’s boundary risk and generation potential, prioritizing the synthesis of higher-
weighted samples. Finally, to better preserve the classification boundary, we incorporate a neighbor class-sensitive coefficient
into the sample generation process. Extensive experiments on 17 benchmark datasets demonstrate that the proposed method
significantly outperforms well-known oversampling-based approaches, achieving superior classification performance.
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1. Introduction

Imbalanced data usually refers to a significant disparity in the number of samples across different classes [1].
In classification tasks, models tend to be biased towards the majority class, leading to misclassification [2]. This
limitation will have a significant impact in practical applications, especially in fields such as medical diagnosis [3],
credit card fraud detection [4], and fault detection [5]. Many methods have been proposed to solve the problem of
imbalanced classification, which can be categorized into data-level approaches [6], and algorithm-level approaches
[7]. Among them, the data-level approaches is more intuitive and easy to implement, which mainly include two
strategies: oversampling and undersampling. The oversampling method aims to balance the dataset by increasing
the number of minority class samples, thereby improving the model’s ability to recognize the minority class.
Oversampling methods have significant advantages in dealing with imbalanced data [8], so this paper will focus on
exploring the oversampling method in imbalanced classification problems.

The most classic oversampling technique is SMOTE (Synthetic Minority Oversampling Technique) [9]. This
method addresses the class imbalance problem by generating new synthetic samples. While SMOTE demonstrates
an advantage over ROS (Random Oversampling) in mitigating the issue of model overfitting, it also has some
drawbacks. First, SMOTE assumes that the sample density distribution is uniform [10], but in reality, the data
distribution is often more complex. This results in SMOTE generating an excessive number of samples in data-
dense areas while generating too few samples in regions where the data is sparse but crucial for distinguishing
between different classes [11]. Second, SMOTE is particularly sensitive to noise [12]. Once there are noisy samples,
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it may use them to synthesize new samples, creating even more noisy samples. And if the noisy samples are located
among the majority class samples, it may lead to class overlap [13]. These overlapping samples make it difficult
for the classifier to make accurate judgments, thereby degrading the classifier’s performance [2].

To address these issues of SMOTE, many improvements to SMOTE have been made. Density-based methods
like the Adaptive Synthetic Sampling Approach (ADASYN) [14] and Density-Based SMOTE (DB-SMOTE) [15]
decide where to generate new samples based on the local density distribution of the data. There are also clustering-
based methods, such as KMeans-SMOTE [11], which first partition the minority class data into different regions
before oversampling. Others such as Borderline-SMOTE [10] focuses on generating samples in the boundary
region. Distance-SMOTE [16] determines synthesis locations and sample numbers based on distances to nearest
neighbors of minority class samples. Although these methods have played a certain role in improving the uniformity
of sample distribution in SMOTE, they are still easily disturbed by noise and lack precision in depicting the
local density structure of complex data. None of these methods have achieved comprehensive optimization in
terms of noise detection, boundary protection, and generated sample quality, limiting their application in complex
imbalanced scenarios [17]. To this end, we propose a novel oversampling method, which can effectively mitigate
the impact of noisy samples, enhance the quality of synthetic samples, clarify classification boundaries, and,
ultimately, improve model performance. The main contributions of this paper are summarized as follows.

1) We employ nearest neighbor average distance and local density analysis, incorporating a threshold to
effectively distinguish noisy samples.

2) We take into account both the boundary information and generation capability of samples, enabling the
prioritization of high-confidence samples for generating new instances.

3) We introduce a dynamic coefficient during the generation phase to progressively clarify the classification
boundary.

The rest of this paper is organized as follows. We briefly review some related work in Section 2. In Section 3,
we present the proposed method in detail. The experimental results and analysis are provided in Section 4. Finally,
we conclude this paper in Section 5.

2. Related work

Due to the factors such as lack of minority class samples, noise interference, and unclear classification boundaries,
imbalanced data classification faces significant challenges [5]. Oversampling is an important strategy for solving
imbalanced data classification. In [9], Chawla et al. proposed SMOTE, which generates synthetic data by
performing linear interpolation between minority class samples. However, a disadvantage of SMOTE is that it
ignores the potential negative effects of noisy samples, and thus may result in overlap between classes [12].

To reduce the impact of noise on the classification results, researchers have proposed filtering noise before
resampling. Classic methods such as Tomek Links [18] and ENN (Edited Nearest Neighbor) [19] optimize
data distribution by removing overlapping samples on the boundary. However, in high-dimensional data, these
methods are susceptible to the ”curse of dimensionality” and may excessively delete samples that are crucial for
the classification boundary [20]. PDR-SMOTE [21] partitions samples into different regions and removes those
identified as noise. However, due to the often complex distribution of boundary samples, this approach may fail to
fully capture their characteristics. HSNF [22] performs denoising in two stages based on distinct noise identification
mechanisms and classifies samples into safe and boundary regions. Nevertheless, it may mistakenly identify some
important boundary samples as noise, leading to the loss of critical information.

During the generation phase, some efforts have integrated density-aware approaches into oversampling
techniques. Cluster-based methods such as Cluster-SMOTE [23] and DB-SMOTE [15] partition minority classes
into sub-clusters and generate samples within them. These methods improve distribution but ignore boundary
regions, as clustering tends to focus on intra-group cohesion rather than inter-class separation [24]. SPMSC [25]
employs the mean shift algorithm to cluster minority class samples in order to reduce the generation of duplicate
samples. However, the mean shift algorithm has a weak ability to recognize clusters with complex shapes, which
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may affect the clustering effect of the samples. AWNNAC [26] employs relative density to perform adaptive
weighting on the denoised minority class samples. However, the nearest neighbor area control strategy it uses
may cause the generated samples to be overly concentrated at the edges of the minority class region.

3. Method

Our method consists of three key components: noise identification and removal, adaptive weighting, and sample
synthesis. Before introducing our method, we formalize the distance measurement used in our method. Given two
samples x = xi

n
i=1 and y = {yi}ni=1, we use Euclidean norm to measure the distance (DIS) between x and y,

which is defined as Eq. (1).

DIS(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 =

√√√√ n∑
i=1

(xi − yi)2 (1)

3.1. Noise identification and removal

Considering that majority class noisy samples may potentially affect the identification of minority class noisy
samples, first we need to identify and remove them. Specifically, if the nearest neighbor of a majority class sample
belongs to the minority class, then that majority class sample is considered to be noise and is removed. Next, we
identify noise in minority class samples. We consider samples that are isolated from other minority class samples
as likely noise. So, we use the average distance between the minority sample xi and its k-nearest neighbors as an
indicator to measure its degree of isolation from other samples of the same class, which is defined by Eq. (2).

D(xi) =
1

k

∑
xj∈Nk(xi)

DIS(xi, xj) (2)

where Nk(xi) represents the k-nearest neighbors of xi within the set of minority class samples. The larger the
average distance, the more isolated the sample is, and thus the more likely it is to be a noisy sample. So we sort
the sample points in ascending order based on the average distance between each minority class sample and its
k-nearest neighbors. This sorting approach helps us observe the trend of changes in the average distance, thereby
enabling more accurate detection of abrupt change points. Figure 1 shows the average distance distributions for two
datasets. In the graph, the x-axis represents the i-th sample point, and the y-axis represents the average distance
between that sample and its k nearest neighbors. The sample points in the graph are arranged in ascending order of
the average distance.

Noise threshold is a factor that needs to be considered, as different datasets exhibit varying distance distributions.
Therefore, we need to find a way to determine the threshold where the average distance between minority class
samples and their k-nearest neighbors changes sharply across different datasets. In the curve of average distances
between a sample and its k-nearest neighbors, when abrupt changes occur in the average distances, the curve’s
slope at corresponding points undergoes sharp variations, indicating such samples are highly likely to be noise. To
precisely identify these transition points, slope calculations must be performed at each curve point. By analyzing
slope variations, we can locate positions where distance jumps occur. Based on this requirement, we introduce Eq.
(3) from [28].

Dnorm = sin

(
tan−1

(
∆y

∆x

))
(3)

Here, ∆x and ∆y represent the displacement increments of sample points along the x-axis and y-axis,
respectively. Through this formula, the normalized distance metric Dnorm is obtained, which maps the slope of
the local displacement vector to the [0, 1] interval. This enables slope values to be comparable across different
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datasets, facilitating more precise localization of abrupt changes in average distance and thereby determining the
noise threshold.

By repeating this process for all sample points, a candidate threshold set is obtained, from which the maximum
value is selected as the final threshold. Then, the sample index corresponding to the maximal threshold value is
defined as the index threshold. Precisely, for the Circles dataset and Ecoli1, the index threshold are 117 and 59
respectively, as indicated by the red marker in Figure 2, all subsequent sample points should be regarded as noise
and removed.

Specifically, when the average distance from a given sample to its k-nearest neighboring samples is equivalent
to the average distance from any single or multiple other samples to their corresponding k-nearest neighboring
samples, these two or more samples will be regarded as noise threshold.

(a) Circles (b) Ecoli1

Figure 1. Illustration of average distance distributions.

(a) Circles (b) Ecoli1

Figure 2. Application of noise threshold strategy on two datasets.

3.2. Adaptive weighting

To fully use the information of minority class samples for generating new samples of higher quality, we design
a weighting strategy for minority class samples. For each minority sample xi, its weight wi is determined by
two key factors, namely association degree and classification difficulty. For the term association degree, given
the complex associations among samples in real-world data, this term is introduced to quantify the closeness of
associations between samples. It serves as a core indicator for measuring associations. For classification difficulty,
as classification tasks are confronted with challenges such as data complexity, noise interference, and class
imbalance, it is necessary to quantify the degree of classification difficulty in order to evaluate the performance

Stat., Optim. Inf. Comput. Vol. 14, November 2025



2708 LOCAL DENSITY-AWARE OVERSAMPLING WITH NOISE RESISTANCE FOR IMBALANCED DATA...

of classification algorithms. Classification difficulty serves as an important reference for assessing algorithm
effectiveness.

Association degree. Generally speaking, the higher the degree of association between a minority sample and its
neighboring samples, the more useful information they carry. Therefore, we introduce the concept of the two-way
neighbor count Nconnect for samples. Nk(xi) is the k-nearest neighbor set of a minority class sample xi, for each
k-nearest neighbor in Nk(xi), if xi also appears in the k-nearest neighbor sets of these k-nearest neighbors, then
we refer to the k-nearest neighbor as the two-way neighbor of xi. As illustrated in Figure 3 (a), N5 is a two-way
neighbor of xi. Then let Nconnect equal to the number of two-way neighbor, where Nconnect is less than or equal
to k.

Classification difficulty. If the k-nearest neighbors of a minority class sample xi contain more majority class
samples, indicating that it is located in a class boundary or overlapping region, then it is possible to be misclassified
by classifiers. Given the greater influence of such samples on the classification boundary, they should be assigned
higher weights to emphasize their importance. We use Nmaj represent the number of majority class samples in its
k-nearest neighbors. As described in Figure 3 (b), for xi, it has two majority k-nearest neighbors, so its Nmaj is
equal to 2.

In summary, the wi is calculated by Eq. (4)

wi =
Nconnect

k
· (Nmaj + 1) (4)

where the parameter 1 is to prevent the result from being 0 when the number of majority class samples in the
k-nearest neighbors is 0. Meanwhile, the division by k is to standardize the numerical value. Minority class
samples in proximity to other minority class samples exhibit higher Nconnect values, indicating that they carry
more discriminative information and are thus assigned greater weights. The

(
Nmaj + 1

)
term adjusts weights based

on local majority class density, preventing over-sampling in densely populated regions while prioritizing boundary
sample selection. In the process of weighting, this formula takes into full consideration the relationship between
the sample and both the majority class samples and other minority class samples, thereby enabling a more accurate
weighting process for the minority class.

(a) (b)

Figure 3. (a) Illustration of two-way neighbor of xi; (b) Example of majority k-nearest neighbors of boundary sample xi.

3.3. Sample synthesis

Based on the weights wi of the minority class samples obtained in the previous section, we first determine the
number si of synthetic samples that need to be generated for each minority class sample xi. The total number of
synthetic samples required Stotal, is set as the difference between the number of majority class samples and the
number of minority class samples, that is, Stotal = nmaj − nmin. Subsequently, Stotal is allocated to each minority
class sample according to their weight proportions. Thus, si is defined as Eq. (5).
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si = round(
wi∑nmin

j=1 wj
· Stotal) (5)

where round(·) denotes the rounding operation to minimize cumulative errors due to integer rounding. When
generating synthetic samples, this work improves upon the classic SMOTE algorithm by introducing a neighbor
class-sensitive interpolation coefficient α. The specific steps are as follows.

Neighbor selection. For the minority class sample xi, randomly select a neighbor xj from its k-nearest neighbor
set Nk(xi).

Adjustment of interpolation coefficient. If xj belongs to the majority class, which is located in the class
boundary region, set α=0.5 to limit the interpolation magnitude towards the majority class direction, avoiding the
generation of potentially overlapping samples. If xj belongs to the minority class, which is located in the dense
region within the class, set α=1, making full use of the intra-class information to generate new samples. This design
is inspired by Borderline-SMOTE [10], but it further enhances security.

Sample Generation. Generate the synthetic sample xnew using Eq. (6).

xnew = xi + α · (xj − xi) (6)

.

Table 1. Datasets description.

Dataset Name Attributes Samples Imbalance ratio

Glass0 9 214 2.06
Glass6 9 214 6.38

Haberman 3 306 2.78
Segment0 19 2308 6.02
Vehicle2 18 846 2.88

Bupa 6 344 1.39
Circles 2 649 3.33
Heart 13 269 1.26

Paw02a-600-5-70-BI 2 600 5.00
Pima 8 768 1.87
Wine 13 178 1.50

Glass2 9 214 11.59
Wisconsin 9 683 1.86
Vehicle3 18 846 2.99

Page-blocks-1-3 vs 4 10 472 15.86
Vehicle1 18 846 2.90

Moon 2 1099 9.99

4. Experiment

To evaluate the proposed method, we conduct experiments on imbalanced datasets and compare it with well-known
oversampling-based methods. The implementation details and evaluation metrics are described below.

4.1. Experimental Setup

Datasets. The 17 datasets utilized in our experiments are sourced from the KEEL and UCI machine learning
repositories, which are widely recognized in the field of imbalanced learning. As can be seen in TABLE 1.
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These datasets vary in size, imbalance ratios, and cover diverse domains, thereby ensuring the diversity of our
experimental setup. For datasets containing multiple classes, we make the class with the smallest number of samples
as the minority class, while merging the remaining classes into a majority class, thus transforming the problem into
a binary classification task.

Table 2. Some notations.

Notation Meaning / Definition

TP Number of True Positives
FP Number of False Positives
TN Number of True Negatives
FN Number of False Negatives

Precision TP
TP+FP

Recall TP
TP+FN

Specificity TN
TN+FP

TPR TP
Number of Minority

FPR TP
Number of Majority

Table 3. Evaluation metrics.

Metric Definition

F-measure 2·Recall·Precision
Recall+Precision

G-mean
√
Recall · Specificity

AUC 1+TPR−FPR
2

Baselines. We compares eight oversampling methods: ROS (Random Oversampling), SMOTE [9], B1-SMOTE
[10], B2-SMOTE [10], D-SMOTE [16], SVM-SMOTE [27], ASN-SMOTE [29] and HSNF [22]. Four classifiers,
namely K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM) and naive bayes (NB)
are used to evaluate the performance of these methods. Besides, we implement 5-fold cross-validation to prevent
overfitting. Each cross-validation repeats three times, with the mean value representing the final result.

Evaluation metrics. We employ F-measure, G-mean, and AUC as evaluation metrics. F-measure represents
the harmonic mean of precision and recall, effectively balancing these two metrics. G-mean is defined as the
geometric mean of sensitivity (true positive rate) and specificity (true negative rate). AUC evaluates method’s
ability to discriminate between classes across different threshold settings. The closer the results number is to 1, the
better the method’s discrimination ability. The notations and metrics are shown in TABLE 2 and TABLE 3.

4.2. Results and analysis

Overall performance analysis. In order to better observe the data distribution after oversampling using our
method, we select four two-dimensional datasets: 04clover5z-600-5-0-BI-full, Moon, paw02a-600-5-70-BI and
03subcl5-800-7-30-BI for visual analysis. As shown in Figure 4, red points represent majority class samples,
orange denote minority, and green indicate synthetic samples. It can be observed that the red sample points
and the generated green sample points do not occupy the same regions. This demonstrates that our method
maintains distinct boundaries between different classes, thus avoiding class overlap. Meanwhile, the generated
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green samples are consistent with the original distribution of the minority class, enabling them to better represent
the true characteristics of the minority class. In summary, our observations show synthetic samples are uniformly
distributed, avoid class overlap, and align with the minority class’s original distribution, demonstrating their
reliability.

(a) (b)

Figure 4. Data distributions after applying the proposed method. (a) 04clover5z-600-5-0-BI-full dataset; (b) Moon dataset;
(c) paw02a-600-5-70-BI dataset; (d) 03subcl5-800-7-30-BI dataset.

We highlight the top-ranked method in red and the second-best in blue in Table 4 to Table 7. It can be observed
that on the three metrics of F-measure, G-mean, and AUC, the proposed method achieves the optimal value in
at least one-third of the metrics across all experimental scenarios on KNN, RF, SVM and NB classifiers. This
result demonstrates that our method performs exceptionally well when dealing with class imbalance issues, which
proves the effectiveness of our method. Specifically, in small-scale datasets with a relatively low imbalance ratio,
sample features are relatively concentrated and class distributions are fairly balanced. Under such circumstances,
our method demonstrates exceptional performance. For instance, on the Bupa dataset using a KNN classifier,
our method achieved the top rankings in both F1-measure and G-mean values, with its AUC value being only
approximately 0.0005 lower than the highest score. When confronted with large-scale datasets characterized by
a high imbalance ratio, where the overall data volume is abundant but minority-class samples are scarce, our
method still ensures outstanding performance. Taking the Page-Blocks-1-3 vs 4 dataset with an SVM classifier as
an example, our method secured the highest scores across all three metrics. By comparing the experimental results
across different dataset conditions, it can be observed that our method exhibits excellent adaptability and stability.

Stat., Optim. Inf. Comput. Vol. 14, November 2025



2712 LOCAL DENSITY-AWARE OVERSAMPLING WITH NOISE RESISTANCE FOR IMBALANCED DATA...

Table 4. The experimental results of 16 datasets obtained using the KNN classifier.

Dataset Measure ROS SMOTE B1-
SMOTE

B2-
SMOTE

D-
SMOTE

SVM-
SMOTE

ASN-
SMOTE HSNF Ours

Glass0
F-measure 0.703972 0.692783 0.667022 0.689406 0.715614 0.703120 0.686585 0.635688 0.716522
G-mean 0.774513 0.756412 0.727779 0.752361 0.784103 0.767012 0.755618 0.716941 0.778630
AUC 0.858665 0.852797 0.871420 0.867655 0.869933 0.867312 0.845091 0.834527 0.882134

Glass6
F-measure 0.786434 0.831697 0.766434 0.742369 0.847081 0.750644 0.758152 0.764918 0.777922
G-mean 0.890199 0.917136 0.856400 0.836267 0.919857 0.848135 0.876871 0.861534 0.846979
AUC 0.910360 0.948468 0.908829 0.907838 0.930180 0.919459 0.924865 0.899099 0.870811

Haberman
F-measure 0.444940 0.460499 0.379789 0.367921 0.410489 0.418218 0.409808 0.433894 0.467107
G-mean 0.605135 0.615657 0.545618 0.530388 0.571657 0.579464 0.570946 0.584967 0.618308
AUC 0.657565 0.656250 0.635245 0.631642 0.621381 0.669567 0.639861 0.665155 0.656609

Segment0
F-measure 0.934230 0.945153 0.954457 0.941447 0.943751 0.933140 0.925976 0.930350 0.945172
G-mean 0.984539 0.987847 0.985800 0.979735 0.986338 0.985553 0.980503 0.985047 0.987842
AUC 0.994690 0.995798 0.994651 0.995782 0.994917 0.995272 0.996297 0.995976 0.997741

Vehicle2
F-measure 0.803256 0.779867 0.794278 0.763255 0.805897 0.795392 0.776790 0.772303 0.780012
G-mean 0.890169 0.877010 0.892965 0.875400 0.892829 0.884905 0.873687 0.867017 0.890064
AUC 0.953701 0.956238 0.952279 0.943599 0.957698 0.954543 0.953009 0.938842 0.958096

Bupa
F-measure 0.553270 0.570689 0.573963 0.523584 0.543989 0.568063 0.506472 0.438151 0.590990
G-mean 0.610051 0.617750 0.619410 0.582150 0.603267 0.622414 0.586396 0.533441 0.638158
AUC 0.663405 0.671663 0.649449 0.649720 0.665628 0.662389 0.665671 0.640135 0.666912

Circles
F-measure 0.796899 0.803293 0.825552 0.813206 0.799114 0.811024 0.87975 0.494676 0.882604
G-mean 0.699434 0.710517 0.708507 0.705374 0.701327 0.690926 0.616204 0.660693 0.603310
AUC 0.740314 0.758760 0.760864 0.748559 0.755103 0.760610 0.766590 0.759305 0.770047

Heart
F-measure 0.708525 0.706905 0.682544 0.686315 0.666527 0.679559 0.727976 0.560050 0.718036
G-mean 0.665900 0.665495 0.649091 0.659938 0.634528 0.642064 0.661011 0.624534 0.649852
AUC 0.695121 0.685755 0.686576 0.701975 0.696002 0.691987 0.702874 0.708671 0.707929

Paw02A-600
-5-70-Bi

F-measure 0.536300 0.497389 0.523388 0.521320 0.544073 0.540624 0.558047 0.566499 0.569345
G-mean 0.754099 0.708479 0.737838 0.736063 0.751599 0.752502 0.758586 0.753542 0.789335
AUC 0.836850 0.850050 0.854500 0.847750 0.836950 0.843950 0.864900 0.857250 0.858250

Pima
F-measure 0.733369 0.739068 0.736398 0.724206 0.736599 0.734748 0.796233 0.575811 0.800799
G-mean 0.670525 0.672707 0.680734 0.669015 0.697755 0.679318 0.689288 0.663911 0.684484
AUC 0.737618 0.751765 0.738294 0.734644 0.750021 0.742790 0.748633 0.745434 0.750036

Wine
F-measure 0.671909 0.699885 0.712111 0.699413 0.729183 0.688484 0.680717 0.641425 0.730709
G-mean 0.680291 0.698405 0.686183 0.693968 0.736117 0.692827 0.699982 0.682737 0.717172
AUC 0.878937 0.891327 0.909985 0.901218 0.913868 0.889165 0.887486 0.823995 0.893558

Glass2
F-measure nan 0.310942 0.269899 0.298182 0.300000 0.326185 0.321919 nan 0.298368
G-mean 0.547585 0.671432 0.588681 0.631940 0.652259 0.673666 0.567834 0.215750 0.618904
AUC 0.719979 0.696496 0.728162 0.710171 0.736282 0.719936 0.717500 0.522308 0.621261

Wisconsin
F-measure 0.958722 0.952482 0.959469 0.955384 0.956630 0.953649 0.949448 0.944082 0.959338
G-mean 0.971478 0.967077 0.974491 0.971264 0.969469 0.971051 0.961000 0.954523 0.972378
AUC 0.985974 0.985881 0.983854 0.982359 0.984593 0.982457 0.988288 0.984167 0.982883

Vehicle3
F-measure 0.518405 0.506302 0.501684 0.506286 0.501035 0.491550 0.527328 0.427320 0.507150
G-mean 0.679602 0.669828 0.665542 0.670429 0.665619 0.654985 0.686623 0.583258 0.671887
AUC 0.751646 0.753660 0.736209 0.730738 0.741995 0.746785 0.762056 0.705123 0.730941

Page-Blocks
-1-3 vs 4

F-measure 0.627578 0.618024 0.601080 0.625929 0.636044 0.598156 0.624693 0.636190 0.596525
G-mean 0.885546 0.895617 0.889198 0.888455 0.903123 0.886505 0.872042 0.877368 0.849339
AUC 0.959217 0.966978 0.962371 0.964723 0.962484 0.963832 0.964930 0.931935 0.968598

Vehicle1
F-measure 0.525914 0.526651 0.557777 0.555883 0.549978 0.526625 0.549408 0.489685 0.542731
G-mean 0.682936 0.682601 0.711070 0.709652 0.703637 0.683434 0.703259 0.644084 0.695642
AUC 0.740843 0.750168 0.765051 0.750915 0.754127 0.746194 0.766459 0.728201 0.749286

Moon
F-measure 0.854661 0.835621 0.854603 0.808015 0.852207 0.831264 0.787971 0.799672 0.839421
G-mean 0.951701 0.940375 0.938335 0.918226 0.946969 0.948764 0.953520 0.952822 0.954771
AUC 0.969516 0.968092 0.969094 0.969411 0.968591 0.972088 0.980743 0.971958 0.981536
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Table 5. The experimental results of 16 datasets obtained using the RF classifier.

Dataset Measure ROS SMOTE B1-
SMOTE

B2-
SMOTE

D-
SMOTE

SVM-
SMOTE

ASN-
SMOTE HSNF Ours

Glass0
F-measure 0.898796 0.863061 0.855876 0.884658 0.883232 0.890854 0.875548 0.872727 0.874598
G-mean 0.864812 0.823908 0.831784 0.852741 0.845772 0.857341 0.834534 0.810439 0.852645
AUC 0.934782 0.925721 0.935785 0.936770 0.928413 0.940218 0.923505 0.895866 0.938723

Glass6
F-measure 0.978213 0.978351 0.975960 0.960168 0.972706 0.975373 0.981246 0.978729 0.984208
G-mean 0.917447 0.912995 0.872339 0.857682 0.892729 0.910154 0.915794 0.880300 0.885455
AUC 0.993694 0.974144 0.973514 0.984144 0.973694 0.988108 0.970991 0.974595 0.995315

Haberman
F-measure 0.784029 0.769171 0.785391 0.796295 0.797276 0.778773 0.793840 0.832409 0.778441
G-mean 0.596652 0.570955 0.584318 0.572496 0.611308 0.596083 0.595760 0.539780 0.608129
AUC 0.717925 0.710474 0.723611 0.724575 0.724330 0.726291 0.721217 0.710417 0.732451

Segment0
F-measure 0.997979 0.998232 0.998484 0.998734 0.997980 0.998736 0.996960 0.996454 0.998736
G-mean 0.992874 0.993127 0.994657 0.996194 0.991582 0.996178 0.994432 0.992642 0.996200
AUC 0.999908 0.999923 0.999939 0.999916 0.999908 0.999885 0.999885 0.999854 0.999916

Vehicle2
F-measure 0.991228 0.993631 0.989647 0.989641 0.992037 0.993593 0.987141 0.987187 0.992006
G-mean 0.983661 0.987553 0.979058 0.980599 0.984358 0.990584 0.982726 0.981205 0.987428
AUC 0.998725 0.998906 0.998246 0.998066 0.998688 0.999090 0.998104 0.997329 0.998760

Bupa
F-measure 0.760845 0.754437 0.764052 0.758009 0.771906 0.765034 0.788690 0.771156 0.772599
G-mean 0.672116 0.676938 0.717794 0.694382 0.699615 0.717732 0.687015 0.550188 0.705075
AUC 0.760800 0.766595 0.764132 0.762315 0.756435 0.778017 0.778190 0.724957 0.763461

Circles
F-measure 0.850481 0.833073 0.831861 0.833831 0.818846 0.835862 0.863596 0.843558 0.829632
G-mean 0.683371 0.723306 0.709944 0.706550 0.684578 0.699638 0.698297 0.676599 0.728417
AUC 0.777914 0.788828 0.772326 0.779419 0.773497 0.788235 0.793783 0.773205 0.788844

Heart
F-measure 0.850031 0.858740 0.870212 0.859097 0.847138 0.849602 0.854853 0.835324 0.851585
G-mean 0.829727 0.834786 0.844440 0.834864 0.817231 0.822601 0.823383 0.738749 0.828425
AUC 0.901685 0.903104 0.908080 0.901171 0.898913 0.900000 0.903949 0.888466 0.900845

Paw02A-600
-5-70-Bi

F-measure 0.895340 0.880539 0.887529 0.888235 0.897721 0.886833 0.892669 0.905676 0.891583
G-mean 0.745300 0.747377 0.758999 0.764908 0.771219 0.743199 0.777661 0.787482 0.795198
AUC 0.878950 0.876100 0.878000 0.872850 0.882750 0.881650 0.891650 0.877300 0.883300

Pima
F-measure 0.815155 0.806209 0.798916 0.794294 0.806938 0.803998 0.815311 0.826130 0.808139
G-mean 0.735328 0.735793 0.729246 0.736255 0.729188 0.737893 0.720514 0.686749 0.759286
AUC 0.828491 0.831060 0.821106 0.819147 0.821467 0.829184 0.819481 0.826119 0.825459

Wine
F-measure 0.958683 0.940122 0.963561 0.948218 0.949455 0.946711 0.953340 0.952381 0.964089
G-mean 0.945553 0.919514 0.950373 0.935834 0.932805 0.935626 0.940776 0.925162 0.949163
AUC 0.995455 0.995455 0.995455 0.996753 0.995455 0.995455 0.994156 0.995455 0.999351

Glass2
F-measure 0.947460 0.917147 0.947472 0.934469 0.947940 0.945180 0.950228 nan 0.952652
G-mean 0.328160 0.267943 0.223406 0.209948 0.112470 0.229488 0.215470 nan 0.369084
AUC 0.751838 0.808205 0.762350 0.778333 0.724231 0.810897 0.785000 nan 0.710812

Wisconsin
F-measure 0.973025 0.975107 0.975058 0.976266 0.975070 0.973514 0.973112 0.968712 0.977205
G-mean 0.961104 0.966341 0.966411 0.967548 0.966400 0.970096 0.960031 0.952403 0.971638
AUC 0.993273 0.992736 0.993088 0.990962 0.992454 0.992197 0.993273 0.991983 0.990502

Vehicle3
F-measure 0.849394 0.846162 0.850507 0.852480 0.852510 0.852459 0.838735 0.863172 0.848727
G-mean 0.696216 0.716425 0.740053 0.738928 0.695006 0.706524 0.699281 0.626864 0.729050
AUC 0.854236 0.857183 0.855173 0.854854 0.857031 0.854563 0.860235 0.815318 0.853365

Page-Blocks
-1-3 vs 4

F-measure 0.988707 0.990789 0.990970 0.988232 0.985231 0.983320 0.980159 0.984604 0.983763
G-mean 0.892345 0.958289 0.919449 0.972192 0.856198 0.949328 0.900913 0.942152 0.892499
AUC 0.996404 0.996404 0.999551 0.999101 0.996404 0.992809 0.985993 0.989213 0.988315

Vehicle1
F-measure 0.854718 0.851647 0.862746 0.858050 0.863943 0.856246 0.851599 0.854905 0.858029
G-mean 0.748900 0.730778 0.759310 0.763612 0.747931 0.753180 0.750491 0.669933 0.778923
AUC 0.865933 0.864656 0.866428 0.863440 0.863914 0.862269 0.859732 0.831207 0.869571

Moon
F-measure 0.983950 0.982316 0.984454 0.979917 0.982899 0.983393 0.970861 0.971823 0.983823
G-mean 0.918507 0.945352 0.918693 0.899520 0.930923 0.932013 0.938596 0.944749 0.951517
AUC 0.979245 0.987944 0.982768 0.979316 0.987944 0.982914 0.983368 0.979365 0.984994
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Table 6. The experimental results of 16 datasets obtained using the SVM classifier.

Dataset Measure ROS SMOTE B1-SMOTEB2-SMOTE D-SMOTE
SVM-

SMOTE
ASN-

SMOTE HSNF Ours

Glass0
F-measure 0.530301 0.541734 0.526123 0.516375 0.532953 0.534411 0.534675 0.602030 0.534411
G-mean 0.601794 0.615816 0.601524 0.593598 0.607877 0.609182 0.605709 0.660209 0.609182
AUC 0.713424 0.722742 0.713424 0.709975 0.719294 0.720443 0.716872 0.743309 0.720443

Glass6
F-measure 0.958080 0.965088 0.953829 0.930674 0.958080 0.945276 0.946707 0.958080 0.969918
G-mean 0.914001 0.920215 0.866547 0.846784 0.914001 0.882914 0.904230 0.914001 0.866615
AUC 0.920270 0.925676 0.886937 0.870721 0.920270 0.895495 0.912162 0.920270 0.886486

Haberman
F-measure 0.828160 0.829380 0.824473 0.821434 0.826142 0.829343 0.817217 0.837676 0.827415
G-mean 0.562644 0.568385 0.578258 0.589139 0.576225 0.578190 0.566170 0.582197 0.569012
AUC 0.619363 0.623529 0.626912 0.631776 0.625335 0.629641 0.615844 0.637048 0.623391

Segment0
F-measure 0.996793 0.997469 0.997550 0.980845 0.996962 0.997804 0.997297 0.997215 0.998399
G-mean 0.992132 0.992385 0.996694 0.980201 0.991883 0.997807 0.992214 0.992130 0.994570
AUC 0.992147 0.992400 0.996700 0.980378 0.991895 0.997810 0.992230 0.992146 0.994588

Vehicle2
F-measure 0.971002 0.967272 0.967094 0.933172 0.953985 0.953629 0.898527 0.915611 0.967481
G-mean 0.944349 0.909759 0.942534 0.897575 0.931006 0.917161 0.869593 0.910954 0.951065
AUC 0.946044 0.919651 0.944087 0.904801 0.934057 0.921386 0.882239 0.921059 0.951930

Bupa
F-measure 0.704325 0.694980 0.711783 0.699346 0.709184 0.715624 0.744594 0.770733 0.717398
G-mean 0.668782 0.654735 0.673038 0.658637 0.669805 0.673154 0.610514 0.570250 0.674085
AUC 0.673243 0.658773 0.676461 0.661199 0.672414 0.676071 0.639823 0.642578 0.677890

Circles
F-measure 0.559042 0.565391 0.543286 0.540000 0.555683 0.530181 0.869336 0.869336 0.506253
G-mean 0.498356 0.518600 0.493089 0.494078 0.526612 0.487759 0.000000 0.000000 0.376832
AUC 0.502747 0.527061 0.504091 0.505131 0.539091 0.496687 0.500000 0.500000 0.470768

Heart
F-measure 0.832220 0.825175 0.809413 0.740777 0.842484 0.844728 0.859444 0.821899 0.851159
G-mean 0.816057 0.805249 0.787567 0.744339 0.820836 0.806010 0.824550 0.762947 0.827000
AUC 0.819155 0.811993 0.799565 0.768442 0.826159 0.814070 0.830145 0.776473 0.829094

Paw02A-600
-5-70-Bi

F-measure 0.536388 0.701398 0.492904 0.635265 0.683761 0.590666 0.655646 0.540223 0.704004
G-mean 0.311871 0.190179 0.367970 0.239633 0.166730 0.172690 0.237087 0.251343 0.145059
AUC 0.526333 0.534333 0.569667 0.495667 0.516000 0.519000 0.511667 0.542000 0.522000

Pima
F-measure 0.786832 0.787154 0.767122 0.753985 0.785153 0.793379 0.797480 0.811117 0.784504
G-mean 0.698854 0.717443 0.722432 0.713669 0.716152 0.716132 0.702802 0.677064 0.720487
AUC 0.708899 0.721959 0.725445 0.720274 0.719298 0.722409 0.713139 0.696519 0.724703

Wine
F-measure 0.797127 0.901243 0.795039 0.854599 0.861591 0.833828 0.864115 0.912065 0.914572
G-mean 0.786843 0.880586 0.806206 0.842016 0.853934 0.825508 0.868566 0.854781 0.870528
AUC 0.828874 0.889033 0.845296 0.861703 0.870346 0.851905 0.892713 0.868167 0.884964

Glass2
F-measure 0.482895 0.453931 0.574922 0.566939 0.467665 0.930733 0.663178 nan 0.449262
G-mean 0.539378 0.516796 0.587323 0.581115 0.525512 0.093370 0.623782 nan 0.536406
AUC 0.635000 0.621538 0.647222 0.642714 0.629060 0.496795 0.637500 nan 0.649957

Wisconsin
F-measure 0.972950 0.971880 0.968785 0.960257 0.971655 0.969909 0.970531 0.971013 0.971435
G-mean 0.962578 0.963726 0.964103 0.964983 0.961609 0.963267 0.961609 0.955654 0.963861
AUC 0.962781 0.963904 0.964524 0.965483 0.961821 0.963564 0.961821 0.956257 0.964347

Vehicle3
F-measure 0.722772 0.700832 0.731076 0.794052 0.728182 0.778698 0.654003 0.763965 0.724712
G-mean 0.582622 0.571808 0.593452 0.624057 0.600526 0.603956 0.561765 0.516826 0.668837
AUC 0.699251 0.677631 0.691158 0.698831 0.686633 0.690879 0.677421 0.639788 0.713647

Page-Blocks
-1-3 vs 4

F-measure 0.934276 0.924218 0.941064 0.937782 0.925268 0.932811 0.901476 0.941910 0.957554
G-mean 0.861855 0.709792 0.731908 0.887492 0.664296 0.849158 0.750104 0.740617 0.923964
AUC 0.865356 0.766429 0.801735 0.899063 0.767178 0.861273 0.792209 0.810211 0.925846

Vehicle1
F-measure 0.755676 0.796241 0.764927 0.784252 0.779823 0.794132 0.749214 0.774919 0.754285
G-mean 0.510452 0.704631 0.640336 0.658224 0.599178 0.585874 0.491552 0.589687 0.708149
AUC 0.659012 0.740867 0.707311 0.725659 0.698767 0.683853 0.651824 0.670815 0.737543

Moon
F-measure 0.926943 0.928721 0.852078 0.837540 0.928868 0.907767 0.933536 0.933565 0.913002
G-mean 0.880321 0.881935 0.831905 0.819574 0.882073 0.871881 0.871895 0.867083 0.876478
AUC 0.881927 0.883432 0.839399 0.828384 0.883596 0.874415 0.873937 0.869437 0.878910
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Table 7. The experimental results of 16 datasets obtained using the NB classifier.

Dataset Measure ROS SMOTE B1-SMOTEB2-SMOTE D-SMOTE
SVM-

SMOTE
ASN-

SMOTE HSNF Ours

Glass0
F-measure 0.584039 0.611811 0.610951 0.579302 0.615926 0.587480 0.605467 0.592174 0.633575
G-mean 0.622423 0.639171 0.621033 0.602568 0.642306 0.630411 0.623013 0.604409 0.653670
AUC 0.698153 0.704803 0.686823 0.680172 0.704803 0.705296 0.690517 0.672783 0.708005

Glass6
F-measure 0.947480 0.960036 0.953849 0.938547 0.960036 0.947551 0.951182 0.956721 0.973951
G-mean 0.853668 0.864358 0.859057 0.813774 0.864358 0.853200 0.841631 0.789408 0.800925
AUC 0.867568 0.878378 0.872973 0.831532 0.878378 0.867568 0.856306 0.827748 0.830000

Haberman
F-measure 0.828857 0.832079 0.828261 0.827805 0.828909 0.820771 0.814407 0.826726 0.822139
G-mean 0.555257 0.547264 0.560282 0.564920 0.550633 0.545058 0.555951 0.541718 0.585909
AUC 0.615335 0.613529 0.619363 0.619363 0.615703 0.609036 0.612647 0.609453 0.633252

Segment0
F-measure 0.877323 0.881756 0.882582 0.852820 0.884788 0.856628 0.899689 0.896536 0.861288
G-mean 0.878463 0.882417 0.713327 0.706553 0.882792 0.853318 0.895044 0.892213 0.861994
AUC 0.884297 0.887834 0.727557 0.714419 0.887582 0.860042 0.898443 0.895919 0.869142

Vehicle2
F-measure 0.853901 0.849748 0.863651 0.843131 0.831975 0.825401 0.826757 0.821205 0.876390
G-mean 0.766475 0.776402 0.744937 0.698694 0.755702 0.746948 0.728569 0.725569 0.848280
AUC 0.770573 0.778647 0.754008 0.710870 0.757620 0.747727 0.732417 0.729863 0.849999

Bupa
F-measure 0.423293 0.404152 0.454374 0.473192 0.423053 0.416517 0.528334 0.592342 0.397604
G-mean 0.492791 0.479458 0.514228 0.527847 0.490240 0.488813 0.562951 0.543212 0.472350
AUC 0.560209 0.550086 0.564618 0.571293 0.553190 0.555086 0.593325 0.563658 0.544138

Circles
F-measure 0.793573 0.811721 0.792105 0.762907 0.802923 0.820122 0.860163 0.875740 0.803551
G-mean 0.742557 0.755825 0.727804 0.711449 0.744333 0.749813 0.724781 0.643375 0.753886
AUC 0.743990 0.757020 0.729333 0.713939 0.745343 0.750414 0.733172 0.682909 0.756657

Heart
F-measure 0.841582 0.854410 0.852284 0.844633 0.849584 0.853333 0.855191 0.860838 0.856158
G-mean 0.824198 0.832864 0.834608 0.828383 0.830650 0.833857 0.831692 0.823009 0.838283
AUC 0.824275 0.833442 0.834928 0.828442 0.830942 0.834094 0.832428 0.827428 0.838442

Paw02A-600
-5-70-Bi

F-measure 0.873050 0.868485 0.855711 0.865946 0.877095 0.882075 0.903834 0.895339 0.866875
G-mean 0.788998 0.780403 0.795294 0.820498 0.785864 0.786892 0.766071 0.749844 0.796989
AUC 0.791000 0.783000 0.798000 0.823000 0.790000 0.790000 0.775000 0.759000 0.798000

Pima
F-measure 0.803807 0.808776 0.778757 0.780935 0.804844 0.795182 0.811220 0.809916 0.790895
G-mean 0.732191 0.743950 0.724137 0.730668 0.733402 0.725824 0.732729 0.707942 0.735431
AUC 0.734579 0.745760 0.724464 0.730941 0.735509 0.727614 0.736067 0.716158 0.736342

Wine
F-measure 0.939489 0.941434 0.953247 0.920524 0.936655 0.939489 0.946818 0.925713 0.931648
G-mean 0.916704 0.913541 0.919517 0.894662 0.889413 0.916704 0.918615 0.858259 0.912896
AUC 0.921645 0.919740 0.927359 0.901558 0.901861 0.921645 0.924502 0.878571 0.919264

Glass2
F-measure 0.575818 0.599571 0.686661 0.593995 0.626925 0.614040 0.790891 0.925648 0.717979
G-mean 0.563522 0.562954 0.589568 0.537975 0.583211 0.537531 0.490266 0.215936 0.612575
AUC 0.612564 0.602692 0.615385 0.591795 0.615449 0.577051 0.589231 0.531410 0.616346

Wisconsin
F-measure 0.967787 0.968983 0.966350 0.966256 0.967866 0.966459 0.967866 0.966577 0.967467
G-mean 0.962578 0.963726 0.964103 0.964983 0.961609 0.963267 0.961609 0.961423 0.966162
AUC 0.962781 0.963904 0.964524 0.965483 0.961821 0.963564 0.961821 0.961657 0.966607

Vehicle3
F-measure 0.752862 0.740004 0.720141 0.727925 0.750528 0.773588 0.758777 0.778749 0.730772
G-mean 0.670801 0.665997 0.671001 0.675118 0.669536 0.670078 0.669758 0.663530 0.678816
AUC 0.672596 0.666875 0.674832 0.677963 0.671015 0.672563 0.670897 0.667185 0.681919

Page-Blocks
-1-3 vs 4

F-measure 0.951820 0.953325 0.848274 0.924279 0.952142 0.947185 0.953500 0.949460 0.937896
G-mean 0.690125 0.691147 0.819832 0.671390 0.689994 0.687009 0.670208 0.645591 0.680500
AUC 0.794082 0.795206 0.835655 0.774981 0.794082 0.790712 0.775193 0.752959 0.783957

Vehicle1
F-measure 0.744411 0.748857 0.697982 0.677231 0.761808 0.760919 0.744231 0.765523 0.696990
G-mean 0.680516 0.679827 0.667733 0.660802 0.694179 0.665877 0.677618 0.658792 0.666514
AUC 0.683323 0.682812 0.676767 0.675582 0.697750 0.669480 0.681975 0.661783 0.676773

Moon
F-measure 0.929262 0.928177 0.900547 0.892943 0.928700 0.915368 0.935604 0.935736 0.914704
G-mean 0.882415 0.881454 0.838404 0.846343 0.881937 0.878626 0.883392 0.874005 0.877984
AUC 0.883932 0.882932 0.840894 0.848389 0.883430 0.880915 0.884940 0.875942 0.880412
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We also compute the mean values of F-measure, G-mean, and AUC metrics across 17 datasets for KNN, RF,
SVM and NB classifiers. As illustrated in Figure 5, when using the KNN classifier for evaluation, our method
performs the best on the F-measure metric, with a score far exceeding other comparison methods. Meanwhile, in
terms of the G-mean metric, our method’s performance is second only to SMOTE. When using the RF classifier, our
method achieves the third-highest F-measure score, behind only the ROS and ASN-SMOTE methods. However,
our method achieves the highest value on the G-mean metric. When using the SVM classifier for evaluation, our
method performs the best on the G-mean and AUC metrics, the F-measure metric is second only to SMOTE,
SVM-SMOTE and ASN-SMOTE. when using the NB classifier for evaluation, our method performs also the best
on the G-mean and AUC metrics, with a score exceeding other comparison methods. Meanwhile, in terms of the
F-measure metric, Our method surpasses ROS, SMOTE, B1-SMOTE, B2-SMOTE, and SVM-SMOTE. Overall,
these results show that our method has excellent performance in comprehensive classification and sensitivity to the
identification of minority class samples.

(a) KNN Classifier (b) RF Classifier

(c) SVM Classifier (d) NB Classifier

Figure 5. The average value of indicators of nine methods.

Furthermore, we compute the average rankings of F-measure, G-mean, and AUC across 17 datasets for our
method and eight others on these four classifiers. As can be seen in Figure 6 to Figure 9, a lower vertical axis value
indicates a higher ranking. In Figure 6, we observe that for the KNN classifier, our method achieves the top rankings
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Figure 6. The average ranking of nine methods on KNN classifier.

Figure 7. The average ranking of nine methods on RF classifier.

Figure 8. The average ranking of nine methods on SVM classifier.

in both the F-measure and G-mean metrics. Particularly for the F-measure, it outperforms the second-placed D-
SMOTE by 1.2 rankings, while for the AUC metric, it is only 0.1 rankings behind the first-ranked ASN-SMOTE.
In Figure 7, when using the RF classifier, our method still achieves the highest rankings in the F-measure and
G-mean metrics. Among them, the ranking of the G-mean metric is significantly higher than that of other methods,
and for the AUC metric, it is only 0.2 rankings lower compared to the method with the highest ranking. On the
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Figure 9. The average ranking of nine methods on NB classifier.

SVM classifier as depicted in Figure 8, the ranking for the G-mean metric is notably higher than that of the other
methods, regarding the F-measure metric, our method ranks only 0.3 positions lower compared to the method with
the top ranking. Finally, as shown in Figure 9, our method achieves the highest rankings in the G-mean and AUC
metrics on the NB classifier. These show our method outperforms others.

Statistical test. Friedman test and Nemenyi test are commonly used nonparametric statistical methods for
comparing the performance differences between multiple methods on multiple datasets in order to validate the
statistical significance between methods. The Friedman test compares the overall performance of k algorithms on
N datasets, while the Nemenyi test compares pairwise algorithm performance. Assuming no significant differences
among nine methods, when the significance level is set at 0.05, the critical value is F = 2.011. Table 8 shows
Friedman test results for three metrics on four classifiers. Only the RF classifier’s F-measure and the SVM
classifier’s G-mean is below 2.011; others exceed it. Rejecting the null hypothesis implies significant differences
among methods.

Table 8. Friedman test.

F-measure G-mean AUC

KNN Classifier 4.858 (Reject) 3.467 (Reject) 3.144 (Reject)
RF Classifier 0.854 (Accept) 5.716 (Reject) 3.536 (Reject)

SVM Classifier 2.375 (Reject) 1.665 (Accept) 2.289 (Reject)
NB Classifier 6.367 (Reject) 4.921 (Reject) 4.870 (Reject)

Next, we perform the Nemenyi post-hoc test to analyze pairwise algorithm differences after rejecting the null

hypothesis. The critical difference (CD) is calculated by CD = qα

√
k(k+1)

6N , where k is the number of methods and
N the number of datasets. With k = 9 and N = 17, we find CD = 2.914 (using qα = 3.102). Methods with average
ranking differences exceeding CD are significantly different. Figure 10 visualizes the results: horizontal lines
represent method rankings, with segment lengths equal to CD. Centers mark average rankings. Non-overlapping
lines indicate significant differences; overlapping lines suggest no significant difference, with the leftmost method
performing better. It can be observed that our method demonstrates the best overall performance: with the KNN
classifier, it significantly outperforms B2-SMOTE in F-measure and HSNF in G-mean; with the RF classifier, it
exceeds D-SMOTE, ASN-SMOTE, and HSNF in G-mean while also outperforming HSNF in AUC; with the SVM
classifier, it surpasses ASN-SMOTE in AUC; and with the NB classifier, it outperforms HSNF in both G-mean and
AUC.
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(a) KNN: F-measure (b) KNN: G-mean (c) KNN: AUC

(d) RF: F-measure (e) RF: G-mean (f) RF: AUC

(g) SVM: F-measure (h) SVM: G-mean (i) SVM: AUC

(j) NB: F-measure (k) NB: G-mean (l) NB: AUC

Figure 10. Results of Nemenyi test.

4.3. Parameter analysis

To explore the impact of parameter k on the method’s performance, taking the KNN classifier as an example,
we randomly selected five datasets: Glass0, Pima, Segment0, Haberman, and Moon for experimentation. In our
implementation, we set the default parameter k = 5. Figure 11 illustrates the trends in F-measure, G-mean, and
AUC metrics as the parameter k varies. The figure reveals that the classifier’s performance fluctuates with changes
in the k value. For instance, the Pima dataset achieves optimal performance at k = 5, followed by an overall
declining performance trend. In contrast, for the Haberman dataset, optimal performance is attained at k = 4, and
subsequently, as k increases, the performance initially declines and then rises. Therefore, during the classification
process, the optimal k values vary across different datasets, highlighting the significance of parameter selection for
model performance.
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(a) F-measure (b) G-mean

(c) AUC

Figure 11. The trends of datasets’ metrics with the change of parameter k.

As illustrated in Figure 12, we examine the impact of the parameter α during the sample synthesis phase on
the values of F-measure, G-mean, and AUC. Taking the KNN classifier as an example, we randomly select four
datasets (Glass0, Glass6, Haberman, and Vehicle2) for validation. The results show that adjustments to α generally
have an insignificant effect on these three metrics; however, when α is set to 5, the values exhibit relatively higher
levels.

4.4. Comparison of runtime

Under the same experimental conditions, we compared the runtime of our proposed method with that of the
comparative methods. The experimental results are shown in Table 9. The ROS method had the shortest runtime,
while our proposed method exhibited slightly longer runtime than the other methods due to the need for iterative
optimization during the sample weight calculation phase to ensure the rationality of generated sample distribution
and the clarity of class boundaries. Nevertheless, this increase in computational complexity significantly enhanced
classification performance, indicating that our proposed method achieves superior classification results through a
reasonable trade-off between runtime and performance.
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(a) Glass0 (b) Glass6

(c) Haberman (d) Vehicle2

Figure 12. The trends of datasets’ metrics with the change of parameter α.

Table 9. Runtime comparison between the proposed method and comparable methods.

Dataset
Runtime (s)

ROS SMOTE B1-
SMOTE

B2-
SMOTE

D-
SMOTE

SVM-
SMOTE

ASN-
SMOTE HSNF Ours

Glass0 0.0000 0.0000 0.0058 0.0054 0.0021 0.0064 0.1146 0.3002 0.3249
Glass6 0.0010 0.0020 0.0054 0.0053 0.0022 0.0060 0.0474 0.2801 0.1602

Haberman 0.0000 0.0158 0.0059 0.0050 0.0020 0.0000 0.1191 0.4004 0.3786
Segment0 0.0020 0.0173 0.0319 0.0290 0.0113 0.0847 7.3146 61.1420 31.7824
Vehicle2 0.0010 0.0040 0.0163 0.0118 0.0035 0.0319 2.0537 7.9226 6.5159

Bupa 0.0000 0.0000 0.0109 0.0109 0.0030 0.0056 0.3260 0.6918 0.9334
Circles 0.0004 0.0000 0.0067 0.0100 0.0069 0.0134 0.3069 2.1130 1.2359
Heart 0.0000 0.0000 0.0069 0.0063 0.0020 0.0074 0.2168 0.5501 0.8462

Paw02A-600-5-70-BI 0.0000 0.0032 0.0064 0.0067 0.0025 0.0078 0.8882 2.3900 3.6021
Pima 0.0000 0.0000 0.0120 0.0132 0.0000 0.0196 0.9647 3.2460 3.8889
Wine 0.0000 0.0000 0.0066 0.0086 0.0021 0.0030 0.0950 0.2686 0.3305

Glass2 0.0000 0.0000 0.0066 0.0086 0.0021 0.0030 0.0950 0.2686 0.3305
Wisconsin 0.0000 0.0160 0.0125 0.0094 0.0030 0.0045 0.8179 3.2920 3.2228
Vehicle3 0.0000 0.0040 0.0099 0.0107 0.0036 0.0192 1.3312 6.2503 5.3545

Page-Blocks-1-3 vs 4 0.0000 0.0000 0.0055 0.0043 0.0027 0.0056 0.1043 1.4527 0.3858
Vehicle1 0.0000 0.0000 0.0124 0.0114 0.0048 0.0306 1.5475 7.2477 5.9995

Moon 0.0010 0.0041 0.0075 0.0076 0.0030 0.0100 0.3481 4.3213 1.4824
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5. Conclusion

This paper proposes an innovative SMOTE-based method to address the challenges posed by imbalanced data.
The core of this method is to identify and remove noise data that may interfere with classification to ensure data
quality; Subsequently, the number and location of synthetic samples are determined based on the density and
distribution characteristics of the surrounding data of the sample. The experimental results show that our method
not only successfully avoids the negative impact of noise, but also generates more reliable samples, resulting in a
clearer classification boundary. Looking ahead, we plan to further improve the method, enhance its performance,
and explore its potential application in more complex multi-classification tasks, in order to better meet the needs
of practical applications.
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