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Abstract A restrained domination coalition (or simply rdc) consists of two disjoint subsets of vertices R1 and R2 of a
graph Gh. Neither R1 nor R2, on its own, is a restrained dominating set (RD-set). However, when combined, they together
form an RD-set for the graph. A restrained domination coalition partition (rdcp) is a vertex partition πr = {R1, R2, .., Rl}
where each element of Ri ∈ πr is either an RD-set consisting of a single vertex, or a non-RD-set that forms an rdc with a set
Rj in πr . In this work, we initiated the concept of rdc and rdc-graph. We further proved the existence of rdc for any simple
graph. Moreover, we determine the exact value of this parameter in special graph families such as complete multipartite
graphs, paths and cycles, while establishing the relation between rdc-number and graph invariants like vertex degree. We
further characterized the rdc-graphs of paths. This study applies rdc-partitioning to cybersecurity, structuring networks into
collaborative security clusters that detect, contain, and neutralize threats in real time.
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1. Introduction

LetGh = (Vh, Eh) be a finite, simple, and undirected graph, where Vh represents the set of vertices with n elements
(order) and Eh represents the set of edges with m elements (size). For an element in the vertex set rh ∈ Vh, the
open neighborhood of rh is the set N(rh) = {sh : rhsh ∈ Eh} and the closed neighborhood is the set that contains
both the set N(rh) and the vertex rh. A vertex that is adjacent to all other vertices in the graph is referred to
as a full vertex, while a vertex that has no connections to any other vertex is known as an isolated vertex. The
smallest and largest degrees of a graph Gh are indicated by δ(Gh) and ∆(Gh), respectively. G[M ] represents the
subgraph induced by a vertex subset M ⊆ Vh. A set Vx ⊂ Vh is termed a singleton vertex set if Vx contains exactly
one element. A subset Vd of the vertex set is called a dominating set when each vertex in Vh \ Vd is adjacent to
at least one vertex in Vd. Various new types of dominating sets and their properties have been explored in recent
research [1, 2]. A subset Vr ⊆ Vh is called a restrained dominating set (RD-set) if it satisfies two conditions. First,
every vertex in the complement set Vh \ Vr must be adjacent to at least one vertex within Vr, ensuring that the
dominating property is maintained. Second, each vertex in Vh \ Vr must also be adjacent to at least one other
vertex within the same set Vh \ Vr, (i.e.) the graph G[Vh \ Vr] contains no isolated vertices. This condition ensures
that the remaining vertices are not completely disconnected but remain integrated within the graph’s structure. The
restrained domination number, denoted by γr(Gh), is the minimum size of a restrained dominating set in the graph
Gh. Restrained domination was first introduced in 1999 by Gayla S. Domke and others [3].
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Hayes and others introduced the study of coalition and coalition partition in [4]. In a graph Gh, a coalition
is formed by two distinct vertex subsets Cx and Cy. Individually, neither Cx nor Cy is a dominating set of
Gh. However, when these two sets are combined, their union, Cx ∪ Cy, satisfies the condition of a dominating
set, ensuring that every vertex in the graph is either included in the union or adjacent to at least one of its
vertices. A coalition partition in Gh refers to a partition of the vertex set into distinct subsets, denoted as
ψ = {C1, C2, . . . , Ck}, where each subset Ci satisfies one of two conditions. Either it is a dominating set on its
own, which consists of only one vertex, ensuring that all other vertices in the graph are adjacent to it, or it is not
a dominating set on its own but collaborates with another subset Cj within ψ to form a coalition that collectively
dominates the graph. The singleton vertex partition of a graph Gh with vertex set Vh = {s1, s2, ..., sn}, is the
partition ψ = {C1, C2, ...Ck} such that for j ∈ {1, 2, ..., n}, Cj = {sj}.

A series of interrelated studies have significantly advanced the understanding of specialized coalition structures
in graphs. The self-coalition graphs, introduced by Haynes [5], explored graph structures that are isomorphic to
their own coalition graph under a singleton partition. Building on this, the same authors formalized the concept
of coalition graphs CG(Gh, π), where a coalition partition π of a graph Gh generates a new graph, and proved
that every graph can be modeled as a coalition graph using constructive methods involving auxiliary graphs [6].
Extending the theory, Alikhani introduced total coalitions, a variant where all dominating sets must be total and
applied the concept to trees and connected graphs to establish foundational properties [7]. Samadzadeh studied
a variant of coalition called paired coalitions, focusing on the role of perfect matchings and providing structural
characterizations of triangle-free and unicyclic graphs along with results for trees [8]. Meanwhile, Bakhshesh
investigated singleton coalition graph chains, addressing open questions from previous work and establishing
links between coalition number, graph order, and degree for graphs with low minimum degree [10]. Moreover,
Bakhshesh and Henning introduced the minmin coalition number, defined as the minimum order among all minimal
coalition partitions, and proposed polynomial-time algorithms and necessary conditions for its existence [11].
Several other variants of coalitions such as independent coalition [12], double coalition [13], perfect coalition [14],
k-coalitions [15] and so on have also been defined.

To advance future study, a novel perspective on coalitions that deals with restrained dominating sets and their
corresponding graphs has been defined and studied in this work. Section 2 introduces and studies the properties of
restrained domination coalitions and restrained domination coalition graph. We focus on establishing the restrained
coalition number of various graph classes like complete multipartite graphs, paths and cycles. Section 3 presents an
application of restrained coalition partitioning (rdc-partitioning) in cybersecurity, demonstrating how this approach
enhances network resilience against cyber threats. Finally, Section 4 concludes the paper with some problems for
further research.

2. Restrained coalition

In this section we focuses on the foundational aspects of restrained domination coalitions (rdc), beginning with
their existence and initial findings. We further define rdc-graphs and determine the exact value of rdc-numbers for
various special graph classes.

2.1. Existence and preliminary results

We begin this section by defining restrained domination coalition and restrained domination coalition partition and
assert the existence and initial outcomes of restrained domination coalitions in a graph.

Definition 2.1
(Restrained domination coalition) For a graph Gh, two distinct vertex subsets Rx and Ry are said to form a
restrained domination coalition (or simply rdc) if neither Rx nor Ry is an RD-set of Gh. However, Rx ∪Ry is an
RD-set of Gh.

Definition 2.2
(Restrained domination coalition partition) A restrained domination coalition partition (abbreviated as rdcp), in

Stat., Optim. Inf. Comput. Vol. x, Month 202x



2 RESTRAINED DOMINATION COALITION NUMBER OF PATHS AND CYCLES

a given graphGh is a specific type of vertex partition denoted as πr = {R1, R2, . . . , Rl}. Within this partition, each
subset Ri falls into one of two categories: it is either an RD-set containing a single vertex, or a non-RD-set that
forms a rdc with another subset Rj from the same partition πr. Consequently, Ri and Rj are referred to as rdc-
partners. The largest possible order of an rdcp in a graph Gh is defined as the rdc-number, denoted by RDc(Gh).
An rdcp that attains this maximum order is specifically referred to as an RDc(Gh)-partition, which is represented
by Πr.

For example, consider the graph Gh depicted in fig. 1 and examine πr(Gh) = {{u1, u5}, {u2}, {u3}, {u4}},
where none of these sets are RD-sets of Gh. Note that {u1, u5} is the rdc−partner of {u2}, {u3} and {u4}. The
partition πr(Gh) is the one with maximum cardinality and thus RDc(Gh) = 4.

Figure 1. The graph Gh

Observation 2.3
Let πr(Gh) = {R1, R2, ..., Rl} be an rdcp of a graph Gh. Then |Ri ∪Rj | ≥ γr(G) for any pair of rdc partners in
πr(Gh).

Proposition 2.4
For a complete graph Gk of k elements, RDc(Gk) = k.

Proof
It is clear that the singleton vertex partition πr = {{u1}, {u2}, ..., {uk}} is an rdcp of Gk having the vertex set
Vh = {u1, u2, ..., uk} where each {ui} for i = {1, 2, ..., k} is a singleton RD-set.

Note that from proposition 2.4 , for every k, there is a graph Gh of order k whose rdc number is RDc(Gh) = k.
We now prove the existence of rdcp for every simple graph.

Theorem 2.5
If Gh is a simple graph then Gh admits an rdcp.

Proof
Consider any xh ∈ Vh that denotes a vertex in a graph Gh such that δ(Gh) = deg(xh). Considering the following
two cases,
Case 1: Let xh be a full vertex of Gh, then Gh is a complete graph (since xh is a full vertex having minimum
degree). Then by proposition 2.4, Gh admits an rdcp.
Case 2: Define the vertex partition πr = {R1, R2} where R1 = Vh − {xh} and R2 = {xh}. As G[Vh −R1] has an
isolated vertex (i.e. xh) and since xh is not a full vertex, neither R1 nor R2 is an RD-set. However, R1 ∪R2 = Vh
is an RD-set of Gh. Thus R1 and R2 are rdc-partners, forming an rdcp of Gh of order at least two.

Corollary 2.6
2 ≤ RDc(Gh) ≤ r for any graph Gh with r vertices.

The bounds in the corollary 2.6 are sharp where the lower bound is attained by the path with two vertices and
the upper bound is attained by the complete graph on r vertices.

Corollary 2.7
RDc(Gh) = 1 if and only if Gh = K1.
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Since every RD-set in Gh is also a dominating set, an obvious question arises: are domination coalitions
and rdc structures equivalent. Consider the graph Gh = P2 ∪ P1 as illustrated in the figure 2, where V (Gh) =
{p1,1, p2,1, p2,2} and {p2,1, p2,2} ∈ E(Gh).

Figure 2. P1 ∪ P2

Consider the vertex partitions of Gh, π1 = {{p1,1}, {p2,1}, {p2,2}}, π2 = {{p1,1}, {p2,1, p2,2}}, π3 =
{{p1,1, p2,2}, {p2,1}} and π3 = {{p1,1, p2,1}, {p2,2}}. Observe that π1 is not an rdcp of Gh but satisfies the
condition of a coalition partition of Gh. Conversely, neither π3 nor π4 qualify as a coalition partition, yet both of
them is an rdcp of Gh. Also, π2 leads to an intriguing observation that it satisfies both coalition and rdc conditions.
Since π1 is a coalition partition but not an rdcp of Gh, the two problems are not equivalent, highlighting the
importance of studying the rdcp problem separately. Moreover, these partitions also implies that forGh = P2 ∪ P1,
we have 2 = RDc(Gh) ≤ C(Gh) = 3 where C(Gh) is a coalition number of Gh.

Additionally, theorem 2.5 is applied in constructing π2, where the vertex of minimum degree is placed in its own
distinct element.

The following lemma establishes that the set consists of the end vertices must be contained within the union of
every pair of rdc-partners (A,B) in any rdcp of a graph Gh with δ(Gh) = 1.

Lemma 2.8
If πr is an rdcp of a graph Gh with δ(Gh) = 1 and A,B ∈ πr, then Xe ⊆ A ∪B for each pair of rdc-partners
(A,B), where Xe is the set of end vertices.

Proof
For the purpose of contradiction, let Xe ̸⊆ A ∪B, then there exists a vertex say xh in Xe such that xh is not in the
union of A and B. Let yh be the support vertex to xh. If yh is not in the union of A and B then xh is not dominated
by A ∪B. Thus yh ∈ A ∪B. Now xh has no adjacent vertex inG[Vh − (A ∪B)], contradicting the fact that (A,B)
are rdc-partners.

Lemma 2.9
If Πr is an RDc(Gh)-partition of order RDc(Gh) ≥ 3 of a graph Gh with δ(Gh) = 1, then there exists an element
in Πr that includes every end vertex of Gh.

Proof
Let Xe contain all the end vertices of Gh. If Xe consists of a single element, then the result is trivial. Let |Xe| ≥ 2.
For the purpose of contradiction, let xh and yh such that xh, yh ∈ Xe that are contained in different members of Πr.
Let xh ∈ Vxh

and yh ∈ Vyh
, where {Vxh

, Vyh
} ∈ Πr. Further, let Vzh be a set in Πr, such that Vzh /∈ {Vxh

, Vyh
}.

By lemma 2.8, Vzh has no rdc-partner, a contradiction.

Combining lemma 2.8 and 2.9, we have the next result.

Theorem 2.10
If Πr is an RDc(Gh)-partition of order RDc(Gh) ≥ 3 of a graph Gh with δ(Gh) = 1 and let Ve be the member of
Πr containing the end vertices of G. Then for any paired (X,Y ) of RDc-partners in Gh, Ve ∈ {X,Y }.

The following theorem establishes a bound on the quantity of rdc-partners of an element in an rdcp of the graph
Gh.

Theorem 2.11
If πr is a rdcp and Ah be an element of πr, then Ah has at most ∆(Gh) + 1 rdc-partners in πr and this bound is
exact.
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4 RESTRAINED DOMINATION COALITION NUMBER OF PATHS AND CYCLES

Proof
Assume that πr is any rdcp of Gh and Ah ∈ πr. If Ah is an RD-set then Ah is a singleton set and Ah cannot be an
rdc-partner of any other sets. Therefore, assume that Ah is not an RD-set of Gh. If Ah is a non-RD-set then by the
definition of an RD-set, for a vertex w ̸∈ Ah, we have :
Case 1: When N(w) ̸∈ Ah. Then any set in πr that forms an rdc with Ah must dominate w by including at least a
single vertex from N [w], such sets has a upper bound of |N [w]| = deg(w) + 1 which is at most ∆(G) + 1.
Case 2: When N(w) ∈ Ah and N(w) ̸∈ Vh −Ah. That is, w is dominated by Ah and no edges exist between w
and any other vertices in G[Vh −Ah], as N(w) ⊆ Ah. Then Ah has exactly one rdc-partner, say Bh and Bh should
contain w.
Combining both the cases, we get that if Ah ∈ πr, then Ah has at most ∆(Gh) + 1, rdc-partners. To prove
the sharpness, consider the graph H = Kp ∪K1, p ≥ 3 with the vertex set V (H) = {w1, w2, ..., wp} ∪ {x}. The
singleton vertex partition is an RDc(G)−partiton of H , where the set {x} has ∆+ 1 = p, rdc-partners. That is for
1 ≤ j ≤ p, the sets {wj} is an rdc-partner of {x}.

Using the above theorem, we prove the following.

Theorem 2.12
If RDc(Gh) is an rdc-number of a graph Gh with δ(Gh) = 1, then RDc(Gh) ≤ ∆(Gh) + 2.

Proof
Let w ∈ Vh and deg(w) = 1. Let πr be an rdcp of Gh and let W be an element of πr such that w ∈W . By lemma
2.8 for any two sets U,X ∈ πr that form an rdc, U =W or X =W . Therefore, the sets of πr other than W form
an rdc with W . By theorem 2.11, W has at most ∆(Gh) + 1, rdc-partners. Hence, RDc(Gh) ≤ ∆(Gh) + 2.

Next we define the rdc-graph for the corresponding rdcp.

Definition 2.13
(Restrained domination coalition graph) Given an rdcp, πr = {R1, R2, . . . , Rl} of order l for a graph Gh, the
rdc-graph, denoted asRDcG(Gh, πr), is defined as follows: The vertex set ofRDcG(Gh, πr) consists of l vertices,
each uniquely associated with an element of πr. An edge exists between two vertices Ri and Rj in RDcG(Gh, πr)
if and only if the Ri and Rj together form an rdc in Gh.

Consider the graph Gh in figure 3 and consider the rdcp of Gh, πr(Gh) = {{u1, u5}, {u2}, {u3}, {u4}}. In this
partition, {u1, u5} serves as an rdc-partner of the sets {u2}, {u3} and {u4}. Consequently, the vertex corresponding
to {u1, u5} is adjacent to the vertices corresponding to {u2}, {u3} and {u4} in RDcG(Gh, πr). However, since
any union combination of the sets {u2}, {u3} and {u4} does not form an RD-set, the vertices corresponding to
{u2}, {u3} and {u4} are not adjacent in RDcG(Gh, πr).

Figure 3. A rdc(Gh)-partition πr and RDcG(Gh, πr) ≊ K1,3

Note that the complete graph Kn has precisely one RDc(G)-partition, which is its singleton partition given in
proposition 2.4, and hence RDcG(Kn,Πr) = Kn.

Remark 2.14
Given that every graph Gh has at least one rdcp, each graph also has a minimum of one associated rdc-graph,
H = RDcG(Gh, πr) and based on the number of rdcp in the graph, it may have multiple associated rdc-graphs.
By using the rdcp in theorem 2.5, we can say that every graph other than complete graph has at least one complete
graph ( for example, K2) as their rdc-graph.
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The following theorem establishes a bound on the largest possible degree of RDcG(Gh, πr).

Lemma 2.15
If ∆r be the maximum degree of RDcG(Gh, πr) then ∆r(RDcG(Gh, πr)) ≤ ∆(Gh) + 1.

Proof
Let RDcG(Gh, πr) be the corresponding rdc-graph of the rdcp, πr. Let Uh ∈ πr such that |Uh| ≥ 2 and
degRDcG(Gh,πr)(Uh) = ∆r. Since Uh ∈ πr, by theorem 2.11, Uh has at most ∆(Gh) + 1, rdc-partners.
Consequently, Uh can be adjacent to at most ∆(Gh) + 1 vertices in RDcG(Gh, πr). Then ∆r(RDcG(Gh, πr)) =
degRDcG(Gh,πr)(Uh) ≤ ∆(Gh) + 1.

Note that the smallest possible degree, δr(RDcG(Gh, πr)) = 0 is attained whenever Gh has a full vertex vf
which is not a support vertex. Futhermore, the existence of vf increases the number of components in the rdc-
graph of Gh.

2.2. Restrained domination coalition number for special graphs

We now find the exact value of RDc(Gh) for some special classes of graphs like complete multipartite, paths and
cycles.

Proposition 2.16
For any star K1,n and n ≥ 2, RDc(K1,n) = 2.

Proof
Consider a star graph K1,n with the vertex set V (K1,n) = {s1, s2, ..., sn−1, sn} where deg(sn) = n− 1 and
deg(sl) = 1 for l = 1, 2, ..., n. For K1,n, πr = {{s1, s2, ..., sn−1}, {sn}} is an rdcp. Thus, RDc(K1,n) ≥ 2. If
RDc(K1,n) > 2, then by theorem 2.9, there exists a set in the rdcp which contains s1, s2, ..., sn−1. Hence, it follows
that RDc(K1,n) = 2, which is a contradiction. Hence, RDc(K1,n) = 2.

Proposition 2.17
Let Gh be a complete multipartite graph of order m, then RDc(Gh) = m.

Proof
Consider the complete multipartite graph Gh of order m with k partite sets.The singleton vertex partition is the
required rdcp of maximum cardinality. This is because each vertex belonging to one partite set forms an rdc
together with all the vertices in the remaining k − 1 partite sets.

We now proceed to establish the value of RDc(Pk) for the paths Pk.

Theorem 2.18

For any path Pk, RDc(Pk) =

{
2 if 2 ≤ k ≤ 5
3 if k ≥ 6.

Proof
Consider the path P2 with the vertex set V = {v1, v2}. since the singleton vertex partition is the only rdcp,
RDc(P2) = 2. Now, consider the path P3 with the vertex set V = {v1, v2, v3}. It is clear that RDc(P3) ̸= 3, since
γr(P3) = 3. Thus RDc(P3) ≤ 2. The rdcp of P3 is {{v1}, {v2, v3}} and hence RDc(P3) = 2. Let P4 be a path
having the vertex set {v1, v2, v3, v4}, thenRDc(P4) = 2 (since γr(P4) = 4). IfRDc(P4) ≥ 3, then by theorem 2.10,
there exists an RDc(G)−partiton πr such that Ve ∈ πr where Ve contains the end vertices of P4 (i.e. v1, v4 ∈ Ve).
Since Ve is not an RD-set either v2 or v3 (not both) should be in Ve. If suppose v3 ∈ Ve then πr contains two
elements, which is a contradiction. Therefore, RDc(P4) = 2. Similarly, RDc(P5) = 2.
For path Pk of order k ≥ 6 with V (Pk) = {v1, v2, ..., vk}, the partition {{v1, v6, v7, ..., vk}, {v2, v3}, {v4, v5}} is
an rdcp. Thus RDc(Pk) ≥ 3. To prove RDc(Pk) ≤ 3, let πr be an RDc(G)-partition (i.e., rdcp of maximum
cardinality) of Pk. By lemma 2.9, there is an element, say Ve of πr that contains the end vertices of Pk which
is {v1, vn} ⊆ Ve. To show that Ve forms an rdc with a maximum of two other sets, assume the contrary, that there
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6 RESTRAINED DOMINATION COALITION NUMBER OF PATHS AND CYCLES

are three sets in πr, say V1, V2, V3 that form an rdc with Ve. Let Ve fail to dominate the vertex vi. Assume that
vi−1 ∈ V1, vi ∈ V2, and vi+1 ∈ V3 (as shown in the fig.4).

Figure 4. Path

As Ve ∪ V1 is anRD-set, vi−2 ∈ Ve ∪ V1 and similarly Ve ∪ V3 is anRD-set, vi+2 ∈ Ve ∪ V3. Suppose vi−2 ∈ Ve
then G[V \ (Ve ∪ V2)] has an isolated vertex vi−1. Thus vi−2 ∈ V1. Suppose vi+2 ∈ Ve then G[V \ (Ve ∪ V2)] has
an isolated vertex vi+1. Thus vi+2 ∈ V3. Now, since vi−2 ∈ V1 and vi+2 ∈ V3 we arrive at a contradiction that
V1 ∪ Ve does not dominate vi+1 and similarly V3 ∪ Ve does not dominate vi−1.

Hence, Ve forms an rdc with a maximum of two other sets. Now theorem 2.10 implies that RDc(Pk) ≤ 3.

We next characterize the rdc-graphs of paths ( i.e. RDcP−graphs).

Theorem 2.19
A graph H is an RDcP−graph if and only if H ∈ {P2, P3}

Proof

Consider any rdcp πr of paths P2 through P5, then πr contains only two elements and the
corresponding rdc−graph is, RDcG(Pi, πr) ∼= P2 for 2 ≤ i ≤ 5. For k ≥ 6, consider the rdcp πr =
{{v1, v6, v7, ..., vk}, {v2, v3}, {v4, v5}} where V (Pk) = {v1, v2, ..., vk}, then RDcG(Pk, πr) ∼= P3. Thus P2 and P3

are RDcP−graphs.
Conversely, suppose H is an RDcP−graph of nh vertices. By theorem 2.18, we have 2 ≤ nh ≤ 3. For nh = 2,

the graphs containing two vertices are either P2 or P 2 and since nh is the number of vertices of RDcP−graph,
RDcP ≁= P 2. For nh = 3, applying theorem 2.10, we conclude that the element in πr containing the end vertices
is the only rdc-partner for the remaining sets when δ(G) = 1 (i.e.) RDcG(G, πr) ∼= Kl−1,1 where |πr| = l. Hence,
we get H ∈ {P2, P3}.

Theorem 2.20

For any cycle Cl, RDc(Cl) =


l if l = 3, 4
4 if l ≡ 0 mod 4
6 if l ≡ 0 mod 3
3 otherwise.

Proof
Since the singleton vertex partition gives the rdcp for l = 3 and 4, RDc(Cl) = l. Consider the cycle Cl of order
l ≥ 5. Let V (Cl) = {v1, v2, ..., vl}.
Case 1: l ≡ 0 mod 3. Consider the sets, R1

1 = {v1}, R1
2 = {v2}, R1

3 = {v3}, R1
4 =

{v4, v7, v10..., v4+3(⌊(l−4)/3⌋)}, R1
5 = {v5, v8, v11, ..., v5+3(⌊(l−5)/3⌋}, R1

6 = {v6, v9, v12, ..., v6+3(⌊(l−6)/3⌋}. Then
πr1 = {R1

1, R
1
2, R

1
3, R

1
4, R

1
5, R

1
6} is an rdcp of Cl when l ≡ 0 mod 3 such that R1

1 and R1
4 are rdc-partners, R1

2 and
R1

5 are rdc-partners and R1
3 and R1

6 are rdc-partners. Thus RDc(Cl) = 6.
Case 2: l ̸≡ 0 mod 3.
subcase 2.1: l ≡ 0 mod 4. Consider the sets R1 = {v1, v5, ...v1+4⌊(l−1)/4⌋}, R2 = {v2, v6, ...v2+4⌊(l−1)/4⌋},
R3 = {v3, v7, ...v3+4⌊(l−1)/4⌋} and R4 = {v4, v8, ...v4+4⌊(l−1)/4⌋}. Then πr2 = {R1, R2, R3, R4} is an is an rdcp
of Cl when l ̸≡ 0 mod 3 and l ≡ 0 mod 4 such that R1 is an rdc-partner of R4 and R2 is an rdc-partner of R3.
Thus RDc(Cl) = 4.
subcase 2.2: l ̸≡ 0 mod 4. Consider the vertex partition πr3 = {{v1, v7, ..., vl}, {v2, v3}, {v4, v5}}. The partition
πr2 forms an rdcp, since R1 is an rdc-partner of R4 and R2 is an rdc-partner of R3. Hence, RDc(Cl) = 3 when
l ̸≡ 0 mod 3 and l ̸≡ 0 mod 4.
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To illustrate the above theorem and the rdc-graph of cycle, consider the cycle C6 with vertices labelled as in the
figure 5. The rdcp of C6 using the theorem 2.20 is πr = {{v1}, {v2}, {v3}, {v4}, {v5}, {v6}}. In this partition, {v1}
serves as an rdc-partner only for the set {v4}. Consequently, the vertex corresponding to {v1} is adjacent to the
vertex corresponding to {v4} in RDcG(C6, πr). Similarly, {v2} is adjacent to {v5} and {v3} is adjacent to {v5} in
RDcG(C6, πr). Since no other combination forms an rdc, there are no additional adjacency in RDcG(C6, πr).

Figure 5. A rdc(C6)-partition πr and RDcG(C6, πr) ≊ 3P2

3. Application

Consider the network as a graph, where each node represents the devices or servers, and each edge represents the
communication links. Now, consider the cybersecurity as an alliance rather than a single line of defense. In this
approach, we use rdc-partitioning to divide the network into security clusters (vertex partition). These clusters are
non-restrained dominating sets, each responsible for monitoring specific threats, such as traffic anomalies, malware
activity, or suspicious login attempts. But instead of working in isolation, they collaborate. If one cluster detects a
potential threat, say a trojan on a user’s device, its rdc-partner (another cluster) immediately steps in, restricts the
access, blocks suspicious activity, or isolates the compromised system to prevent the threat from spreading. For
instance, consider the case modeled using the cycle C6. The corresponding rdcp and the associated rdc-graph are
illustrated in figure 5. In this setting, when the subset {v1} is exposed to a threat, its rdc-partner {v4} promptly
intervenes by limiting access, mitigating suspicious activity, or isolating the compromised component to prevent
escalation. Similarly, for {v2} and {v3}, their respective partners {v5} and {v6} undertake analogous protective
actions to ensure system integrity. This teamwork stops vulnerabilities from being exploited and keeps threats from
slipping through the cracks. This layered security model also ensures that every device outside the clusters is still
connected to at least one of them (domination condition), and the real strength lies in the network’s design that
the devices not directly in these clusters are still monitored by other non-cluster devices (restrained condition).
That way, even stealthy threats like stealth viruses or rootkits cannot slip through unnoticed. By maintaining this
interconnected structure, we prevent any system from becoming an easy target, strengthening the network against
cyberattacks while ensuring smooth, secure operations.

4. Conclusion and future works

In this study, we introduced and systematically investigated the concepts of restrained domination coalition rdc and
rdc-graphs. We established the existence of rdc for any simple graph and determined the exact value of the rdc-
number for several important graph families, including star graph, complete multipartite graphs, paths and cycles.
Furthermore, we characterized the rdc-graphs of paths. Additionally, we explored the relationship between the rdc-
number and fundamental graph invariants such as vertex degree. To explore new families of graphs through graph
operations, establish bounds, identify structural properties, and investigate resilience to changes in real networks,
future work will focus on addressing the following directions:

1. What is the value ofRDc(Gh) of graph operations, such as corona, cartesian product, join, lexicographic, and
so on?. These operations are particularly useful since they generate new families of graphs from well-known
ones.
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2. Determining Nordhaus and Gaddum bounds on the rdc-number of a graph and its complement as it helps to
measure the extremal behavior of the parameter and provides benchmarks for comparisons.

3. Studying which family of graphs have small and large RDc(Gh) may reveal on structural properties that
influence rdc.

4. Real networks often undergo changes (adding/removing nodes or links) This has practical implications, e.g.,
in fault tolerance, cybersecurity, or communication networks, where resilience to changes is crucial. A natural
question arises how does the value ofRDc(Gh) change whenGh is altered through vertex or edge operations?
(see eg.[9] )

Additionally, our study demonstrates the practical application of rdc-partitioning in cybersecurity, where networks
can be structured into collaborative security clusters that detect, contain, and neutralize threats.
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