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Abstract Big data in the credit risk landscape is often characterized by zero-inflated datasets, heterogeneity, and
high dimensionality. These data aberrations adversely diminish the computational efficacy of the conventional predictive
classifiers. To ensure accurate and reliable predictions, it is crucial to remedy these aberrations, as they may result in bias
towards the majority class, sparsity, and computational complexity. The modified Euclidean distance (MED)-based synthetic
minority oversampling technique (SMOTE) approaches have been suggested in contemporary literature as countermeasures
for zero-inflated datasets coupled with heterogeneity. Despite their mathematical tractability, these approaches substantially
fail to effectively capture correlations and variability among features. They are also susceptible to heavy-tailed error
distributed data points (outliers) and collinearity, rendering them computationally suboptimal in high-dimensional data
spaces. In this study, authors present a novelty of supplanting the MED with modified Mahalanobis distance (MMD) to
the variants of SMOTE, enhancing their ability to adequately capture correlations, variability, and heterogeneous features.
To mitigate the intricacies posed by these multifaceted data aberrations in high-dimensional data settings, the authors propose
the fast minimum regularized coefficient determinant (FMRCD) approach to estimate the parameters of the MMD measure.
Therefore, this paper enhances the robustness and computational efficiency of SMOTE-based approaches, by leveraging
MMD computed intrinsically to the FMRCD approach, in conjunction with classical predictive classifiers. The empirical
evidence suggests that our novelty, demonstrates superior predictions and offers computational stability edge over traditional
approaches. These contributions circumvent overwhelming data complexities presented by zero-inflated datasets combined
with high-dimensional heterogeneity in modelling big data phenomena.
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1. Introduction

1.1. Research Motivation

Global economies are gradually adopting sophisticated spending patterns over prioritizing savings (1). This
transition poses a significant risk to the credit risk landscape, especially for those institutions with suboptimal credit
risk profiling (2). Consequently, banking regulations mandate the adoption of structured approaches to scrutinize
and manage risks using up-to-date data and data analytics approaches that yield superior and stable predictions
(3). The advent of big data has revolutionized robust credit risk assessment, greatly enhancing the risk profiling
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harnessed to assess borrower’s creditworthiness (4). The most widely cited predictive classifiers include the logistic
regression (LR) (5) and random forest (RF) (6). However, their effectiveness is substantially compromised in
real-world big data scenarios, which can be characterized by zero-inflated (class-imbalanced) datasets and high-
dimensional heterogeneous features (including both continuous and nominal features) (7). The former occurs when
one class, the majority class (non-default), vastly outnumbers the other class, the minority class (defaults) (8), while
the latter consists of numerous heterogeneous features (7). The overwhelming data aberrations exhibited by zero-
inflated datasets substantially diminish the capabilities of the predictive classifiers due to their inherent symmetric
property, resulting in erroneous predictions. These conventional predictive classifiers often prioritize the majority
class samples, while accurately prediction for the minority class samples is more crucial, particularly in the credit
risk domain (2). The abundant heterogeneous features often leads to insurmountable sparsity known as the curse
of dimensionality phenomena (7). Subsequently, this high dimensionality also exacerbates inaccurate prediction
performance due to bias inclined toward the majority class. This emphasizes the necessity for statistically sound
strategies, including computationally efficient fashioned SMOTE-based approaches integrated with generalizable
distance measures in conjunction with the tractable predictive classifiers.

1.2. Adaptations of SMOTE-based approaches for Heterogeneous Features

To proffer some remedy for zero-inflated datasets, the synthetic minority oversampling technique (SMOTE)
is broadly acknowledged in contemporary literature due to its tractability, as it exhibits desirable theoretical
proprieties (8). Building on the mathematical foundations of the classical SMOTE approach, Chawla et al. (8)
proposed SMOTE for nominal and continuous features (SMOTE-NC) by supplanting the conventional Euclidean
distance (ED) with the modified ED (MED). The MED incorporates the medians of standard deviations for all
continuous features of the minority class in its computation. Despite its robustness, this approach significantly
falls short due to its inability to capture mismatched labels inherent in nominal features, as it presumes that
these labels are proportional and uniformly distributed. To circumvent this deficiency, Mukherjee and Khushi (9)
presented SMOTE for encoding nominal and continuous features (SMOTE-ENC) , which enables the configuration
of the encoding mechanism for both feature types. Although the afore-mentioned SMOTE-based approaches are
acknowledged for their statistical soundness and appealing mathematical underpinnings, they are well-known
to induce distributional overlap into the data. Subsequently, this has been established as the primary source of
ambiguous information that can adversely affect the generalizability conclusions (10). This motivated Fonseca and
Bacao (11) to introduce the geometric SMOTE-NC features (G-SMOTE-NC), which use the hypersphere approach
coupled with a geometric fashion approach as an alternative to the linear interpolation mechanism adopted by
several variations of SMOTE-based approaches. This approach aims to effectively capture heterogeneous features
and robustly discards ambiguous instances (distributional overlap), demonstrating superior capability against
noisy information. However, G-SMOTE-NC still exhibit certain limitations of SMOTE-NC by being considerably
unable to accurately capture mismatched labels intrinsic to nominal features, thereby compromising the efficacy
of the predictive classifiers This prompted Musara et al. (2) to suggest the SMOTE edited nearest neighbors
(SMOTEENN) for encoding both nominal and continuous features (SMOTEENN-ENC). This hybrid approach
is robust in discarding noisy information and adequately captures mismatched labels inherent in nominal features.
Conversely, this approach is highly computationally infeasible, particularly in handling high-dimensional features
due to the complex iterations performed by the ENN approach (12).

1.3. Robust Distance Measures

Despite the statistical efficiency demonstrated by the MED for SMOTE-based approaches typically tailored
for heterogeneous features in the literature, its effectiveness is often curtailed by its analytical intractability in
high-dimensional feature settings (13). Additionally, the MED measure’s other drawbacks are that it fails to
sufficiently capture variability and correlations among features (14), as well as its susceptibility to heavy-tailed
error distributed data points and collinearity (15), particularly in high-dimensional data scenarios. The MD, a scale
invariant measure (16), originally designed to effectively capture correlations and variability between features is
often preferred to the ED measure in the contemporary literature for the classical SMOTE approach (13), as it
utilizes these crucial information exhibited by the features. This measure has garnered significant attention due
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to its applicability across a wide spectrum of real-world applications. Furthermore, the MD exhibits excellent
computational performance and achieves exponential convergence (16). However, the MD remains susceptible
to heavy-tailed error distributed data points, collinearity and heterogeneous features as it inaccurately captures
nominal features.

In this article, the authors extended the MD to the modified MD (MMD), which incorporates the median of
the standard deviations for all continuous features in the minority class as a remedy for heterogeneous features.
However, the MMD still preserves some of the flaws exhibited by the MD, particularly its susceptibility to
heavy-tailed error distributed data points and collinearity, which adversely affect the location (mean) and
scatter (covariance) parameters (17). To counter these data aberrations, Rousseeuw (18) suggested employing
the minimum covariance determinant (MCD) estimator to estimate the location and scatter parameters, owing
to its robustness, high efficiency, and equivariance in flagging heavy-tailed error distributed data points in
low-dimensional data. This estimator is well-known for its tractability in discarding heavy-tailed error distributed
data points (19). However, the classical MCD estimator is time-consuming in handling high-dimensional data,
due to its computational intensity, susceptibility to collinearity, as well as singularity of the scatter matrix. To
enhance the computational efficiency of the MCD estimator, Rousseeuw and Leroy (20) proposed the FAST-MCD
(FMCD) estimator. Despite its computational efficiency, this estimator remains susceptible to high-dimensionality
due to the ill-conditioning of the scatter matrix. This motivated Boudt et al. (21) to put-forward the minimum
regularized covariance determinant (MRCD) estimator, which robustly estimates location and scatter parameters
in high-dimensional data. Additionally, the MRCD is customized to mitigate the singularity (collinearity) of
the covariance matrix by inducing a regularization parameter, ensuring its positive definiteness even in the
high-dimensional space (21). This greatly enhances stability and reliability of the generalizability of the predictive
classifiers (22). To enhance robustness and computational efficacy simultaneously, authors propose the MMD
computed intrinsically to the Fast-MRCD (FMRCD) estimator in SMOTE-based approaches primarily designed
to effectively heterogeneous features. This novelty ensures statistical soundness and better computational
performance in handling zero-inflated datasets, particularly in tandem with high-dimensional heterogeneous
features, especially in the big data domain.

1.4. Benchmark Predictive Classifiers and Suggested Methodology

To evaluate the efficacy of the suggested modelling approach, this article employed the LR model and the random
forest (RF) algorithm. The popularity of LR algorithm stems from its simplicity, tractability, and interpretability,
as well as its ability to capture the linear features inherent in real-world datasets (23). On the other hand, the RF
algorithm is highly regarded across a wide spectrum of real-life applications owing to its greater efficiency, ability
to accurately capture non-linear features, interpretability, and generalizable predictive performance (minimization
of generalization errors) in high-dimensional data, resulting in statistically sound predictions (25). However, high
dimensionality also exacerbates bias toward the majority class (24), which may result in diminished predictive
capabilities of the classifiers, ultimately leading to the bankruptcy of financial lending institutions due to erroneous
predictions. To mitigate these data complexities and feature redundancies inherent in high-dimensional data, while
enhancing computational efficiency, the LR classifier is regularized with the adaptive elastic net (AE-NET) penalty
(26) and the RF algorithm uses the recursive feature elimination (RFE)-based algorithm (27), resulting in the
identification of key features. Thus, these hybrid approaches have been suggested in the contemporary literature due
their computational efficacy. The AE-NET is well-known to remedy collinearity, minimize over-parameterization,
and exhibit oracle properties (26), as well as selects groups of uncorrelated features and ensures stability in handling
high-dimensional data settings unlike adaptive least absolute shrinkage and selection operator (ALASSO). The
RFE-based approach has demonstrated effectiveness in real-world application as a feature selection approach,
offering advantages such as dimensionality reduction, computational efficacy, and interpretability (27).

1.5. Contribution of the Study

The contributions of this study are premised on the following points:
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• To the best of the authors’ knowledge, there is a significant scarcity in the literature regarding
the circumvention of data aberrations posed by zero-inflated datasets coupled with high-dimensional
heterogeneous features in the big data space, particularly in the credit risk landscape. However, these data
aberrations intricacies substantially diminish the generalizability of the conventional predictive classifiers.

• Recently, the data complexities posed by zero-inflated datasets blended with heterogeneous features have
been addressed in the literature by generalization of the SMOTE-based variations leveraging the MED, which
effectively capture these heterogeneous features. Additionally, the MED is well-known for its computational
efficiency owing to its simplicity and robustness in handling low-dimensional data scenarios, thereby leaving
a gap in the high-dimensional data scenarios.

• Despite its mathematical tractability, the MED measure falls considerably short due to its inability to capture
correlations and variability among features, as well as its susceptibility to heavy-tailed error distributed data
points and collinearity, especially in high-dimensional data settings. It this context, the modifications of
SMOTE-based approaches, typically designed to effectively handle heterogeneous features are compromised.

• To achieve both robustness and greater efficiency, in this paper, authors propose the interplay of the MMD
computed intrinsically to the FMRCD estimator in the adaptations of SMOTE designed to accurately capture
correlations, variability, and heterogeneous features in high-dimensional data. Additionally, this framework
robustly discards outliers, mitigates collinearity, and enhances the computational speed, especially in high-
dimensional data settings.

• To evaluate the effectiveness of the proposed architecture, we employed the benchmark statistical approach,
the LR model and the baseline ML approach, the RF algorithm. The former is intuitively appealing due
to its simplicity and exhibition of good theoretical properties, while the latter is highly regarded due to its
tractability ability to adequately capture non-linear features and greater efficacy in high-dimensional data
settings.

• To counter data complexities and redundant features in high-dimensional data, the LR was regularized with
AE-NET, while the RF algorithm was integrated with the RFE-based algorithm. The former with its oracle
property is typically designed for linear classification, as well as for mitigating collinearity, minimizing
overfitting, selection of groups of uncorrelated features and ensuring stability in handling high-dimensional
data settings, while the latter is designed for optimal feature selection, minimization of complexity, enhancing
computational efficacy, and improving efficiency in managing high-dimensional data scenarios.

• To enhance the robustness and effectiveness of SMOTE-based approaches, which are typically designed
for heterogeneous features, we combined MMD computed intrinsically with the FMRCD estimator in
conjunction with the hybridization of the LR and the RF algorithm with AE-NET and RFE feature selection
approaches, respectively. The proposed framework is designed to mitigate data aberrations posed by zero-
inflated data combined with high-dimensional heterogeneous features, particularly in big data scenarios.

The rest of the article unfolds as follows: Section 2 presents the theoretical properties of SMOTE-based approaches,
suggested framework and traditional predictive classifiers. Section 3 discusses the data features and methodological
procedures. Section 4 presents the empirical results. Section 5 discusses the conclusions of the research findings.

2. Mathematical Framework

2.1. Related Theoretical Literature

The conventional SMOTE approach intelligently generates synthetic instances of the minority class rather than
replicating existing instances, thereby minimizing the risk of overfitting. This approach selects a minority class
instance and generates synthetic instances using a linear interpolation mechanism that connects the instance to
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its k-nearest class neighbors derived from the ED (8). The SMOTE approach is typically designed to capture
continuous features exclusively, but it substantially fails to accurately capture nominal features; subsequently,
this approach generates new labels for these nominal features (9). Thus, SMOTE-NC is primarily tailored to
treat nominal features analogously to continuous features, while preserving data integrity by leveraging the MED
(8). Building on these advancements, SMOTE-ENC is intrinsically customized to differentiate the relationships
between the labels of a particular nominal feature (9), allowing for a more precise representation of the feature’s
contribution to distance measures through the one-hot encoding method. Similarly, G-SMOTE-NC employs a
hyper-sphere mechanism to generate instances for nominal features, facilitating the non-linear generation of
synthetic instances, while the continuous features are generated using the mode of each feature. Furthermore,
SMOTEENN-ENC was introduced to address ambiguous instances and mismatched labels of nominal features
simultaneously by leveraging the ENN approach and implementing a one-hot encoding mechanism for managing
multi-label nominal features, respectively. The MED adopted by the aforementioned approaches is unable to
capture correlations and variability between features (17). Subsequently, these SMOTE-based approaches may
lose essential information, thereby compromising the robustness of the predictive classifiers. Additionally, MED
is sensitive to multivariate heavy-tailed error distributed data, which adversely affect parameter estimation (10).

To address these deficiencies, Xie and Huang (29) suggested leveraging the MD for the most popular hybrid
approach in the literature, the SMOTEENN approach. Notwithstanding the greater efficacy demonstrated by MD
in practice, it is limited exclusively to continuous features; hence, we extended the MD to MMD by incorporating
the median of the standard deviations of all continuous features in the minority class to adequately capture
nominal features. The MMD also retains the shortcomings of MD inbeing amenable to multivariate heavy-tailed
error distributed data points, through a phenomenon known as the masking effect, which increases its sensitivity
to heavy-tailed error distributed data (18). Moreover, the MD is susceptible to collinearity, which can degrade
the capabilities of predictive classifiers (17). To overcome these data aberrations, the MCD estimator, has been
suggested in the literature to estimate the mean and covariance matrix for the MD (19). Motivated by this
consideration, Jung and Choi (30) employed the MD, computed intrinsically with the MCD estimator for the
classical SMOTE approach. This estimator attempts to establish a concentrated or tightly distributed subset
whose classical covariance matrix has the smallest possible determinant. This minimum determinant approach
is considered robust because its estimation is minimal influenced by potential heavy-tailed error distributions.
Despite its statistical soundness and mathematical tractability, the brute-force approach of subset selection is
computationally infeasible for high dimensional settings (31). To circumvent the complexity posed by MCD,
the FMCD has been suggested in the literature, which employs the concentration steps (C-steps) constructs to
minimize the computational time of subset selection (31). Albeit its theoretical backing, the estimator is susceptible
to invertability in high dimensional space. To ensure a robust estimator in high-dimensional data, the MRCD has
been recommended to regularize the covariance matrix by introducing a penalty to the matrix of features, thereby
enhancing well-conditionedness across all dimensions (32). Table 1 summarizes the strengths and weakness of the
SMOTE-based variants, distance measures, and estimators considered in this study.

2.2. Suggested Modelling Approach

The proposed novelty is outlined in six phases, including the data normalization, selection of the best subsets,
regularization of the covariance matrix, estimating the MMD, elimination of heavy-tailed errors in the data
distributions, and generation artificial samples. The suggested framework can be summarized as follows:

2.2.1. Data Normalization : It is fundamental to normalize and scale the features using the min-max normalization
approach to preserve the underlying distribution and patterns of the data. Given a feature x consisting of samples
{x1,x2, . . . .xm} where m is the total number of samples in the feature, the normalization procedure involves
subtracting the minimum values xminimum from each sample and then dividing by the range. The min-max
normalization approach is mathematically defined as follows:

xnormalized =
xk − xminimum

xmaximum − xminimum
[1]
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Table 1. Strengths and weakness of the SMOTE-based variants, distance measures, and estimators

Approach Merits Demerits
SMOTE Variants

SMOTE Mitigates risk of overfitting and minimizes
generalization errors (9).

Susceptible to nominal features, while
tailored exclusively only for continuous
features (8).

SMOTE-NC Intrinsically designed to manage
heterogeneous features (both nominal
and continuous features) (8).

Generates incorrect labels for nominal
features due to mismatched labels
and noise introduced during linear
interpolation mechanism (9).

SMOTE-ENC Effectively handles mismatched labels
inherent in nominal features (8).

Susceptible to ambiguous information
induced in generating artificial samples
(14).

G-SMOTE-NC Robust in discarding heavy-tailed error
distributed data points arising from
distributional overlap (14).

Substantially fail to accurately capture
mismatched labels for nominal features
(2).

SMOTEENN-ENC Mathematically tractable in remedying
heavy-tailed error distributed data points
and adequately captures heterogeneous
features (2).

Computationally intensive due to the ENN
approach iteration complexity (12).

Distance Measures
ED Ensures simplicity and computational

efficiency (2).
Susceptible to heavy-tailed error
distributed data points, collinearity,
nominal features in high-dimensional
settings (17).

MED Effective in capturing heterogeneous
features (2).

Inherits the limitations of the classical ED
measure (18).

MD Accurately captures both correlations and
variability among features (17).

Amenable to nominal features,
heavy-tailed error distributed data points,
and collinearity (17).

MMD Adequately captures heterogeneous
features (proposed novelty)

Sensitive to heavy-tailed error distributed
data points and collinearity (17).

Estimator
MCD Robust estimator which mitigates

heavy-tailed error distributed data points
(19).

Computationally intensive, especially in
high-dimensional data (31).

FMCD Enhances computational speed in
discarding heavy-tailed error distributed
data points.

Susceptible to collinearity, particularly in
high-dimensional space (20).

MRCD Ensures that the estimated covariance
matrix is invertible, thereby remedying
collinearity (21).

Computational infeasible, particularly in
high-dimensional data (22).

FMRCD Ensures computational feasibility in
high-dimensional data (proposed novelty).

Computationally demanding for
convergence of the covariance matrix
subjected to regularization (proposed
novelty).

where k = 1,2, . . .m. The resulting normalized samples retain the original distribution shape but are confined with
the range of [0,1].
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2.2.2. Subset Optimization : The continuous features from the minority class are selected. Subsequently a subset
H1 that contains h elements from the normalized data matrix x is generated based the formula of h, which is defined
as follows:

h =

[
n+ p+1

2

]
[2]

where n and p are number of instances and continuous features, respectively. This procedure ensures that
samples are tightly distributed cloud of points in the multivariate space, whose covariance matrix has the smallest
determinant such that µ̂1 =

1
h ∑i∈H1

xi, Ŝ1 =
1
h ∑i∈H1

(xi − µ̂i)(xi − µ̂i)
T .

2.2.3. Regularization of the Covariance Matrix : To counter invertability in the covariance matrix, the covariance
matrix is regularized. The regularized matrix is given by :

K̂1 = λT +(1−λ )cαS1 [3]

where λ is the regularization parameter: 0 ≤ λ ≤ 1 to ensure that K1 is positive, hence invertible and well-
conditioned, cα is a consistent factor that depends on the trimming factor α = n−h

n . T = QΛQ
′
, where Λ and

Q are eigen values and eigen vectors corresponding to matrix T , respectively. So we can compute the MD (di),
formulated as follows:

di(zi,µ1,K1) = (xi − µ̂1)
T K̂−1

1 (xi − µ̂1) [4]

for i = 1,2, . . . ,n.. To enhance the computational efficiency of this novelty, c-step algorithm is employed by sorting
the observations in ascending order according to di, yielding a permutation π for which:

dπ(1)old ≤ dπ(2)old ≤ ·· · ≤ dπ(n)old [5]

The next step is to get a subset H2 which contains random h elements from an observation that has the smallest di
and compute µ̂2, Ŝ2, and K̂2 based on H2. Recompute µ̂i, Ŝi, K̂i, and di(zi,µi,Ki), until a convergent subset with
the smallest value of determinant of the covariance matrix is obtained i.e. |Kk+1| ≤ |Kk|; with equality if and only
if µ̂2 = µ̂1 and K̂2 = K̂1, otherwise the iteration process continues until it converges.

2.2.4. Compute the Modified Mahalanobis Distance : The fundamental objective of FMRCD is to substitute a
covariance estimate to the subset MMD based on covariance. The FMRCD estimators are obtained from the subset
HFMMRCD. This subset is obtained by solving the minimization problem formulated as follows:

HFMRCD = arg min
H∈H

[det(K1/p)] [6]

where H is the set which consists of all subsets with size h in the data. Once the HFMMRCD is determined, the
FMRCD scatter estimators are determined as follows:

Σ̂FMRCD =DxQΛ
1/2[λ1+(1−λ )cαSw(HFMRCD)]Λ

1/2QTDx [7]

respectively. Sw(HFMMRCD) is calculated as follows:

Sw(HFMRCD) =Λ−1/2QTSz(HFMRCD)QΛ−1/2 [8]

Compute the MMD measure, which incorporates the continuous features in the minority class and the median of
the standard deviations of all continuous features in the minority class. The MMD is mathematically defined as
follows:

MMD(µ0
FMRCD,Σ

0
FMRCD) = (xi − µ̂FMRCD)

′
[Σ̂FMRCD]

−1(xi − µ̂FMRCD)+ m̂i [9]

where µ̂FMRCD = µ̂i and mi is the median of standard deviations for all continuous features in the minority class.
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2.2.5. Heavy-Tailed Error Distributed Data Points Detection :To discard the heavy-tailed error distributed data
points, we determined the outliers based on the 97.5 percentile of the generated distance. The elimination of outliers
often ensures that the predictions are reliable, stable and statistically sound.

2.2.6. Generation of Artificial Samples : To avoid overfitting and minimize generalization errors inherent in
oversampling approaches, we utilized the the conventional SMOTE approach, which is well-known to mitigate
such undesirable traits.

• Finally, artificial instances are generated in the classical SMOTE approach based on a linear interpolation,
which is mathematically defined as follows:

pi j = xi + rand(0,1)× (xi j − xi) [10]

where rand(0,1) denoting the random numbers obtained from the uniform distribution, xi are original
instances in the minority class, and xi j these are samples randomly selected by MMD after discarding the
heavy-tailed error distributed data points, with j = 1,2, . . .n denoting the randomization.

Table 2 presents a schematically pseudo-code for generating artificial samples by leveraging the SMOTE
approaches for heterogeneous features coupled with the MMD-based computed intrinsically to the FMRCD
estimator, ensure robust predictions in handling high dimensional data. This framework is appealing from a

Table 2. Pseudocode of the Proposed Framework

Generating Samples for SMOTE-based Approaches in High-dimensional Data
Data Normalization: Initially, the min–max approach is employed to the features, thereby preserving
the underlying distribution and patterns of the data.
Selection of the Subsets: The subset selection process is initiated on the continuous features of the
minority class to generate a concentrated subset achieving a minimal determinant for the covariance
matrix.
Regularization of the Covariance Matrix: To circumvent invertibility of the covariance matrix, a
penalty is induced to shrink the matrix. The process occurs until the covariance matrix converges to
a minimized determinant using c-step algorithm.
Estimate the MMD: Compute the mean based on the best subset and utilize the optimal covariance,
and also incorporate the median of the standard deviations.
Elimination of Heavy-Tailed Error Distributed Data Points: The heavy-tailed error distributed data
points generated in achieving the MMD computed intrinsically by the FMCD estimator are discarded.
Generation of Artificial Samples: Finally, the artificial samples are generated by leveraging the
interpolation mechanism.

computational standpoint, as its estimators are affine equivariant, asymptotically efficient (32), and tend to exhibit a
50% breakdown point, indicating insensitivity to contaminated data (17). To address the deficiency of the traditional
approach, particularly in selecting instances, we employed the MMD-based, computed intrinsically to the FMRCD
estimator for the SMOTE-based methods customized to accurately capture correlation and variability in continuous
features. Additionally, this framework’s merit is to effectively manage heterogeneous features, robustly discard
heavy-tailed error distributions, and mitigate collinearity. The FMRCD scatter estimate is location invariant and
scale equivariant due to the initial standardization of the process.

2.3. Logistic Regression

Generalized linear models (GLMs) are an extension of the ordinary linear regression model, relaxing the
distribution of the response variables to include members of the exponential family (33). The GLM approach
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is defined as a monotonic and twice-differentiable function g(.), called a link function, such that:

g(π(xi)) = x′
iβ, [11]

where π(xi) is the probability of success. Let the random variable be defined as xi = 1 if there is a default, and xi = 0
if there is no default, with p(xi = 1) = pi and p(xi = 0) = 1− pi, such that xi follows a Bernoulli distribution (pi).
Next let Y = ∑

n
i=1 xi so that Y is the number of defaults in n independent trials. Then Y has a Binomial distribution,

Bin (n, p), if all pi are equal. The vector of probability estimates is subjected to a logistic transformation, and
the relationship can be represented by a linear function of heterogeneous features that has undergone a logit
transformation:

logit(pi) = log
(

pi

1− pi

)
= x′

iβ, [12]

Maximum likelihood estimation (MLE) has been employed extensively in the literature to estimate the parameters
of the LR classifier. Hence, in this study, we used the MLE approach to obtain estimates of the parameters of the
classifier. The likelihood function can be expressed as:

L(β ) =
n

∏
i=1

(
1

1+ e−x
′
iβ

)yi
(

e−x
′
iβ

1+ e−x
′
iβ

)1−yi

[13]

The logarithm of the L(β ) gives the log-likelihood function:

l(β) =
n

∑
i=1

[
yi(x

′
iβ)− ln(1+ ex

′
iβ)
]

[14]

Parameter estimates are obtained by differentiating the log-likelihood function and setting it to zero, followed by
solving the equation using the Newton-Raphson method. However, this algorithm can be compromised in high-
dimensional data scenarios (34).

2.3.1. Penalization of Logistic Regression : To counter the shortcomings of LR in handling high-dimensional
features, we suggest exploring the penalization procedures that have been acknowledged in the literature as
remedies since they continue to profilerate due to their effectiveness. Arguably, the mostly predominantly employed
penalization procedure in the literature is the LASSO, due to its sound and attractive theoretical backing of
executing both continuous shrinkage and automatic feature selection simultaneously (35). LASSO is typically
designed to shrink some coefficients toward zero while leaving others not entirely shrunk to zero, resulting in the
creation of a sparse classifier. The LASSO-penalized LR procedure, denoted as LR-LASSO is a feature selection
and penalization procedure that leverages LASSO based on the l1-norm penalty term. The LR-LASSO procedure
is given by a minimization problem:

β̂LR−LASSO = argmin
β

{
−l(β )+λ

p

∑
j=1

|β j|

}
[15]

where λ ∑
p
j=1 |β j| is the l1-penalty, and λ ∈ [0,1] is the tuning parameter that controls the amount of shrinkage in

the l1 penalty. This procedure is well-known for significantly outperforming ridge regression, which is typically
designed stochastically to shrink all parameters estimates towards zero but not entirely to zero, thereby failing to
minimize overfitting unlike the former. However, LASSO is amenable to high-dimensional features as it tend to
select a group of highly correlated features (36). To circumvent this gap, Zou and Hastie (36) introduced the elastic
net (E-NET), a hybrid penalization procedure that synthesizes the desirable properties of both LASSO regression
(l1-penalty) and ridge regression (l2-penalty). This procedure has been extensively employed in the literature owing
to its computational efficacy compared to LASSO. The E-NET-penalized LR procedure, denoted as LR-E-NET is
a feature selection and penalization procedure that utilizes the E-NET procedure based on the l1-norm and l2-norm
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squared penalty terms. The LR-E-NET procedure is given by a minimization problem:

β̂LR−E−NET = argmin
β

{
−l(β )+λ [α

p

∑
j=1

|β j|+(1−α)
p

∑
j=1

β
2
j ]

}
[16]

where α ∈ [0,1] is the parameter that balances the effects of the l1 and l2 (from ridge regression) penalties. Clearly,
when α = 0, LR-E-NET reduces to LR penalized by ridge regression, and when α = 1, it reduces to LR-LASSO.
Additionally, it offers more statistically sound solutions to the weaknesses of LASSO by selecting groups of
uncorrelated features and minimizing over-penalization by including a hyper-parameter (36). E-NET offer a
better superior edge over the conventional LASSO. However, these procedures penalize parameter coefficient
estimates equally, leading to inconsistencies in feature selection and do not exhibit the oracle properties (37), (38).
Additionally, LASSO and E-NET are susceptible to high-dimensional data scenarios (36).

To achieve oracle properties, the adaptive versions of penalization procedures have been suggested in the
literature. This prompted, Zou (39) and Zou and Zhang (40) propose adaptive LASSO (ALASSO) and adaptive
E-NET (AE-NET) respectively, which aims to eliminate bias in the LASSO estimator using data-driven weights to
apply different amount of shrinkage on different coefficients. The ALASSO-penalized LR procedure is referred to
as LR-ALASSO, where by ALASSO is the feature selection and penalization procedure combined with LR. The
LR-ALASSO procedure is formulated as a minimization problem:

β̂LR−ALASSO = argmin
β

{
−l(β )+λ

p

∑
j=1

w j|β j|

}
[17]

where w is the adaptive weight such that w = (w1, ...,wp)
′

is a p× 1 weight vector, and the tuning parameter
λ j = w jλ , for j = 1,2, ...p. The weights depend on the consistent initial values of β̂ and are given by w j = (|β̂ j|)γ ,
where γ is a positive constant. This procedure enjoys oracle properties of the smoothly clipped absolute deviation
(SCAD), which guarantees outstanding performance in high-dimensional data settings, as well as a computational
advantage due to the different penalization of the parameter estimates that rely on suitably chosen data-driven
weights (37). However, this procedure inherits instability from LASSO in handling high-dimensional features
(41). On the other hand, the AE-NET integrates the desirable properties of quadratic penalization and adaptively
weighted LASSO shrinkage. The AE-NET penalized LR procedure, is referred to as LR-AE-NET, is a feature
selection and penalization procedure that utilizes the AE-NET. The LR-AE-NET procedure is formulated as a
minimization problem:

β̂AE−NET = argmin
β

{
−l(β )+λ

[
α

p

∑
j=1

w j|β j|+(1−α)
p

∑
j=1

w jβ
2
j

]}
[18]

where weights are also constructed as w j = (|β̂ j|)γ similar to Equation 17. LR-AE-NET reduces to LR-ALASSO
for α = 1 and to the LR penalized by adaptive ridge regression for α = 0. The AE-NET achieves the oracle
property, which guarantees its robustness in handling high-dimensional features (40). Hence, the AE-NET is well
known to greatly outperform A-LASSO and E-NET, particular in high-dimensional data scenarios. To ensure
computational efficiency in penalization of coefficients of parameters in this study, we employed the tuning
parameter, λ = α = 0.5.

2.4. Random Forest

Recently, in the literature, machine learning (ML) algorithms have been regarded as the gold standard in the
predictive data analytics domain due to their efficacy, tractability, and efficiency, particularly ensemble-based
ML algorithms compared to single-based ML algorithms. The RF algorithm is typically an ensemble-based ML
algorithm, which has been widely cited as a remedy for the high-dimensional feature space and offering robust
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statistical statistical efficacy among ML approaches (42). This algorithm has received significant attention in the
literature due to its ability to effectively handle heterogeneous features, large-scale datasets, and complex data
structures as well as mitigate against heavy-tailed error distributed data points (43). This algorithm generates
numerous decision trees through random sampling of data using bootstrap samples and by randomly selecting input
features. Each decision tree is considered a simple decision tree. Particularly, each tree, Tb, built on a bootstrapped
sample with feature randomization at each split, produces a prediction µ̂b(x) for a new point x. This prediction is
the fitted value of the leaf node in a tree, Tb, where x resides, i.e., µ̂b(x) = µ̂Rm(x). The RF algorithm’s prediction
is the ensemble average across all trees, defined as follow:

µ(x) =
1
B

B

∑
b=1

µ̂b(x) [19]

where B denotes the randomized trees. This aggregation minimizes the variance by leveraging the predictions. The
prediction can also be contextualized as a kernel-weighted average, expressed as:

µ̂(x) =
n

∑
i=1

αi(x)yi [20]

where αi denotes the weights, which are determined by the number of times the observation, i, appears in the same
leaf as x across all trees in the forest, normalized by the number of trees. The RF algorithm has demonstrated
stability and flexibility, offering accurate and reliable predictions in this domain (44). Despite its intuitive appeal
and popularity, this algorithm is amenable to zero-inflated datasets, which compromises its capabilities (47).

2.4.1. Recursive Feature Elimination Despite the robustness of the RF algorithm in high-dimensional data
analysis, it may be amenable to complexities due to redundant features. To circumvent these data complexities,
RFE-based approach was employed with RF algorithm, which selects the key important features (27). The RFE
algorithm estimates the feature importance from the training model by leveraging the mean decrease in accuracy
(MDA) or mean decrease in Gini (MDG). The former demonstrates the algorithm’s accuracy decreases from
permuting the values of each feature, whereas the latter exhibits means of features total impurity, weighted by the
proportion of instances reaching that node in each single-based decision tree. In this study, MDA was employed
for features selection due to its robustness and efficiency in a real-world applications. The MDA is mathematically
defined as:

WRF(xi) =
∑i∈B V Ii(xi)

Number o f estimators
[21]

where B denotes the out-of-bag instances of a tree t, and V I is the importance of feature xi in tree t. The RF
algorithm combined with RFE approach is denoted as RF-RFE-based algorithm which is a feature selection
procedure that leverages RF algorithm based on the MDA approach. The RFE algorithm is recognized as a
greedy search strategy, as it does not explore all possible feature combinations exhaustively but rather selects
locally optimal features at each iteration aiming toward a globally optimal feature subset (45). Consequently, this
greed methodology substantially enhances computational efficiency compared to exhaustive evaluations, which
can quickly become computationally intensive for high-dimensional data (46).

2.5. Hyperparameter Selection

In this article, we adopted 5-fold cross-validation (CV) for the random search approach to select the optimal
hyperparameters for the LR algorithm and RF algorithm, which are used in practice (47). Table 3 presents the
search spaces of the hyperparameters leveraged for the aforementioned algorithms. Hyperparameters are significant
in controlling the algorithm’s behaviour, including its complexity and learning speed. As a result, this greatly
enhances the predictive performance of the classifier, thereby leading to accurate and reliable predictions.
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Table 3. Hyperparameters for the LR algorithm and RF algorithm

Algorithm Hyperparameter Search Space Reference

LR Solver {liblinear, lbfgs} (48)Maximum iteration {100, 200, 300, 400, 500}

RF

Number of estimator {100, 200, 300, 400, 500}

(49)
Maximum features {’none’, ’sqrt’, ’log2’}
Maximum depth {10, 20, 30, 40, 50}
Minimum samples split {2, 4, 6, 8, 10}
Minimum samples {1, 2, 3, 4, 5}

3. Data and Methods

3.1. Benchmark Datasets

The real-world benchmark datasets suitable for this study consist of zero-inflated binary classes characterized by a
minority class representing less than 40% of the total (50). These datasets feature high-dimensional heterogeneous
characteristics, with more than 100 features (51), and are classified as big data scenarios, containing a minimum of
20,000 instances (52). In this study, we adopted three widely referenced credit risk datasets in the literature: two
from the consumer lending domain and one from the fraud detection landscape. Table 4 reports the data description
and characteristics after the data cleaning processes, including the number of instances, the number of features, the
skewed ratio and the source from which these datasets were utilized.

Table 4. Data Description

Dataset Instances Features Skewed Ratio Reference SourceNominal Continuous
P2P 340, 571 15 88 3.60% (53) (54)
LDCD 20, 000 4 674 8.85% (55) (56)
IEEE-CIS 590,540 18 329 3.50% (57) (58)

3.2. Performance Evaluation Metrics

The proposed framework was evaluated using results derived from a confusion matrix (CM), where entries (i, j)
represent the number of correct and incorrect classifications. Table 5 shows a 2 × 2 table representing the CM,
where the columns represent the predicted results of the proposed architecture and the rows represent the actual
classes. The elements on the main diagonal represent the correct number of predictions for the negative and positive

Table 5. Confusion Matrix (CM)

Predicted negative Predicted positive
Actual negative True negative (TN) False positive (FP)
Actual positive False negative (FN) True positive (TP)

classes, while the other entries represent prediction errors. Typically, the accuracy metric is the most extensively
employed in the literature for evaluating the efficacy of the predictive classifiers. However, this metric is susceptible
to evaluating the predictive classifiers when confronted with zero-inflated binary class. The most widely studied
evaluations performance metrics in this domain, include the area under the curve (AUC), geometric mean (GM)
and F1-score (59). The AUC metric is mathematically defined as follows:

AUC =
So − no(no+1)

2
non1

[22]
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where no and n1 are the numbers of negative and positive instances, respectively, and So = ∑ri, with ri denoting
the rank of the ith positive instance. The GM metric is formulated as follows:

GM =
√

Speci f icity×Sensetivity×100% [23]

where speci f icity = T N
T N+FP .The F-measure metric is expressed as follows:

F1− score =
(1+β 2)

β 2 × (precision× recall)
precision+ recall

×100% [24]

where precision = T P
T P+FP , sensitivity or recall = T P

T P+FN , and β ∈ (0,1] but β is generally is generally set to one in
this study. These evaluation metrics are employed in study, due to their capabilities in handling zero-inflated binary
class (60). In this paper, we employed the average macro weights for the evaluation metrics adopted in evaluating
the efficacy of the proposed novelty.

3.3. Performance Stability Evaluation Approach

To substantial presents statistically sound evidence on the merit of the proposed approach, we comprehensively
considered the combination of the three aforementioned metrics, denoted by AGF , defined as:

AGF = (w1 ×GM+w2 ×F1− score+w3 ×AUC) [25]

where w1 = w2 = w3 = 1, in this study. The average of the aggregated metrics is susceptible to outliers; hence,
the combination of coefficient of variation (CV ) and AFG were utilized to assess the dispersion of the proposed
approaches.

PAFG = {AFG0,AFG1, . . . ,AFGr−1} [26]

CVAFG = (σAFG/µAFG)×100 [27]

where µAFG = ∑
r−1
i=0 AFGi/r (denotes the average of all AFG in the PAGF set) and σAFG =√

∑
r−1
i=0 (AFGi −µAFG)2/r (denotes the standard deviation of all AFG in the PAGF set) and r denotes the

number of zero-inflated datasets.The larger the CVAFG, the greater the degree of dispersion of the performance
metric. Generally, when the CVAFG exceeds 10.00%, the performance of the approach, depicts instability, while
when CVAFG is less than 10.00%, the performance of the approach is considered stable (59).

3.4. Experimental Flow Design

The real-world datasets in credit risk landscape are often characterized by zero-inflated observations coupled with
high-dimensional heterogeneous features. These complexities often compromised the predictive capabilities of the
predictive classifiers due to their inherent symmetric property. To circumvent these data aberrations, contemporary
studies have suggested variants of SMOTE-based mechanism typically designed for heterogeneous features
through utilization of MED. However, the approaches are susceptible to high-dimensional data contexts; as a result,
the predictive classifiers performance are suboptimal. Figure 1 displays the experimental flow design that counter
the complexities emanating from high-dimensionality. The proposed framework outlined data partitioning (70%
training set based on stratified approach and 30% for testing test), data pre-processing, training of the predictive
classifiers, performance evaluations of the predictive and statistical tests.

3.5. Exploratory Data Analysis and Statistical Tests

Initially, we presented the averages of the performance evaluation metrics, which depict the effectiveness of the
proposed framework. Nevertheless, the averages of these metrics demonstrate instability due to their susceptibility
to heavy-tailed error distributed data points. Thus, we calculated the medians of the performance evaluation metrics,
which are less amenable to heavy-tailed error distributed data points. Additionally, we computed the standard

Stat., Optim. Inf. Comput. Vol. x, Month 202x



MUSARA ET AL. 13

Dataset

70% Training  30% Testing set

DatasetDataset

Training SetTraining Set Testing  Set

Performance
Evaluation Metrics 

GM metric , AUC metric
& F1-score metric

Predictions 

SMOTEENN-
ENC

Statistical Test
 Friedman Test

 
Post-Hoc

Procedure
Durbin Conover

Test 

Simulating 10 times 

Majority
Instance

SMOTE-ENC 

Simulating 10 times

G-SMOTE-NC

Distance Metrics

MED Measure

MMD Measure
&FMRCD Estimator

Minority
Instance

SMOTE-NC 

New Training
Set

Stability: Coefficient
of variation

RF-RFE
Algorithm

LR-AE-NET
Model

Splitting data into training set and test set

Classifiers

Figure 1. Schematic representation of the proposed framework.

deviations (SDs) for the performance evaluation metrics to assess the variability and stability of the predictions.
Finally, we presented the medians of the performance evaluation metrics on violin plots, which display the densities
and distributions of these metrics. These evaluation metrics often exhibit non-normal distribution, which violate
the assumptions of parametric approach (61). For this reason, the authors validated the efficacy of the proposed
architecture, by employing the Friedman test, a non-parametric approach (59). The technique investigates the
significant differences in the medians of the performance evaluation metrics for multiple datasets at the 5% level of
significance. If the null hypothesis of the Friedman test is rejected, the pairwise comparisons are performed using
the Durbin-Conover test (2), while the Bonferroni approach was utilized for adjusting the pairwise p-values (62).

3.6. Computational Tools

The experiments were implemented using Python programming (version 3.11), while R programming (version
4.5.2) was employed for data analysis and visualization. All the algorithms were trained and evaluated on a Lenovo
T-series notebook featuring an AMD Ryzen 5 Pro 5650U processor with Radeon Graphics at 2.30 GHz and 24 GB
of RAM, running Windows 11 Pro.

4. Empirical Results and Analysis

This section presents an empirical generalizable overview of the predictive performance of the LR-AE-NET, and
RF-RFE-based algorithm coupled with SMOTE-based approaches typically designed for heterogeneous features,
combined with either MED (the conventional approach) or MMD computed intrinsically to the FMRCD approach
(the new approach), leveraging zero-inflated binary classes and high-dimensional features.

4.1. Evaluating the efficacy of the LR-AE-NET leveraging the variants of SMOTE-based approaches typically
customized for heterogeneous features

Table 6 presents the averages and SDs for AUC metrics achieved by the LR-AE-NET, leveraging datasets
pre-processed by adaptations of SMOTE-based approaches primarily tailored for heterogeneous features,
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integrated with either the MED or the MMD computed intrinsically to the FMRCD estimator. The predictive

Table 6. Mean±SD of the AUC metric attained by LR-AE-NET leveraging datasets pre-processed by the variants of SMOTE-
based approaches typically customized for heterogeneous features combined with either the MED or the MMD computed
intrinsically to the FMRCD estimator.

Datasets Estimators G-SMOTE-NC SMOTE-ENC SMOTE-NC SMOTEENN-ENC

P2P MED 0.9837±0.0002 0.9705±0.0066 0.9685±0.0081 0.9732±0.0083
MMD-FMRCD 0.9814±0.0006 0.9885±0.0024 0.9898±0.0007 0.9891±0.0012

IEEE-CIS MED 0.7822±0.0092 0.7502±0.0421 0.7915±0.0131 0.7657±0.0190
MMD-FMRCD 0.7910±0.0103 0.7989±0.0109 0.8199±0.0047 0.7905±0.0153

LDCD MED 0.8056±0.0220 0.8910±0.1249 0.9999±0.0000 0.9205±0.0708
MMD-FMRCD 0.7770±0.0147 0.9694±0.0362 0.9999±0.0000 0.9647±0.0395

classifier demonstrated its tractability by obtaining the highest average AUC metric of 98.98% (±0.0007) and
81.99% (±0.00047) for the P2P and IEEE-CIS datasets pre-processed by SMOTE-NC blended with the MMD
computed intrinsically to the FMRCD estimator. On the other hand, the LR-AE-NET exhibited superior predictive
performance by attaining the highest AUC metric of 99.99% (±0.0000) for the LDCD dataset pre-processed
by SMOTE-NC, which was integrated either with the MED approach or the MMD computed intrinsically to
the FMRCD estimator. To validate the suggested architecture, Figure 2 showcases the median AUC metrics
for the three aggregated datasets attained by the LR-AE-NET utilizing datasets pre-processed by variants of
SMOTE-based approaches typically designed for heterogeneous features, combined with either the MED or
the MMD computed intrinsically to the FMRCD estimator. The predictive classifier demonstrated premier
predictive performance by achieving a maximum median AUC metric of 99.00% using datasets pre-processed
with SMOTE-NC combined with the MMD computed intrinsically to the FMRCD estimator. Further analysis of
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Figure 2. Friedman and Durbin-Conover tests based on AUC metric obtained by the LR-AE-NET leveraging datasets pre-
processed by the variants of SMOTE-based approaches typically customized for heterogeneous features combined with
either the MED or the MMD computed intrinsically to the FMRCD estimator.

the Friedman test recorded a p-value of 2.44×10−20 < 0.05 (χ2
F = 107.95 > χ2

7 (α = 0.05) = 2.1670), indicating
that the generalizability of the adaptations of SMOTE-based approaches is statistically significantly different at
5% level of significance. Subsequently to that, the Durbin-Conover test revealed that the superior approach is
statistically significantly different from all the variations of the SMOTE-based approaches.

Table 7 reports the averages and SDs for GM metrics attained by the LR-AE-NET using datasets pre-processed
by modifications of SMOTE-based approaches typically designed for heterogeneous features, coupled with
either the MED or the MMD computed intrinsically to the FMRCD estimator. The predictive classifier exhibited
substantial predictive capabilities by achieving a maximum average GM metric of 97.77% (±0.0025) and 99.91%
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(±0.0004) for the P2P and LDCD datasets pre-processed by SMOTE-ENN-ENC and SMOTE-NC, respectively,
both combined with the MMD computed intrinsically to the FMRCD estimator. However, the LR-AE-NET
demonstrated superior predictive performance by achieving a maximum GM metric of 75.90% (±0.0159) for the
IEEE-CIS dataset pre-processed by SMOTE-ENC integrated with the MED approach.

Table 7. Mean±SD of the GM metric achieved by LR-AE-NET leveraging datasets pre-processed by the variants of SMOTE-
based approaches typically customized for heterogeneous features combined with either the MED or the MMD computed
intrinsically to the FMRCD estimator.

Datasets Estimators G-SMOTE-NC SMOTE-ENC SMOTE-NC SMOTEENN-ENC

P2P MED 0.9546±0.0006 0.9524±0.0120 0.9508±0.0135 0.9567±0.0157
MMD-FMRCD 0.9504±0.0014 0.9773±0.0026 0.9742±0.0028 0.9777±0.0025

IEEE-CIS MED 0.7206±0.0208 0.7069±0.0392 0.7590±0.0159 0.7289±0.0182
MMD-FMRCD 0.7285±0.0078 0.7306±0.0212 0.7574±0.0065 0.7309±0.0106

LDCD MED 0.7128±0.0173 0.7242±0.1496 0.9979±0.0006 0.8074±0.1239
MMD-FMRCD 0.6955±0.0115 0.8927±0.0877 0.9991±0.0004 0.8814±0.0990

To further scrutinize the merits of the proposed framework, Figure 3 displays the median GM metrics
achieved by the LR-AE-NET for the three combined datasets leveraging datasets pre-processed by adaptations
of SMOTE-based approaches primarily customized for heterogeneous features, integrated with either the MED
or the MMD computed intrinsically to the FMRCD estimator. The predictive classifier exhibited outstanding
predictive capabilities by obtaining the highest median GM metric of 97.00% utilizing datasets pre-processed
with SMOTE-NC combined with the MMD computed intrinsically to the FMRCD estimator. Further robust
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Figure 3. Friedman and Durbin-Conover tests based on GM metric exhibited by the LR-AE-NET leveraging datasets pre-
processed by the variants of SMOTE-based approaches typically customized for heterogeneous features combined with
either the MED or the MMD computed intrinsically to the FMRCD estimator.

analysis was performed employing the Friedman test, which reported a p-value of 4.76 × 10−13 < 0.05
(χ2

F = 72.43 > χ2
7 (α = 0.05) = 2.1670), suggesting that the efficacy of the variants of SMOTE-based approaches

is statistically significantly different at 5% level of significance. Although the effective approach demonstrated
premier performance, the Durbin-Conover test showed that it is statistically insignificant different to SMOTE-NC
combined with MED approach.

Table 8 shows the averages and SDs for F1-score metrics achieved by the LR-AE-NET, leveraging datasets
pre-processed by adaptations of SMOTE-based approaches primarily customized for heterogeneous features,
integrated with either the MED or the MMD computed intrinsically to the FMRCD estimator. The predictive
classifier exhibited superior predictive performance by attaining the highest average F1-score of 97.00% (±0.0025)
and 99.85% (±0.0004) for the P2P and LDCD datasets pre-processed by SMOTEENN-ENC and SMOTE-NC,
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respectively, both integrated with the MMD computed intrinsically to the FMRCD estimator. In contrast, the
LR-AE-NET demonstrated a significant predictive performance by obtaining a maximum F1-score metric of
52.68% (±0.0134) for the IEEE-CIS dataset pre-processed by SMOTE-ENC coupled with the MED approach.
To substantiate the effectiveness of the proposed novelty, Figure 4 reports the median F1-score metrics for the

Table 8. Mean±SD of the F1-score metric attained by LR-AE-NET leveraging datasets pre-processed by the variants of
SMOTE-based approaches typically customized for heterogeneous features combined with either the MED or the MMD
computed intrinsically to the FMRCD estimator.

Datasets Estimators GSMOTE-NC SMOTE-ENC SMOTE-NC SMOTEENN-ENC

P2P MED 0.9363±0.0004 0.9340±0.0167 0.9317±0.0188 0.9401±0.0222
MMD-FMRCD 0.9304±0.0019 0.9695±0.0038 0.9650±0.0042 0.9700±0.0037

IEEE-CIS MED 0.4931±0.0173 0.4906±0.0379 0.5268±0.0134 0.5014±0.0151
MMD-FMRCD 0.4988±0.0068 0.4998±0.0109 0.5204±0.0061 0.5023±0.0091

LDCD MED 0.5759±0.0156 0.6123±0.1752 0.9967±0.0011 0.6960±0.1640
MMD-FMRCD 0.5604±0.0101 0.8023±0.1475 0.9985±0.0006 0.7844±0.1332

three aggregated datasets exhibited by the LR-AE-NET using datasets pre-processed by variants of SMOTE-based
approaches primarily tailored for heterogeneous features, combined with either the MED or the MMD computed
intrinsically to the FMRCD estimator. The predictive classifier demonstrated computational efficacy by achieving
a maximum median F1-score of 95.00% by utilizing datasets pre-processed with SMOTE-NC integrated with the
MMD computed intrinsically to the FMRCD estimator. A comprehensive analysis of the Friedman test recorded
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Figure 4. Friedman and Durbin-Conover tests based on GM metric exhibited by the LR-AE-NET leveraging datasets pre-
processed by the variants of SMOTE-based approaches typically customized for heterogeneous features combined with
either the MED or the MMD computed intrinsically to the FMRCD estimator.

a p-value of 5.80× 10−13 < 0.05 (χ2
F = 72.01 > χ2

7 (α = 0.05) = 2.1670), indicating that the effectiveness of
the adaptations of SMOTE-based approaches is statistically significantly different at 5% level of significance.
Despite the efficacy of the robust approach, the Durbin-Conover test established that it is statistically insignificant
to SMOTE-NC combined with the MED approach and SMOTE-ENC integrated with the MMD computed
intrinsically to the FMRCD estimator at 5% level of significance.
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4.2. Evaluating the robustness of the RF-RFE-based algorithm employing the modifications of SMOTE-based
approaches generally tailored for heterogeneous features

Table 9 presents the averages and SDs for AUC metrics exhibited by the RF-RFE-based algorithm, utilizing
datasets pre-processed by variants of SMOTE-based approaches typically tailored for heterogeneous features
combined with either the MED or the MMD computed intrinsically to the FMRCD estimator. The predictive

Table 9. Mean±SD of the AUC metric achieved by RF-RFE-based algorithm utilizing datasets pre-processed by the
modifications of SMOTE-based approaches generally tailored for heterogeneous features coupled with either the MED or
the MMD computed intrinsically to the FMRCD estimator.

Datasets Estimators G-SMOTE-NC SMOTE-ENC SMOTE-NC SMOTEENN-ENC

P2P MED 0.9572±0.0002 0.9563±0.0017 0.9561±0.0020 0.9586±0.0009
MMD-FMRCD 0.9599±0.0005 0.9536±0.0014 0.9552±0.0029 0.9502±0.0012

IEEE-CIS MED 0.5768±0.0054 0.7713±0.1150 0.7494±0.0069 0.5713±0.0095
MMD-FMRCD 0.5956±0.0061 0.7605±0.0130 0.7692±0.0062 0.7665±0.0083

LDCD MED 0.6598±0.0863 0.6618±0.1007 0.7683±0.0148 0.7022±0.0425
MMD-FMRCD 0.6269±0.0828 0.7542±0.0646 0.8150±0.0209 0.7844±0.0496

algorithm demonstrated greater efficacy by achieving a maximum average AUC metric of 95.99% (±0.0005)
and 81.50% (±0.0004) for the P2P and LDCD datasets pre-processed by G-SMOTE-NC and SMOTE-NC,
respectively, both synergized with the MMD computed intrinsically to the FMRCD estimator. On the other
hand, the RF-RFE-based algorithm exhibited excellent predictive performance by attaining the highest AUC
metric of 77.13% (±0.1150) for the IEEE-CIS dataset pre-processed by SMOTE-ENC integrated with the MED
approach. To substantiate these empirical findings, Figure 5 showcases the median AUC metrics for the three
datasets aggregated exhibited by the RF-RFE-based algorithm utilizing datasets pre-processed by variants of
SMOTE-based approaches typically designed for heterogeneous features integrated with either the MED or the
MMD computed intrinsically to the FMRCD estimator. The predictive algorithm demonstrated superior efficacy
by achieving a maximum median AUC metric of 82.00% by utilizing datasets pre-processed with SMOTE-NC
combined with the MMD computed intrinsically to the FMRCD estimator. Further analysis of the Friedman test
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Figure 5. Friedman and Durbin-Conover tests based on AUC metric exhibited by the RF-RFE-based algorithm leveraging
datasets pre-processed by the modifications of SMOTE-based approaches generally tailored for heterogeneous features
coupled with either the MED or the MMD computed intrinsically to the FMRCD estimator.

recorded a p-value of 2.40×10−03 < 0.05 (χ2
F = 22.14 > χ2

7 (α = 0.05) = 2.1670), suggesting that the robustness
of the variations of SMOTE-based approaches is statistically insignificant different at 5% level of significance.
Despite the effectiveness demonstrated by the robust approach, the Durbin-Conover test highlighted that it is
statistically insignificant different only to G-SMOTE-NC combined with the MED approach.
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Table 10 reports the averages and SDs for GM metrics achieved by the RF-RFE-based algorithm using
datasets pre-processed by adaptations of SMOTE-based approaches primarily designed for heterogeneous
features combined with either the MED or the MMD computed intrinsically to the FMRCD estimator. The

Table 10. Mean±SD of the GM metric attained by RF-RFE-based algorithm utilizing datasets pre-processed by the
modifications of SMOTE-based approaches generally tailored for heterogeneous features coupled with either the MED or
the MMD computed intrinsically to the FMRCD estimator.

Datasets Estimators G-SMOTE-NC SMOTE-ENC SMOTE-NC SMOTE-ENN-ENC

P2P MED 0.9561±0.0020 0.9563±0.0017 0.9586±0.0009 0.9572±0.0002
MMD-FMRCD 0.9596±0.0005 0.9536±0.0014 0.9552±0.0029 0.9502±0.0012

IEEE-CIS MED 0.7494±0.0069 0.7713±0.0115 0.5713±0.0095 0.5768±0.0054
MMD-FMRCD 0.7692±0.0062 0.7605±0.0130 0.7665±0.0083 0.5956±0.0061

LDCD MED 0.7683±0.0148 0.6618±0.1007 0.7022±0.0425 0.6598±0.0863
MMD-FMRCD 0.8150±0.0209 0.7543±0.0646 0.7844±0.0496 0.6269±0.0828

predictive algorithm demonstrated premier predictive performance by obtaining a maximum average GM metric
of 95.96% (±0.0005) and 78.44% (±0.0496) for the P2P and LDCD datasets pre-processed by G-SMOTE-NC
and SMOTE-NC, respectively, both integrated with the MMD computed intrinsically to the FMRCD estimator.
Conversely, the RF-RFE-based algorithm exhibited outstanding predictive performance by achieving a maximum
GM metric of 77.13% (±0.1150) for the IEEE-CIS dataset pre-processed by SMOTE-ENC coupled with the MED
approach. To affirm these results, Figure 6 displays the median GM metrics for the three datasets attained by the
RF algorithm. The predictive algorithm demonstrated its effectiveness by achieving the highest median GM metric
of 82.00% using datasets pre-processed with SMOTE-NC integrated with the MMD computed intrinsically to the
FMRCD estimator. To substantiate these findings, the Friedman test reported a p-value of 8.91× 10−03 < 0.05
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Figure 6. Friedman and Durbin-Conover tests based on GM metric obtained by the RF-RFE-based algorithm leveraging
datasets pre-processed by the modifications of SMOTE-based approaches generally tailored for heterogeneous features
coupled with either the MED or the MMD computed intrinsically to the FMRCD estimator.

(χ2
F = 18.78 > χ2

7 (α = 0.05) = 2.1670), suggesting that the efficacy of the modifications of SMOTE-based
approaches is statistically insignificant different at 5% level of significance. However, the Durbin-Conover test
revealed that the effective approach is statistically insignificant different to G-SMOTE-NC integrated with MED
approach and SMOTEENN-ENC blended with MMD computed intrinsically to the FMRCD estimator.

Table 11 presents the averages and SDs for F1-score metrics achieved by the RF-RFE-based algorithm
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using datasets pre-processed by the adaptations of SMOTE-based approaches typically tailored for heterogeneous
features, combined with either the MED or the MMD computed intrinsically to the FMRCD estimator. The
predictive algorithm demonstrated robust performance by achieving the highest average F1-score metric of
97.00% (±0.0009) and 87.41% (±0.0209) for the P2P and LDCD datasets pre-processed by G-SMOTE-NC
and SMOTE-NC, respectively, both combined with the MMD computed intrinsically to the FMRCD estimator.
Alternatively, the RF-RFE-based algorithm attained superior predictive performance by achieving the highest
F1-score metric of 65.49% (±0.0074) for the IEEE-CIS dataset pre-processed by SMOTE-ENC integrated with
the MED approach.

Table 11. Mean±SD of the F1-score metric achieved by RF-RFE-based algorithm utilizing datasets pre-processed by the
modifications of SMOTE-based approaches generally tailored for heterogeneous features coupled with either the MED or
the MMD computed intrinsically to the FMRCD estimator.

Datasets Estimators G-SMOTE-NC SMOTE-ENC SMOTE-NC SMOTEENN-ENC

P2P MED 0.9690±0.0003 0.9464±0.0045 0.9463±0.0048 0.9698±0.0007
MMD-FMRCD 0.9700±0.0009 0.9397±0.0034 0.9459±0.0076 0.9245±0.0018

IEEE-CIS MED 0.6249±0.0080 0.6459±0.0206 0.6549±0.0074 0.6168±0.0090
MMD-FMRCD 0.6516±0.0084 0.6237±0.0061 0.6293±0.0021 0.6121±0.0082

LDCD MED 0.7128±0.0976 0.5500±0.1318 0.8359±0.0137 0.7204±0.0341
MMD-FMRCD 0.6707±0.1022 0.7408±0.0494 0.8741±0.0209 0.6466±0.0992

To ascertain the effectiveness of the proposed framework, Figure 7 displays the median F1-score metrics
achieved by the RF-RFE-based algorithm for the three aggregated datasets utilizing datasets pre-processed by
the variants of SMOTE-based approaches typically designed for heterogeneous features, integrated with either
the MED or the MMD computed intrinsically to the FMRCD estimator. The predictive algorithm demonstrated
computational efficacy, achieving the highest median F1-score of 88.00% by utilizing datasets pre-processed
with SMOTE-NC combined with the MMD computed intrinsically by the FMRCD estimator. Further analysis
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Figure 7. Friedman and Durbin-Conover tests based on F1-score metric achieved by the RF-RFE-based algorithm leveraging
datasets pre-processed by the modifications of SMOTE-based approaches generally tailored for heterogeneous features
coupled with either the MED or the MMD computed intrinsically to the FMRCD estimator.

employing the Friedman test reported a p-value of 3.11× 10−12 < 0.05 (χ2
F = 68.40 > χ2

7 (α = 0.05) = 2.1670),
indicating that the SMOTE-based approaches are statistically significant different. Supplementary analysis using
the Durbin-Conover test highlighted that the statistically optimal approach is statistically insignificant to SMOTE-
ENC combined with the MED approach and SMOTEENN-ENC integrated with the MMD computed intrinsically
to the FMRCD estimator as well as the former
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4.3. Evaluating the Computational Stability of the Proposed Framework

Table 12 presents the coefficient of variations (based on aggregated evaluation metrics) exhibited by the predictive
approach in conjunction with the adaptations of SMOTE-based approaches, either combined with the MED
approach or with the MMD computed intrinsically to the FMRCD estimator. The least coefficient of variations

Table 12. Mean±SD of the coefficient of variation exhibited by the LR-AE-NET, and RF-RFE-based algorithm using
datasets pre-processed by the versions of SMOTE-based approaches mainly configured for heterogeneous features blended
with either the MED or the MMD computed intrinsically to the FMRCD estimator.

Algorithm Estimators G-SMOTE-NC SMOTE-ENC SMOTE-NC SMOTEENN-ENC

LR-AE-NET MED 12.4965 12.7367 10.9331 12.2359
MMD-FMRCD 12.8194 11.2308 10.5299 11.5236

RF-RFE MED 22.4258 17.0680 11.5628 21.5334
MMD-FMRCD 23.9102 10.9768 9.6163 10.6310

were evident from the interplay of LR-AE-NET and RF-RFE-based algorithm utilizing datasets pre-processed by
SMOTE-NC combined with the MMD computed intrinsically to the FMRCD estimator. These findings suggest
that our novelty offers superior stability to the predictive approach’s performance.

4.4. Evaluation the Computational Efficiency of the Suggested Architecture

The computational efficiency of the conventional approaches and the proposed architecture was assessed across
the three datasets, with averages runtimes measured in minutes. Table 13 reports the averages and SDs of the time
taken by the adaptations of the SMOTE-based approaches either combined with the MED approach or with MMD
computed intrinsically by the FMRCD estimator to pre-process the datasets.

Table 13. Mean±SD of the computational time (minutes) attained the SMOTE-based approaches predominantly formulated
for heterogeneous features synthesized with either the MED or the MMD computed intrinsically to the FMRCD estimator.

Datasets Estimators SMOTE-NC G-SMOTE-NC SMOTE-ENC SMOTEENN-ENC

P2P MED 3.8790±0.0489 6.8950±0.0199 10.5920±0.0206 12.7073±0.0180
MMD-FMRCD 20.4540±0.3800 31.3895±0.7693 34.9865±0.5743 49.1989±0.5467

IEEE-CIS MED 7.9024±0.0650 18.0119±0.4948 25.1942±0.5230 19.2565±0.1575
MMD-FMRCD 11.2911±0.5500 27.8630±0.5144 36.6375±0.6389 35.5567±0.9061

LDCD MED 5.6565±0.0426 10.9237±0.0848 29.5140±0.8549 14.4246±0.1475
MMD-FMRCD 25.5901±8.4467 35.4256±5.9163 38.9447±6.0074 58.0692±15.1509

The modifications of the SMOTE-based approaches typically customized for heterogeneous features integrated
with the MED approach achieved the minimal computational time compared to the proposed framework. Despite
the computational efficacy demonstrated by the suggested framework, it is computationally intensive, particularly
in handling high-dimensional feature space.

5. Concluding Remarks

Big datasets in the credit risk landscape are often characterized by zero-inflated instances coupled with high-
dimensional heterogeneous features some of which may be redundant. Consequently, these data aberrations
adversely affect the conventional predictive classifiers, thereby exhibiting inaccurate and unreliable predictions.
Additionally, these aberrations are exacerbated by the heavy-tailed error distributed data points and collinearity
often inherent in the high-dimensional data. Therefore, in this study, the authors proposed robust distance-based
SMOTE approaches typically designed for heterogeneous features by leveraging the MMD computed intrinsically
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to the FMRCD estimator, which offer remedies to these multifaceted data aberrations. The proposed framework
is tailored to effectively capture correlations and variability among features, which enhances the modelling
strategy. Furthermore, this framework enhances robustification and efficacy of SMOTE-based approaches primarily
customized for heterogeneous features, by combining them with the MMD computed intrinsically with the FMRCD
estimator in conjunction with the feature selection procedures, LR-AE-NET and the RF-RFE-based algorithm.
The empirical results exhibited by this framework demonstrate superior and stable predictive performance. These
findings suggest that our novel approach significantly outperform traditional approaches in enhancing the predictive
capabilities of the classifiers. Despite the tractability and stability demonstrated by the proposed framework, there is
potential for enhancement in terms of its computational efficiency, especially in the convergence of the covariance
(scatter) matrix, which is computationally demanding. This framework is suitable for adoption by practitioners and
academia in enhancing credit risk management strategies that effectively circumvent data complexities, which are
substantially posed by zero-inflated datasets with inherent high-dimensional heterogeneous features across a wide
array of big data applications.

Nomenclature

Abbreviation Full Term
SMOTE Synthetic Minority Oversampling Technique
SMOTE-NC SMOTE for Nominal and Continuous Features
SMOTE-ENC SMOTE for Encoding Nominal and Continuous Features
GSMOTE-NC Geometric SMOTE-NC Features
SMOTEENN SMOTE Edited Nearest Neighbors (ENNs) for Encoding Both Nominal and Continuous Features
ML Machine Learning
LR Logistic Regression
RF Random Forest
MED Modified Euclidean Distance
MMD Modified Mahalanobis Distance
MMRCD Modified Minimum Regularized Coefficient Determinant
ALASSO Adaptive Least Absolute Shrinkage and Selection Operator
AE-NET Adaptive Elastic Net
CV Cross Validation
AUC Area Under the Curve
GM Geometric Mean
SDs Standard Deviations
P2P Peer to Peer
LDCD Loan Default Credit Dataset
IEEE-CIS IEEE-Computational Intelligence Society
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