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Abstract A restrained domination coalition (or simply rd.) consists of two disjoint subsets of vertices R; and Rp of a
graph Gy,. Neither Ry nor Ry, on its own, is a restrained dominating set (RD-set). However, when combined, they together
form an RD-set for the graph. A restrained domination coalition partition (rdcp) is a vertex partition m = {Ry, Ro, .., R; }
where each element of R; € 7, is either an RD-set consisting of a single vertex, or a non- R D-set that forms an rd. with a set
R; in 7y In this work, we initiated the concept of rd. and rdc.-graph. We further proved the existence of rd. for any simple
graph. Moreover, we determine the exact value of this parameter in special graph families such as complete multipartite
graphs, paths and cycles, while establishing the relation between rd.-number and graph invariants like vertex degree. We
further characterized the rd.-graphs of paths. This study applies rd.-partitioning to cybersecurity, structuring networks into
collaborative security clusters that detect, contain, and neutralize threats in real time.
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1. Introduction

Let Gj, = (Vj, E},) be afinite, simple, and undirected graph, where V}, represents the set of vertices with n elements
(order) and E}, represents the set of edges with m elements (size). For an element in the vertex set r;, € V;,, the
open neighborhood of ry, is the set N (rp,) = {sp, : rps, € Ey} and the closed neighborhood is the set that contains
both the set N(r,) and the vertex r,. A vertex that is adjacent to all other vertices in the graph is referred to
as a full vertex, while a vertex that has no connections to any other vertex is known as an isolated vertex. The
smallest and largest degrees of a graph G}, are indicated by d(G},) and A(G},), respectively. G[M] represents the
subgraph induced by a vertex subset M C V. A set V,, C V}, is termed a singleton vertex set if V,, contains exactly
one element. A subset V;; of the vertex set is called a dominating set when each vertex in V}, \ V; is adjacent to
at least one vertex in V. Various new types of dominating sets and their properties have been explored in recent
research [1, 2]. A subset V,. C V}, is called a restrained dominating set (RD-set) if it satisfies two conditions. First,
every vertex in the complement set V}, \ V,. must be adjacent to at least one vertex within V,., ensuring that the
dominating property is maintained. Second, each vertex in V}, \ V,. must also be adjacent to at least one other
vertex within the same set V;, \ V., (i.e.) the graph G[V}, \ V] contains no isolated vertices. This condition ensures
that the remaining vertices are not completely disconnected but remain integrated within the graph’s structure. The
restrained domination number, denoted by 7,.(G},), is the minimum size of a restrained dominating set in the graph
G, Restrained domination was first introduced in 1999 by Gayla S. Domke and others [3].
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3410 RESTRAINED DOMINATION COALITION NUMBER OF PATHS AND CYCLES

Hayes and others introduced the study of coalition and coalition partition in [4]. In a graph G}, a coalition
is formed by two distinct vertex subsets C, and Cj. Individually, neither C, nor Cy, is a dominating set of
G'1,. However, when these two sets are combined, their union, C, U C,, satisfies the condition of a dominating
set, ensuring that every vertex in the graph is either included in the union or adjacent to at least one of its
vertices. A coalition partition in G}, refers to a partition of the vertex set into distinct subsets, denoted as
Y ={C1,C4,...,C}, where each subset C; satisfies one of two conditions. Either it is a dominating set on its
own, which consists of only one vertex, ensuring that all other vertices in the graph are adjacent to it, or it is not
a dominating set on its own but collaborates with another subset C; within ¢ to form a coalition that collectively
dominates the graph. The singleton vertex partition of a graph G, with vertex set Vj, = {s1, 2, ..., 8, }, is the
partition ¢ = {C1, Cs,...C} such that for j € {1,2,...,n}, C; = {s;}.

A series of interrelated studies have significantly advanced the understanding of specialized coalition structures
in graphs. The self-coalition graphs, introduced by Haynes [5], explored graph structures that are isomorphic to
their own coalition graph under a singleton partition. Building on this, the same authors formalized the concept
of coalition graphs CG(Gy, ), where a coalition partition 7 of a graph G}, generates a new graph, and proved
that every graph can be modeled as a coalition graph using constructive methods involving auxiliary graphs [6].
Extending the theory, Alikhani introduced total coalitions, a variant where all dominating sets must be total and
applied the concept to trees and connected graphs to establish foundational properties [7]. Samadzadeh studied
a variant of coalition called paired coalitions, focusing on the role of perfect matchings and providing structural
characterizations of triangle-free and unicyclic graphs along with results for trees [8]. Meanwhile, Bakhshesh
investigated singleton coalition graph chains, addressing open questions from previous work and establishing
links between coalition number, graph order, and degree for graphs with low minimum degree [10]. Moreover,
Bakhshesh and Henning introduced the minmin coalition number, defined as the minimum order among all minimal
coalition partitions, and proposed polynomial-time algorithms and necessary conditions for its existence [11].
Several other variants of coalitions such as independent coalition [12], double coalition [13], perfect coalition [14],
k-coalitions [15] and so on have also been defined.

To advance future study, a novel perspective on coalitions that deals with restrained dominating sets and their
corresponding graphs has been defined and studied in this work. Section 2 introduces and studies the properties of
restrained domination coalitions and restrained domination coalition graph. We focus on establishing the restrained
coalition number of various graph classes like complete multipartite graphs, paths and cycles. Section 3 presents an
application of restrained coalition partitioning (rd.-partitioning) in cybersecurity, demonstrating how this approach
enhances network resilience against cyber threats. Finally, Section 4 concludes the paper with some problems for
further research.

2. Restrained coalition

In this section we focuses on the foundational aspects of restrained domination coalitions (rd.), beginning with
their existence and initial findings. We further define rd.-graphs and determine the exact value of rd.-numbers for
various special graph classes.

2.1. Existence and preliminary results

We begin this section by defining restrained domination coalition and restrained domination coalition partition and
assert the existence and initial outcomes of restrained domination coalitions in a graph.

Definition 2.1

(Restrained domination coalition) For a graph G, two distinct vertex subsets R, and R, are said to form a
restrained domination coalition (or simply rd.) if neither R, nor R, is an RD-set of G,. However, R, U R, is an
RD-set of Gy,.

Definition 2.2
(Restrained domination coalition partition) A restrained domination coalition partition (abbreviated as rd.,), in
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a given graph G}, is a specific type of vertex partition denoted as 7, = { Ry, Ra, ..., R;}. Within this partition, each
subset R; falls into one of two categories: it is either an RD-set containing a single vertex, or a non-RD-set that
forms a rd. with another subset R; from the same partition 7. Consequently, ?; and R; are referred to as rd.-
partners. The largest possible order of an rd., in a graph G}, is defined as the rd.-number, denoted by RD.(G},).
An rd,, that attains this maximum order is specifically referred to as an RD.(G},)-partition, which is represented
by II,.

For example, consider the graph G}, depicted in fig. 1 and examine 7,.(Gp) = {{u1,us}, {ua}, {us}, {usa}},
where none of these sets are RD-sets of GJ,. Note that {uy, us} is the rd.—partner of {us}, {us} and {us}. The
partition 7,.(G},) is the one with maximum cardinality and thus RD.(G}) = 4.

Uuy Uo Us

us
Uy

Figure 1. The graph G},

Observation 2.3
Let ,.(Gr) = {R1, R2, ..., R;} be an rd., of a graph G,. Then |R; U R;| > ~,(G) for any pair of rd. partners in
TI'T(G}L).

Proposition 2.4
For a complete graph G, of k elements, RD.(Gy) = k.

Proof
It is clear that the singleton vertex partition 7, = {{u1}, {us},...,{ux}} is an rd., of G} having the vertex set
Vi, = {u1,uq, ..., ur ; where each {u;} fori = {1,2,..., k} is a singleton RD-set. O

Note that from proposition 2.4 , for every k, there is a graph G}, of order k whose rd. number is RD.(Gp) = k.
We now prove the existence of rd., for every simple graph.

Theorem 2.5
If G, is a simple graph then G, admits an rd,,.

Proof

Consider any z;, € V}, that denotes a vertex in a graph G}, such that 6(Gj) = deg(xy,). Considering the following
two cases,

Case 1: Let x;, be a full vertex of G}, then G}, is a complete graph (since xj, is a full vertex having minimum
degree). Then by proposition 2.4, G}, admits an rd.,.

Case 2: Define the vertex partition 7. = { Ry, Ro} where Ry =V}, — {a} and Ry = {a}. As G[V}, — Ry] has an
isolated vertex (i.e. xj) and since xy, is not a full vertex, neither R nor R, is an RD-set. However, Ry U Ry =V},
is an RD-set of Gj,. Thus R; and R, are rd.-partners, forming an rd., of G, of order at least two. O

Corollary 2.6
2 < RD.(Gy) < r for any graph G}, with r vertices.

The bounds in the corollary 2.6 are sharp where the lower bound is attained by the path with two vertices and
the upper bound is attained by the complete graph on r vertices.

Corollary 2.7
RD.(G}) = 1if and only if G}, = K;.
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Since every RD-set in GG}, is also a dominating set, an obvious question arises: are domination coalitions
and rd, structures equivalent. Consider the graph G = P, U P; as illustrated in the figure 2, where V(G},) =

{P1.1,p2,1,p2,2} and {p2 1,22} € E(Gp).

(] *—o
P11 P21 P22

Figure 2. P, U Py

Consider the vertex partitions of Gp, w1 = {{p11},{p2.1},{P22}},m = {{p1.1},{P2,1,p2,2}} 73 =
{{p11,p22}, {p2.1}} and 73 = {{p1,1,p2,1}, {p2,2}}. Observe that m is not an rd., of Gj but satisfies the
condition of a coalition partition of G},. Conversely, neither 73 nor 7, qualify as a coalition partition, yet both of
them is an rd., of G, Also, 75 leads to an intriguing observation that it satisfies both coalition and rd. conditions.
Since m; is a coalition partition but not an rd., of Gp, the two problems are not equivalent, highlighting the
importance of studying the rd., problem separately. Moreover, these partitions also implies that for Gy, = P, U P,
we have 2 = RD.(G}) < C(Gy) = 3 where C(Gy,) is a coalition number of G,.

Additionally, theorem 2.5 is applied in constructing 7o, where the vertex of minimum degree is placed in its own
distinct element.

The following lemma establishes that the set consists of the end vertices must be contained within the union of
every pair of rd.-partners (A, B) in any rd,, of a graph G}, with §(Gj) = 1.

Lemma 2.8
If 7, is an rd., of a graph G}, with §(G,) =1 and A, B € ., then X. C AU B for each pair of rd.-partners
(A, B), where X is the set of end vertices.

Proof

For the purpose of contradiction, let X, Z A U B, then there exists a vertex say x, in X, such that x, is not in the
union of A and B. Let y;, be the support vertex to z,. If y;, is not in the union of A and B then z}, is not dominated
by AU B. Thus y;, € AU B. Now x;, has no adjacent vertex in G[V}, — (A U B)], contradicting the fact that (A4, B)
are rd.-partners. U

Lemma 2.9
If I1,. is an RD.(G},)-partition of order RD.(G},) > 3 of a graph G}, with 6(G},) = 1, then there exists an element
in IL, that includes every end vertex of Gy,.

Proof

Let X, contain all the end vertices of G},. If X, consists of a single element, then the result is trivial. Let | X.| > 2.
For the purpose of contradiction, let x;, and y;, such that xj, y, € X, that are contained in different members of I1,..
Let zp, € V,, and y, € V,,, where {V,,V,, } €II,. Further, let V., be a set in II,, such that V., ¢ {V,,,V,,}.
By lemma 2.8, V,, has no rd.-partner, a contradiction. O

Combining lemma 2.8 and 2.9, we have the next result.

Theorem 2.10
If II,. is an RD.(G},)-partition of order RD.(Gp) > 3 of a graph G}, with §(G,) = 1 and let V, be the member of
I, containing the end vertices of G. Then for any paired (X,Y") of RD.-partners in G}, V. € {X, Y }.

The following theorem establishes a bound on the quantity of rd.-partners of an element in an rd., of the graph
Gh.

Theorem 2.11
If m, is a rd., and A, be an element of 7., then A, has at most A(G},) + 1 rd.-partners in 7, and this bound is
exact.
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Proof

Assume that 7, is any rd., of G, and A}, € m,.. If Aj is an RD-set then Ay, is a singleton set and A}, cannot be an
rd.-partner of any other sets. Therefore, assume that A;, is not an RD-set of G},. If A;, is a non-RD-set then by the
definition of an RD-set, for a vertex w ¢ Ay, we have :

Case 1: When N (w) ¢ Ap. Then any set in 7, that forms an rd, with A;, must dominate w by including at least a
single vertex from N [w], such sets has a upper bound of |N[w]| = deg(w) + 1 which is at most A(G) + 1.

Case 2: When N (w) € Ap, and N(w) € Vi, — Ap. That is, w is dominated by A;, and no edges exist between w
and any other vertices in G[V}, — Ap], as N(w) C Aj,. Then A, has exactly one rd.-partner, say By, and By, should
contain w.

Combining both the cases, we get that if Aj; € 7., then A, has at most A(Gy) + 1, rd.-partners. To prove
the sharpness, consider the graph H = K, U K, p > 3 with the vertex set V(H) = {wy, ws, ...,w,} U {x}. The
singleton vertex partition is an RD.(G)—partiton of H, where the set {z} has A + 1 = p, rd.-partners. That is for
1 <j < p, the sets {w, } is an rd.-partner of {z}. O

Using the above theorem, we prove the following.

Theorem 2.12
If RD.(G}) is an rd.-number of a graph G, with 6(Gp) = 1, then RD.(Gr) < A(Gp) + 2.

Proof

Let w € V}, and deg(w) = 1. Let 7, be an rd,, of G}, and let W be an element of , such that w € . By lemma
2.8 for any two sets U, X € 7, that form an rd., U = W or X = W. Therefore, the sets of m,. other than W form
an rd, with W. By theorem 2.11, W has at most A(Gp,) + 1, rd.-partners. Hence, RD.(G}p) < A(Gp) + 2. O

Next we define the rd.-graph for the corresponding rd.,.

Definition 2.13

(Restrained domination coalition graph) Given an rd.,, 7, = {R1, Ra, ..., R;} of order [ for a graph G},, the
rd.-graph, denoted as RD.G(G},, 7;.), is defined as follows: The vertex set of RD.G(G},, 7,-) consists of [ vertices,
each uniquely associated with an element of 7. An edge exists between two vertices R; and R; in RD.G(Gp,, 7y)
if and only if the R; and R; together form an rd. in G},.

Consider the graph G}, in figure 3 and consider the rd., of Gy, 7.(Gr) = {{u1, us}, {uz}, {us},{usa}}. In this
partition, {u1, us} serves as an rd.-partner of the sets {us}, {us} and {us}. Consequently, the vertex corresponding
to {u1,us} is adjacent to the vertices corresponding to {us}, {us} and {us} in RD.G(G}, 7). However, since
any union combination of the sets {us}, {us} and {us} does not form an RD-set, the vertices corresponding to
{uz}, {us} and {u4} are not adjacent in RD.G (G}, 7).

Uy Us ws {us}

Uy

{uz} {ua}
Figure 3. A rd.(G},)-partition 7 and RD:G(Gp,, mr) = K1 3

Note that the complete graph K, has precisely one RD.(G)-partition, which is its singleton partition given in
proposition 2.4, and hence RD.G(K,,,11,) = K,,.
Remark 2.14
Given that every graph G, has at least one rd.p, each graph also has a minimum of one associated rd.-graph,
H = RD.G(G},m,) and based on the number of rd,, in the graph, it may have multiple associated rd.-graphs.
By using the rd., in theorem 2.5, we can say that every graph other than complete graph has at least one complete
graph ( for example, K5) as their rd.-graph.
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The following theorem establishes a bound on the largest possible degree of RD.G (G}, 7).

Lemma 2.15
If A, be the maximum degree of RD.G(Gp, ) then A,.(RD.G(Gp, 7)) < A(Gh) + 1.

Proof

Let RD.G(Gy,w,) be the corresponding rd.-graph of the rd.,, m,.. Let Uy, € m, such that |U,| > 2 and
degrp.c(Gn,m)(Un) = A, Since Up, € m,, by theorem 2.11, U, has at most A(G})+ 1, rd.-partners.
Consequently, U}, can be adjacent to at most A(G),) + 1 vertices in RD.G(Gp, ). Then A.(RD.G(Gp, 7)) =
degrp.c(Gh,m) (Un) < A(Gh) + 1. O

Note that the smallest possible degree, d,(RD.G(Gp,m,)) = 0 is attained whenever G}, has a full vertex vy
which is not a support vertex. Futhermore, the existence of vy increases the number of components in the rd.-
graph of Gy,.

2.2. Restrained domination coalition number for special graphs

We now find the exact value of RD.(G}) for some special classes of graphs like complete multipartite, paths and
cycles.

Proposition 2.16
For any star K , andn > 2, RD (K1 ,,) = 2.

Proof

Consider a star graph K;, with the vertex set V(K ,) = {s1,S2,...,Sn—1, Sn,} Where deg(s,) =n —1 and
deg(s;) =1 for 1 =1,2,...,n. For Ki,, 7 = {{s1,52,...,Sn—1},{sn}} is an rd.,. Thus, RD.(K;,) > 2. If
RD.(K1,,) > 2, then by theorem 2.9, there exists a set in the rd., which contains s1, so, ..., s,,—1. Hence, it follows
that RD.(K4 ) = 2, which is a contradiction. Hence, RD.(K1 ;) = 2. O

Proposition 2.17
Let G}, be a complete multipartite graph of order m, then RD.(G},) = m.

Proof

Consider the complete multipartite graph G}, of order m with k partite sets.The singleton vertex partition is the
required rd., of maximum cardinality. This is because each vertex belonging to one partite set forms an rd.
together with all the vertices in the remaining k£ — 1 partite sets. O

We now proceed to establish the value of RD.(Py) for the paths P.

Theorem 2.18
i <k<
For any path Py, RD.(Py) = { 2 if2<k<5

3 itk >6.

Proof

Consider the path P, with the vertex set V = {v1,v2}. since the singleton vertex partition is the only rd.,,
RD.(P>) = 2. Now, consider the path P; with the vertex set V' = {v1,vo, v3}. It is clear that RD.(Ps) # 3, since
vr(Ps) = 3. Thus RD.(Ps) < 2. The rd,, of Ps is {{v1},{ve,v3}} and hence RD.(Ps;) = 2. Let P, be a path
having the vertex set {vy, va, v3, v4}, then RD.(Py) = 2 (since v,.(Py) = 4). If RD.(Py) > 3, then by theorem 2.10,
there exists an RD.(G)—partiton 7, such that V. € m,. where V. contains the end vertices of P4 (i.e. v1,v4 € Vp).
Since V. is not an RD-set either vo or v3 (not both) should be in V.. If suppose v3 € V, then 7, contains two
elements, which is a contradiction. Therefore, RD.(P,) = 2. Similarly, RD.(P5) = 2.

For path P, of order k > 6 with V(Py) = {v1, v, ..., v}, the partition {{v1, vs, v7,..., v}, {v2, U3}, {va,v5}} is
an rd.,. Thus RD.(Py) > 3. To prove RD.(Py) < 3, let m, be an RD.(G)-partition (i.e., rd, of maximum
cardinality) of P;. By lemma 2.9, there is an element, say V, of m,. that contains the end vertices of P which
is {v1, v, } C V.. To show that V, forms an rd. with a maximum of two other sets, assume the contrary, that there
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are three sets in m,., say Vi, V5, V3 that form an rd, with V,. Let V, fail to dominate the vertex v;. Assume that
vi—1 € V1,v; € Vo, and v;41 € V3 (as shown in the fig.4).

V1 Vo Vi—3 Vj—2 Vi—1 U; Vi+1 Vi4+2 Vi43 Un—1 Up
o ——e0 “ .. *—eo— 0 e — o — 0 ——° PR *—e
i Vo W

Figure 4. Path

As V., UVjisan RD-set, v;_o € V. U V; and similarly V, U V3 is an RD-set, v; 12 € V. U V3. Suppose v;—2 € V,
then G[V \ (V. U V4)] has an isolated vertex v;_1. Thus v;_o € V3. Suppose v;42 € V. then G[V \ (V. U V»)] has
an isolated vertex v;y1. Thus v; o € V3. Now, since v;_o € V7 and v; 4o € V3 we arrive at a contradiction that
V1 U V. does not dominate v, and similarly V3 U V. does not dominate v;_ .

Hence, V, forms an rd,. with a maximum of two other sets. Now theorem 2.10 implies that RD.(P;) <3. O

We next characterize the rd.-graphs of paths (i.e. RD.P—graphs).

Theorem 2.19
A graph H is an RD.P—graph if and only if H € {P», P;}

Proof

Consider any rd., m,. of paths P, through Ps, then m, contains only two elements and the
corresponding rd.—graph is, RD.G(P;,m,) =2 P, for 2<i<5. For k>6, consider the rd.p m =
{{7]1, V6, Uty eeny ’Uk}7 {1)2, ’Ug}, {7)4, 1}5}} where V(Pk) = {’Ul7 V2y veny Uk}, then 1%.DCGY(.P]€7 7TT) = P3 Thus PQ and P3
are RD.P—graphs.

Conversely, suppose H is an RD.P—graph of n;, vertices. By theorem 2.18, we have 2 < nj, < 3. For n;, = 2,
the graphs containing two vertices are either P or P, and since ny, is the number of vertices of RD.P—graph,
RD.P % P,. For n;, = 3, applying theorem 2.10, we conclude that the element in 7, containing the end vertices
is the only rd.-partner for the remaining sets when §(G) = 1 (i.e.) RD.G(G, 7,) = K;_1 1 where |r,.| = [. Hence,
we get H € { P, P3}.

O
Theorem 2.20
I ifl=3,4
LSRR P
3 otherwise.

Proof

Since the singleton vertex partition gives the rd,, for [ = 3 and 4, RD.(C;) = [. Consider the cycle C; of order
1 >5. Let V(C)) = {v1,v2, .., v }.

Case 1: =0 mod 3. Consider the sets, R ={v1}, R} = {v2}, R} = {v3}, R =
{va,v7, V10, Vags—a)/3)) }» RE = {v5, 08,011, -, Vs 13 1-5)/3) }» R = {v6, V0, V12, ..., V13 1—6)/3) }- Then
7, = {R}, R}, R}, R}, R, Rt} is an rd,, of C; when ! = 0 mod 3 such that R{ and R} are rd.-partners, R} and
R} are rd.-partners and R} and R} are rd,.-partners. Thus RD.(C;) = 6.

Case2: 7 #0 mod 3.

subcase 2.1: [ =0 mod 4. Consider the sets Ry = {vi,vs,..v144)(1-1)/4) }» B2 = {v2, 6, -Vaya|(-1)/4]}>
R3 = {’03,1)7, -~-'03+4\_(l—1)/4j} and Ry = {U4,’U8, --V444((1-1)/4] } Then Ty = {Rl, Rg,Rg, R4} is an is an Tdcp
of C; when ! # 0 mod 3 and ! =0 mod 4 such that R, is an rd.-partner of R4 and R, is an rd.-partner of Rj.
Thus RD.(C;) = 4.

subcase 2.2: [ # 0 mod 4. Consider the vertex partition 7., = {{v1, vz, ..., v}, {va,v3}, {v4, vs}}. The partition
7, forms an rd.,, since Ry is an rd.-partner of R4 and Ry is an rd.-partner of Rs. Hence, RD.(C;) = 3 when
[#0 mod 3and!# 0 mod 4. O
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To illustrate the above theorem and the rd.-graph of cycle, consider the cycle Cg with vertices labelled as in the
figure 5. The rd,, of Cs using the theorem 2.20 is 7, = {{v1}, {v2}, {vs}, {va}, {vs}, {ve}}. In this partition, {v;}
serves as an rd.-partner only for the set {v4}. Consequently, the vertex corresponding to {v;} is adjacent to the
vertex corresponding to {v4} in RD.G(Cg, 7). Similarly, {vs} is adjacent to {v5} and {v3} is adjacent to {vs} in
RD.G(Cg, 7). Since no other combination forms an rd_., there are no additional adjacency in RD.G(Cg, 7).

{nn}  {v4}
——oe
{v2} {vs}
——o
{vs} {ve}

[ V-
4 3 P PY

Vg (%51

V= [y
Se ¢ ’

Figure 5. A rd.(Cs)-partition 7, and RD.G(Cg, ) = 3Ps

3. Application

Consider the network as a graph, where each node represents the devices or servers, and each edge represents the
communication links. Now, consider the cybersecurity as an alliance rather than a single line of defense. In this
approach, we use rd.-partitioning to divide the network into security clusters (vertex partition). These clusters are
non-restrained dominating sets, each responsible for monitoring specific threats, such as traffic anomalies, malware
activity, or suspicious login attempts. But instead of working in isolation, they collaborate. If one cluster detects a
potential threat, say a trojan on a user’s device, its rd.-partner (another cluster) immediately steps in, restricts the
access, blocks suspicious activity, or isolates the compromised system to prevent the threat from spreading. For
instance, consider the case modeled using the cycle Cs. The corresponding 7d., and the associated rd.-graph are
illustrated in figure 5. In this setting, when the subset {v;} is exposed to a threat, its rd.-partner {v,} promptly
intervenes by limiting access, mitigating suspicious activity, or isolating the compromised component to prevent
escalation. Similarly, for {ve} and {v3}, their respective partners {vs} and {vs} undertake analogous protective
actions to ensure system integrity. This teamwork stops vulnerabilities from being exploited and keeps threats from
slipping through the cracks. This layered security model also ensures that every device outside the clusters is still
connected to at least one of them (domination condition), and the real strength lies in the network’s design that
the devices not directly in these clusters are still monitored by other non-cluster devices (restrained condition).
That way, even stealthy threats like stealth viruses or rootkits cannot slip through unnoticed. By maintaining this
interconnected structure, we prevent any system from becoming an easy target, strengthening the network against
cyberattacks while ensuring smooth, secure operations.

4. Conclusion and future works

In this study, we introduced and systematically investigated the concepts of restrained domination coalition rd, and
rd.-graphs. We established the existence of rd. for any simple graph and determined the exact value of the rd.-
number for several important graph families, including star graph, complete multipartite graphs, paths and cycles.
Furthermore, we characterized the rd.-graphs of paths. Additionally, we explored the relationship between the rd..-
number and fundamental graph invariants such as vertex degree. To explore new families of graphs through graph
operations, establish bounds, identify structural properties, and investigate resilience to changes in real networks,
future work will focus on addressing the following directions:

1. What is the value of RD.(G},) of graph operations, such as corona, cartesian product, join, lexicographic, and

so on? These operations are particularly useful since they generate new families of graphs from well-known
ones.
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. Determining Nordhaus and Gaddum bounds on the rd.-number of a graph and its complement as it helps to

measure the extremal behavior of the parameter and provides benchmarks for comparisons.

Studying which family of graphs have small and large RD.(G},) may reveal on structural properties that
influence rd..

Real networks often undergo changes (adding/removing nodes or links) This has practical implications, e.g.,
in fault tolerance, cybersecurity, or communication networks, where resilience to changes is crucial. A natural
question arises how does the value of RD.(G},) change when G}, is altered through vertex or edge operations?

(see eg.[9])

Additionally, our study demonstrates the practical application of rd.-partitioning in cybersecurity, where networks
can be structured into collaborative security clusters that detect, contain, and neutralize threats.
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