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Abstract This work develops the framework of the fractional medium domination number(MDf (G)), focusing on
connected, undirected graphs without loops. The (MDf (G)) is defined as the ratio of the fractional total domination
value (TDVf

(G)) to the total number of unordered pairs of distinct vertices in a graph. This new parameter expands on
traditional domination concepts by incorporating fractional values, providing a more refined measure of domination in
graphs. The fractional domination value between vertices is computed as the sum of fractional contributions from their
common neighbors, where each contribution is inversely proportional to the degree of the respective vertex. The paper
explores bounds for the fractional medium domination number across various graph families and presents computational
methods for determining MDf (G) using Python programming. Practical applications, such as network optimization and
disaster relief, are also discussed to illustrate the significance of this parameter.
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1. Introduction

Extensive studies have explored various aspects of domination in graph theory, leading to the introduction of
several variants that enhance our understanding and expand their practical applications [1, 2, 3]. Among these
variants, fractional domination has emerged as a prominent topic, contributing to both theoretical advancements
and practical uses. Its continued development and utilization are widely acknowledged, prompting further research
and exploration [4, 5]. Devvrit et al.[6] proposed the concept of fractional eternal domination, combining fractional
principles with eternal domination to model secure and continuous resource distribution in dynamic networks.
Vijayalakshmi et al.[7] introduced the fractional restrained domination parameter, which adds specific constraints
to fractional dominating functions, making it suitable for applications requiring selective control. Meenakshi
and Pankajam[8] presented the total regular fractional domination number, integrating total regular domination
with fractional constraints to study domination in uniformly connected graphs. Ebin Raja Merly and Saranya[9]
introduced medium domination decomposition, merging geodetic decomposition with the medium domination
number to analyze how domination values are distributed across different graph segments. In this article, G refers
to a graph that is undirected, connected, and free of loops. A set S ⊆ V (G) is called a dominating set if every
vertex outside S is adjacent to at least one vertex in S. The domination number γ(G) is the size of the smallest
dominating set [10]. A fractional dominating function f : V (G) → [0, 1] assigns a weight to each vertex in the
graph such that for every vertex v, the sum of the weights of vertices in the closed neighborhood N [v] is no
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less than 1. The fractional domination number γf (G) represents the minimum total weight of f over all vertices
in the graph [11, 12]. The medium domination number (MD(G)) of a connected, undirected, loopless graph G
of order n is defined as the ratio of the total domination value (TDV (G)) to the total number of vertex pairs
in G, i.e., MD(G) = TDV (G)

(n2)
, where TDV (G) =

∑
u,v∈V (G) dom(u, v) is the sum of the domination values for

unordered pairs of distinct vertices u, v ∈ V (G) [13]. Extending this framework, we define a new parameter called
the fractional medium domination number, denoted as MDf (G). It is defined as the ratio of the fractional total
domination value (TDVf

(G)) to the total number of unordered vertex pairs.

MDf (G) =
TDVf

(G)(
n
2

) =
TDVf

(G)
n(n−1)

2

,

where TDVf
(G) =

∑
u,v∈V (G) domf (u, v) is the sum of the fractional domination values for unordered pairs of

distinct vertices u, v ∈ V (G), expressed as

domf (u, v) =
∑

w∈N [u]∩N [v]

f(w),

where f(w) = 1
deg(w) represents the fractional value assigned to vertex w, based on its degree (deg(w)). The

fractional medium domination number normalizes the total fractional domination value by the number of vertex
pairs, providing a measure of the overall fractional domination efficiency in the graph. This number is useful
for evaluating the connectedness and influence of vertex pairs across the entire graph in fractional terms. In the
realm of disaster relief, the ability to allocate resources efficiently often determines the outcome, highlighting
the importance of strategic planning and distribution method. The fractional medium domination number offers
a cutting-edge solution to optimize these networks. By modeling relief centers as vertices and their connections
as edges in a graph, we can assign each center a fractional value f(w) = 1

deg(w) , reflecting its capacity to
assist others based on its connectivity. The fractional domination between each pair of centers is calculated,
showing how effectively resources are shared, whether directly connected or not. By dividing the fractional total
domination influence by the number of possible center pairs, we arrive at the fractional medium domination
number MDf (G). A value equal to 1 represents a perfectly balanced distribution network, where the resource
allocation or domination efficiency is optimal across the entire graph. A value near 1 indicates that the network
is close to being optimal, with minor imbalances or slight variations in domination efficiency. Conversely, lower
values (significantly less than 1) highlight critical gaps in coverage, pointing to areas of inefficiency or weaker
connectivity in the network. However, when the fractional medium domination number MDf (G) exceeds 1, it
indicates a highly robust and interconnected network. In such cases, the graph exhibits significant redundancy,
ensuring that even in scenarios of multiple node failures, the overall system maintains its functionality. This
powerful tool not only helps planners identify bottlenecks but also allows them to strategically prioritize upgrades
and improve overall resource allocation. With its wide-reaching applications in disaster management, public
health logistics, and transportation networks, the fractional medium domination number is a game-changer in
optimizing real-world systems that depend on timely, equitable resource distribution. In Fig. 1, for the graph
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Figure 1. Graph G

G, the fractional domination values are as follows: domf (1, 2) =
1
4 + 1

2 , domf (1, 3) =
1
4 + 1

3 , domf (1, 4) =
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1
2 + 1

3 , domf (1, 5) =
1
4 + 1

3 , domf (1, 6) =
1
4 , domf (2, 3) =

1
4 + 1

2 , domf (2, 4) =
1
2 + 1

2 + 1
3 , domf (2, 5) =

1
4 + 1

3 + 1
2 , domf (2, 6) =

1
4 + 1

3 + 1
2 , domf (3, 4) =

1
2 + 1

3 , domf (3, 5) =
1
4 + 1

3 , domf (3, 6) =
1
4 , domf (4, 5) =

1
3 + 1

3 , domf (4, 6) =
1
3 , domf (5, 6) =

1
4 + 1

3 + 1
2 . Thus, TDVf

(G) = 11, MDf (G) =
TDVf

(G)

(62)
= 11

15 .

2. Bounds of fractional medium domination number of graphs

In this section, we explore the bounds of the fractional medium domination number, MDf (G), for certain graph
classes. This parameter reflects the average fractional domination value across all vertex pairs in a graph. By
analyzing different graph families, we derive bounds that highlight the structural influence of each class on
MDf (G).

Result 2.1
0 ≤ domf (u

′, v′) ≤ n.

Theorem 2.2
For a path graph Pn with n ≥ 2 vertices, MDf (Pn) =

3n−2
n(n−1) .

Proof
Let the vertices of Pn be labeled as v1, v2, . . . , vn, where v1 and vn are the endpoints. Therefore, the fractional
domination value depends on the number of common neighbors and their degrees. For n = 2, the only pair
is (v1, v2). Since both vertices have degree 1, domf (1, 2) = 1 + 1 = 2. Thus, TDVf

(P2) = 2 and MDf (P2) =
2

(22)
= 2. For n = 3, the unordered pairs are {(1, 2), (1, 3), (2, 3)} and domf (1, 2) = 1 + 1

2 = 3
2 , domf (1, 3) =

1
2 , domf (2, 3) = 1 + 1

2 = 3
2 . Hence, TDVf

(P3) =
3
2 + 1

2 + 3
2 = 7

2 , and MDf (P3) =
7
2
(32)

= 7
6 . For n = 4, the

unordered pairs are {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} and domf (1, 2) = 1 + 1
2 = 3

2 , domf (1, 3) =
1
2 ,

domf (1, 4) = 0, domf (2, 3) =
1
2 + 1

2 = 1, domf (2, 4) =
1
2 , domf (3, 4) =

1
2 + 1 = 3

2 . Thus TDVf
(P4) =

3
2 + 1

2 +
0 + 1 + 1

2 + 3
2 = 5, and MDf (P4) =

5

(42)
= 5

6 . In general for n ≥ 3, nonzero contributions come only from pairs

at distance 1 or 2. For adjacent pairs, there are n− 1 edges and each endpoint edge contributes 3
2 also each of

the n− 3 interior edges contributes 1. Hence, total from adjacent pairs = 2 · 3
2 + (n− 3) · 1 = n. For distance-

2 pairs, there are n− 2 such pairs. Each is dominated only by the middle vertex of degree 2, contributing 1
2 .

Hence, total from distance-2 pairs = (n− 2) · 1
2 = n−2

2 . Adding, TDVf
(Pn) = n+ n−2

2 = 3n−2
2 . The number of

unordered pairs is
(
n
2

)
= n(n−1)

2 . Therefore, MDf (Pn) =
TDVf

(Pn)

(n2)
=

3n−2
2

n(n−1)
2

= 3n−2
n(n−1) .

Theorem 2.3
For a cycle graph Cn with n ≥ 3 vertices, MDf (Cn) =

3

n− 1
.

Proof
The domf (u

′, v′) depends on the number of common neighbors and degrees it share. Since each vertex has exactly
two neighbors, the intersection N [u] ∩N [v] contains at most two vertex when u and v are adjacent, and is empty
otherwise. For n = 3, the cycle C3 is a triangle. The unordered pairs are {(1, 2), (1, 3), (2, 3)}. Each pair is adjacent
and dominated by all three vertices, each of degree 2. Thus, each pair contributes 3

2 . So, TDVf
(C3) = 3 · 3

2 = 9
2 .

The number of pairs is
(
3
2

)
= 3. Hence, MDf (C3) =

9/2

3
=

3

2
, which agrees with the formula 3/(3− 1) =

3/2. For n = 4, The cycle C4 has unordered pairs {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. The adjacent pairs
are (1, 2), (2, 3), (3, 4), (4, 1), each dominated by two vertices, contributing 1 each. and non adjacent pairs are
(1, 3), (2, 4), each dominated by two vertices of degree 2, contributing 1 each. Thus, TDVf

(C4) = 6. The number
of pairs is

(
4
2

)
= 6. So, MDf (C4) =

6
6 = 1, which matches the formula 3/(4− 1) = 1. For n ≥ 5, every vertex has

degree 2. Nonzero contributions come only from pairs at distance 1 or 2 and for adjacent pairs, there are n such
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pairs, each dominated by its two endpoints, contributing 1 each and for distance-2 pairs, There are n such pairs,
each dominated by exactly one middle vertex, contributing 1

2 each. So the total is TDVf
(Cn) = n+ n/2 = 3n

2 . The

number of pairs is
(
n
2

)
= n(n−1)

2 . Therefore, MDf (Cn) =
3n
2

n(n−1)
2

=
3

n− 1
..

Theorem 2.4
For a complete graph Kn with n ≥ 2 vertices, MDf (Kn) =

n
n−1 .

Proof
In Kn, every vertex has degree n− 1. For any two distinct vertices u, v, every vertex of Kn dominates both
u and v. Each vertex contributes 1

n−1 , and there are n such vertices. Thus domf (u, v) = n · 1
n−1 = n

n−1 . For
n = 2, the only pair (v1, v2) has TDVf

(K2) = 2, so MDf (K2) = 2. For n = 3, each pair contributes 3
2 , has

TDVf
(K2) =

9
2 so MDf (K3) =

3
2 . For n = 4, each pair contributes 4

3 , has TDVf
(K2) =

24
3 = 8 so MDf (K4) =

4
3 .

Similarly, since this value is the same for every unordered pair, the total fractional domination value for any
Kn is TDVf

(Kn) =
(
n
2

)
· n
n−1 . Dividing by the number of pairs gives MDf (Kn) =

TDVf
(Kn)

(n2)
= n

n−1 . Hence, the

proof.

Theorem 2.5
For a star graph K1,n with n ≥ 1 leaves, MDf (K1,n) =

3n+1
n(n+1) .

Proof
Let K1,n consist of a central vertex v0 and n leaf vertices v1, v2, . . . , vn. It consists of n+ 1 vertices. In a star
graph, the central vertex v0 is adjacent to all leaf vertices and leaf vertices are only adjacent to v0 and not to
each other. Consider, for example K1,3, the unordered pairs are {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} and
domf (1, 2) =

1
3 + 1 = 4

3 , domf (1, 3) =
1
3 + 1 = 4

3 , domf (1, 4) =
1
3 + 1 = 4

3 , domf (2, 3) =
1
3 , domf (2, 4) =

1
3 ,

domf (3, 4) =
1
3 . Thus TDVf

(K1,3) = 3× 4
3 + 3× 1

3 = 15
3 = 5, and MDf (K1,3) =

15
3
(42)

= 5
6 . Similarly, the total

fractional domination value TDVf
(K1,n) is the sum of the fractional domination contributions over all unordered

vertex pairs. By calculation, this total is TDVf
(K1,n) =

3n+1
2 . The total number of vertex pairs in K1,n is

(
n+1
2

)
=

n(n+1)
2 . Thus, the fractional medium domination number is MDf (K1,n) =

TDVf
(K1,n)

(n+1
2 )

=
3n+1

2
n(n+1)

2

= 3n+1
n(n+1) .

The results on the relations between MDf (G) and the degrees of vertices are as follows.

Result 2.6
MDf (G) ≥

∑n
j=1 deg(vj)

n(n−1) , referring to deg(vj) is the degree of vj .

Proof
Assign to each vertex vj a fractional weight f(vj) = 1/ deg(vj) where 1 ≤ j ≤ n. Consider selecting an unordered
pair of vertices uniformly at random. The expected contribution of vertex vj to domf (u, v) is at least deg(v′j)/

(
n
2

)
,

since it participates in all pairs involving its neighbors. Summing over all vertices, MDf (G) =
TDVf

(G)

(n2)
≥∑n

j=1 deg(vj)

n(n−1) .

Result 2.7
MDf (G) ≥ d(G)

n−1 , referring to d(G) indicates the mean degree of the vertices in the graph.

Proof
In Result 2.6, apply the definition of the mean degree as d(G) = 1

n

∑n
j=1 deg(vj). Hence, the result follows.

Result 2.8
MDf (G) ≥ δ(G)

n−1 , referring to δ(G) signifies the smallest degree among all vertices in the graph.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 FRACTIONAL MEDIUM DOMINATION NUMBER OF GRAPHS

Proof
Let δ(G) be the minimum degree in G. For any pair (u, v), the domf (u, v) is the sum of contributions from
all vertices in N [u] ∩N [v], where each vertex w contributes at least f(w) = 1/deg(w) ≥ 1/δ(G). Since each
vertex has at least δ′(G) neighbors, its total contribution over all pairs is at least δ(G) · 1

deg(w) ≥ 1. Summing over

all n vertices gives TDVf
(G) ≥ nδ(G)

2 . Dividing by
(
n
2

)
= n(n−1)

2 , we have MDf (G) =
TDVf

(G)

(n2)
≥ nδ(G)/2

n(n−1)/2 =

δ(G)
n−1 .

We propose the following bounds of MDf (G), derived from the addition or deletion of vertices and edges in the
graph based on case analysis of standard graph families (paths, cycles, and complete graphs). A general result is
left open for future work.

Observation 2.9
For a graph G, where G is a path, cycle, or complete graph with n vertices, the following bounds hold:
(i)MDf (G− v) < MDf (G), ∀v ∈ V (G), where MDf (G− v) denotes the fractional medium domination
number of the graph obtained by deleting a vertex v.
(ii)MDf (G+ v) < MDf (G), ∀v ∈ V (G), where MDf (G+ v) denotes the fractional medium domination
number of the graph obtained by adding a new vertex adjacent to some vertex in G.
(iii) MDf (G− e) < MDf (G), ∀e ∈ E(G), where MDf (G− e) denotes the fractional medium domination
number of the graph obtained by deleting an edge e.

We utilized Python to implement our theoretical findings on the bounds of the fractional medium domination
number MDf (G) for specific graph classes, including path graphs, cycle graphs, complete graphs, and star graphs.
This focused approach offers a clearer understanding of the parameter’n behavior across structurally diverse graphs.
The implementation is based on analytically derived expressions and is designed for efficiency. Notably, the
program operates with a time complexity of O(1), performing calculations in constant time regardless of the input
size. This ensures the tool is effective for both validating theoretical results and supporting practical applications.

Python Program to Calculate MDf (G) of special classes of graphs

i m p o r t math

d e f MD f ( ) :
p r i n t ( ” Choose t h e g raph t y p e t o c a l c u l a t e MD f (G ) : ” )
p r i n t ( ” 1 . Pa th g raph ( P n ) ” )
p r i n t ( ” 2 . Cycle g raph ( C n ) ” )
p r i n t ( ” 3 . Complete g raph ( K n ) ” )
p r i n t ( ” 4 . S t a r g raph ( K {1 , n } ) ” )
p r i n t ( ” 0 . E x i t ” )

w h i l e True :
t r y :

c h o i c e = i n t ( i n p u t ( ” E n t e r your c h o i c e ( 1 , 2 , 3 , 4 , o r 0 t o e x i t ) : ” ) )

i f c h o i c e i n [ 1 , 2 , 3 , 4 ] :
w h i l e True :
t r y :
n = i n t ( i n p u t ( ” E n t e r t h e number o f v e r t i c e s ( n ) : ” ) )
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# V a l i d a t e i n p u t based on graph t y p e
i f c h o i c e == 1 and n < 2 :
p r i n t ( ” I n v a l i d i n p u t : n must be a t l e a s t 2 f o r P n . ” )
c o n t i n u e
e l i f c h o i c e == 2 and n < 3 :
p r i n t ( ” I n v a l i d i n p u t : n must be a t l e a s t 3 f o r C n . ” )
c o n t i n u e
e l i f c h o i c e == 3 and n < 2 :
p r i n t ( ” I n v a l i d i n p u t : n must be a t l e a s t 2 f o r K n . ” )
c o n t i n u e
e l i f c h o i c e == 4 and n < 1 :
p r i n t ( ” I n v a l i d i n p u t : n must be a t l e a s t 1 f o r K {1 , n } . ” )
c o n t i n u e

# C a l c u l a t e MD f ( )
i f c h o i c e == 1 :
# Pa th graph P n
md f ps = (3 * n − 2) / ( n * ( n − 1 ) )
p r i n t ( f ”MD f ( P {n } ) : {md f ps : . 6 f } ” )

e l i f c h o i c e == 2 :
# Cycle g raph C n
m d f c s = 3 / ( n − 1)
p r i n t ( f ”MD f ( C {n } ) : { m d f c s : . 6 f } ” )

e l i f c h o i c e == 3 :
# Complete g raph K n
md f ks = n / ( n − 1)
p r i n t ( f ”MD f ( K {n } ) : {md f ks : . 6 f } ” )

e l i f c h o i c e == 4 :
# S t a r g raph K {1 , n}
md f k1n = (3 * n + 1) / ( n * ( n + 1 ) )
p r i n t ( f ”MD f ( K {{1 ,{ n } } } ) : {md f k1n : . 6 f } ” )

b r e a k # e x i t i n n e r loop once v a l i d i n p u t i s p r o c e s s e d

e x c e p t V a l u e E r r o r :
p r i n t ( ” I n v a l i d i n p u t : P l e a s e e n t e r an i n t e g e r v a l u e f o r n . ” )

e l i f c h o i c e == 0 :
p r i n t ( ” E x i t i n g program . ” )
b r e a k
e l s e :

p r i n t ( ” I n v a l i d c h o i c e . P l e a s e e n t e r 1 , 2 , 3 , 4 , o r 0 t o e x i t . ” )

e x c e p t V a l u e E r r o r :
p r i n t ( ” I n v a l i d i n p u t . P l e a s e e n t e r a v a l i d c h o i c e . ” )
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i f n a m e == ” m a i n ” :
MD f ( )

3. Conclusion

In this work, we defined the MDf (G) for connected, undirected graphs that are free from loops. This new
parameter extends traditional domination theory by incorporating fractional values, providing a more detailed
measure of domination in graphs. By defining the fractional domination value between vertex pairs and calculating
it based on their common neighbors, we have developed a method that offers greater flexibility compared to
classical approaches. We also derived bounds for the fractional medium domination number in different graph
families, further expanding the understanding of its properties. Additionally, we demonstrated the practical
computation of MDf (G) using Python programming, which makes this approach useful for real-world applications
such as network optimization, resource allocation, and disaster relief operations. Future work will focus on
determining MDf (G) for special graph classes such as grid graphs, trees, and regular graphs. A central open
problem is to establish sharp upper and lower bounds for MDf (G) in terms of classical invariants like average
degree, connectivity, or girth. Another promising direction is the design of efficient algorithms for computing
MDf (G) in large-scale networks, which would broaden its potential applications in optimization and network
analysis.
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