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Abstract The binary monarch butterfly optimization algorithm (BMBOA) is a meta-heuristic algorithm that has been
applied widely in combinational optimization problems. Binary knapsack problem has received considerable attention in
the combinational optimization. In this paper, a new time-varying transfer function is proposed to improve the exploration
and exploitation capability of the BMBOA with the best solution and short computing time. Based on small, medium, and
high-dimensional sizes of the knapsack problem, the computational results reveal that the proposed time-varying transfer
functions obtain the best results not only by finding the best possible solutions but also by yielding short computational
times. Compared to the standard transfer functions, the efficiency of the proposed time-varying transfer functions is superior,
especially in the high-dimensional sizes.
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1. Introduction

The knapsack problem is considered as one of the NP-hard combinatorial optimization problems. The knapsack
problem cannot be solved efficiently in a practically acceptable time scale using the exact algorithms because the
computational time increases exponentially with the problem size. This leads to use approximate algorithms such
as meta-heuristic algorithms to getting a good solutions, not necessarily optimal, in a reasonable time [1, 2, 37, 38].

The meta-heuristic algorithms are simple, flexible and they can be deal with the problems with different objective
function properties, either discrete problems, continuous problems, or mixed problems [2]. These algorithms
include genetic algorithm (GA) [3], particle swarm optimization (PSO) [4], artificial fish swarm algorithm
(AFSA) [5], harmony search algorithm (HAS) [6, 7], gravitational search algorithm (GSA) [8], moth search
algorithm (MSA) [9], cuckoo search algorithm (CSA) [10, 11], firefly algorithm (FA) [12], artificial bee colony
algorithm (ABCA) [13], bat algorithm (BA) [14, 15], flower pollination algorithm (FPA) [1], and monarch butterfly
optimization algorithm (MBOA) [16].

The monarch butterfly optimization algorithm is a new meta-heuristic algorithm that was developed by Wang,
Deb [16] for solving continuous optimization problems. It mimics the migration behavior of monarch butterflies
in nature. For solving different optimization problems, many studies have applied this algorithm. Wang, Deb [17]
proposed a new version of MBOA with two strategies: greedy strategy and self-adaptive crossover operator. [18]
introduced a new hybrid meta-heuristic algorithm, which combined artificial bee colony algorithm with elements
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from monarch butterfly optimization algorithm. [19] proposed a self-adaptive strategy to dynamically adjust the
butterflies in subpopulation 1 and subpopulation 2. Some works have been done for tackling knapsack problem
using monarch butterfly optimization algorithm. [20] described a novel binary monarch butterfly optimization
for solving knapsack problems, where the repair operator based on greedy optimization algorithm.[21] proposed
a novel chaotic monarch butterfly optimization, where twelve classical chaotic maps were used in MBOA with
applying Gaussian mutation operator. [22] introduced two strategies: neighborhood mutation based on crowding
and Gaussian mutation into MBOA for solving discounted (0-1) knapsack problem.

In the binary monarch butterfly optimization algorithm, a transformation function is used to convert the
continuous values generated from the algorithm into binary ones, and, therefore it is able to provide binary MBOA
a sufficient amount to balance between exploration and exploitation [23, 31, 32, 33, 39, 40, 41].

In this paper, an efficient time-varying transfer function is proposed to solve the 0 —1 knapsack problem. The
proposed transfer function is based on combining the S-shaped and V-shaped transfer functions with time-varying
concept.

The remainder of this paper is organized as follows. Section 2 describes the basic 0 —1 knapsack problem.
Section 3 introduces the monarch butterfly optimization algorithm. In Section 4, the proposed time-varying transfer
function is presented. Section 5 presents and discusses the experimental results. In section 6, conclusions are drawn.

2. Knapsack problem

Knapsack problem is one of the NP-hard combinatorial optimization problems, which has been widely studied in
operation research. Knapsack problem consists of a set of n items where each item ¢ has a profit ¢;, weight w;, and
maximum weight capacity M. The objective is to maximize the total profit of the selected items in the knapsack
such that the total weights of these items are achieved by Eq.(2). Mathematically, the knapsack problem can be
written as [24, 25]:

n

fl@)=> ci (1)
i=1

s.t.

Sy i < M ”

where

- 1 if item 1 is  selected
10 otherwise

Using the penalty function, the knapsack problem can be written as follows:
Ming () = —f () + AMax (0, h) 3)

where h = ZZ”: 1 w;z; — M and X represents the penalty coefficient. In this paper A is setting to 1019 for all tests.
The penalty function can be described in Algorithm 1.

Penalty function

Jor each x;

Calculate total weight of x; by (ZZL:l wixi)

if (totalweight < knapsackcapacity)

¢ () = —f(2)
else
o (x) = —f (z) + A (totalweight — knapsackcapacity)

end
Algorithm 1: Penalty function
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3. Monarch Butterfly optimization (MBO)

Wang, [16] proposed a new meta-heuristic algorithm for continuous optimization problems called monarch
butterfly optimization. It is inspired by simulating the migration behavior of the monarch butterflies from northern
USA and southern Canada to Mexico every summer.

In MBO algorithm, the entire population can be divided into two subpopulations: subpopulation 1 and
subpopulation 2 which lived in land 1 and land 2 respectively. The number of monarch butterflies in land 1 and
land 2 is NP1 = NP x p and NP2 = NP — N P1 respectively, where N Pis the size of entire population and p
is the proportion of monarch butterflies in subpopulation 1. The monarch butterfly optimization algorithm has two
main operators: the migration operator and the butterfly adjusting operator [16, 18].

3.1. Migration Operator

The migration process can be described as follows:
s =t )

where xf*kl is the k*" element of x; at generation ¢ + 1, which represents the position of the monarch butterfly i.

x! is the k'" element of z,., at generation ¢, which represents the position of the monarch butterfly 1. Monarch

buiterﬂy ry is randomly selected from subpopulation 1. If » < p, the element kin the newly generated monarch
butterfly is generated by Eq.(4), else if » > pthe element kis the newly generated monarch butterfly is generated by
the following equation:

t+1 _ ¢t
Tik = Trok 5)

where zr  is the k'" element of x,, at generation ¢, that is the newly generated position of the monarch butterfly
7. Monarch butterfly 72 is randomly selected from subpopulation 2, where rcan be computed as follows:

r = rand * peri (6)

where peri represents migration period and rand is a random number in(0, 1). Based on the above analyses, the
migration operator can be expressed in Algorithm 2[16, 17].

Migration Operator

Begin

for i=1:NPI

for k=1:d (all the elements in i'" monarch butterfly)

r = rand * peri

ifr<p

selected a monarch butterfly r1 randomly in NP1

Generate new monarch butterfly xtH by Eq. (??)

else

selected a monarch butterfly ro randomly in NP2

Generate new monarch butterfly xtH by Eq. (??)

end if

end for

end for

End

Algorithm 2: Migration Operator

3.2. Butterfly Adjusting Operator

In butterfly adjusting process, the position of the monarch butterflies in subpopulation 2 is updating by all the
elements in monarch butterfly j, if rand < p then it can be updated as:

t+1 _ .t
xj,k - xbest,k (7)
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where xﬂl is the k' element of x; at generation ¢ + 1, which represents the position of the monarch butterfly jand
z! ., . is the k' element of x5 at generation ¢, which represents the best monarch butterfly in land 1 and land 2.
On the other hand, if the random value rand > p, it can be updated as:

t+1 t
P ot ®)

where xfnd .is the k' element of x,, that is randomly selected in subpopulation 2. In addition of this condition, if
rand > BAR, it can be updated as:

el =2+ a(dey, — 0.5) 9)

where B ARis the butterfly adjusting rate, dzis the walk step of the monarch butterfly j that can be calculated by
performing Levy flight as:

dx = Levy (x;) (10)

and « is the weighting factor that can be calculated by following equation:

an

where Shax 1S the max walk step that an individual monarch butterfly can move in one step and ¢ is the current
generation. The butterfly adjusting operator can be described in Algorithm 3 [16, 17].

Butterfly Adjusting Operator

Begin

Jor j=1:NP2

for k=1:d (all the elements in i monarch butterfly)

if rand <p

Generate new monarch butterfly xﬁl by Eq. (7)

else

selected a monarch butterfly r3 randomly in NP2

Generate new monarch butterfly xﬁl by Egq. (8)

if rand > BAR

1321 = :rz",'cl + a (dz — 0.5)

end if

end if

end for

end for

End

Algorithm 3: Butterfly Adjusting Operator

Based on the migration operator and the butterfly adjusting operator, the main steps of MBO algorithm can be
described in Algorithm 4 [16, 17].
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Monarch Butterfly Optimization Algorithm (MBOA)

Begin

Step 1: Initialize the population of NP monarch butterfly individuals
randomly , set migration period peri, the migration ratio p, butterfly
adjusting rat BAR, and the max step Sp.x. Set the maximum
generation.

Step 2: Evaluate each monarch butterfly in the population.

Step 3: while (stopping criterion)

Sort the monarch butterfly individuals based on fitness.

Divided butterfly individuals into two subpopulation (land 1 and land
2)

for i=1:NPI

Generate new subpopulation by migration operator Algorithm 2.

end

for j=1:NP2

Generate new subpopulation by Butterfly Adjusting Operator
Algorithm 3.

end

Combine the two newly generated subpopulations into one population

end
Step 4: Find the best solution.
End
Algorithm 4: Monarch Butterfly Optimization Algorithm

4. The proposed time-varying transfer functions

The standard monarch butterfly optimization algorithm was originally proposed to handle a continuous
optimization problems. In discrete optimization problems, such as knapsack problem, the standard method cannot
be applied directly to deal for such this problems. Therefore the transfer functions are usually employed to convert
the continuous search space to discrete search space. There are two families of transfer functions: S-shaped and
V-shaped transfer function which were proposed by [26]. The V-shaped transfer functions have also been studied
by [27] to tackle the feature selection problem. The most common transfer functions from the S-shaped family is
the sigmoid function [28, 29]:

1
S it = t 12
(@) = ;== (12)
¢ |1 af S(al) >rand
= { 0 0.W 13

On the other hand, the inverse tangent hyperbolic function is the most common used transfer function from the
V-shaped family. It is defined as:

2 ™
= |2 Zat
v (a?l) = ‘ﬂ arctan (2951) (14)
¢ |1 af V(zh) >rand
Ti _{ 0 O.W (5)

The transfer function is the main key to the balance between exploitation and exploration [23, 30, 34, 35, 36]. In our
proposed time-varying transfer function, a new control parameter ¢ is added in the original transfer function. This
 is a time-varying variable which starts with a large value and gradually decreases over time and it is expressed
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in Eq.(16).

¥ = Pmin + (‘pmax - Spmin) X e_t (16)
where ¢, .xand ppgi,are, respectively, the minimum and maximum values of the control parameter ¢, and 7 is the
maximum iteration of the BMBO. Accordingly, the two proposed transfer functions are defined as, respectively,

TVS (1) = — (17)

l+ew

and

(18)

2 waxt
TVV (2}) = | = arct :
(:cl) ’w arctan < 290)
Figure 1 explains the behavior of the proposed time-varying transfer function for both Eq. (12) and Eq. (14),
respectively. It is obvious that these proposed functions coverage to be a vertical line when iteration increasing.

0.8 4 L

0.6 =

0.4 - -

Probability

0.2 4 r

Probability

0.2 =

0.0 =

Figure 1. Explanation of the time-varying transfer function when ¢max = 2and @i, = 0.1 during 10 iteration. The top
panel is the sigmoid transfer function and the bottom panel is the inverse tangent hyperbolic transfer function.
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5. Computational results

5.1. Parameter setting

For the binary monarch butterfly optimization algorithm, we set the parameters as follows: the population size =50,
migration ratio = 5/12, migration period= 1.2, butterfly adjusting rate = 5/12, and Max step = 1. In addition, we
used linear decreasing time varying with ¢, = 2 and @3, = 0.1.

5.2. Comparison results

To verify the feasibility and effectiveness of the proposed time-varying transfer functions method for solving 0—1
Knapsack problem, three scales of the knapsack problem are considered: low, medium, and high-dimensional sizes.
In this paper, all the results are obtained from 50 independent trials. The Best, Mean, Worst, SD, Mean iterations
are reported as evaluation criteria. All of the computational experiments were conducted in Matlab 13a on a PC
with an Intel Pentium Core i17-7500 processor (2.9 GHz) with 16GB of RAM in the Windows 10 OS.

5.2.1. Low size 0-1 KP The performance of improved algorithm is investigated to solve ten low scale 0-1 KP
instances (kp-1 to kp-10), which are taken from [1, 14]. The dimensions in this case are ranging from 4 to
23. The information dimension, capacity, weights and profits for these ten instances are described in Table S1
(supplementary file). Table 1 shows the comparison results for all the used different transfer functions for the kp1
- kp10.

As observed from the results in Table 1, for the low scale knapsack problems, there is no difference among the
results of using the proposed time-varying transfer functions and the standard transfer functions in terms of the
best, worse, mean, and SD. The major difference among the performance of the proposed time-varying transfer
functions and the standard transfer functions in not expected because of relatively small numbered items. Contrary,
the proposed time-varying transfer functions give optimal results with less number of iterations. The mean iterations
of the proposed time-varying transfer functions are obviously better than the standard transfer functions for kp4,
kp3, kp8, kp9, and kp10 where the number of items is higher than the others. Moreover, comparing between the
two proposed transfer function, the required iterations to get optimal solution using TVV is less than of TVS for
kp4, kp3, kp6, kp8, kp9, and kp10.

5.2.2. Medium size 0-1 KP To further evaluate the performance of proposed time-varying transfer functions in
medium size 0-1 Knapsack problem, ten medium size 0-1 KP instances (kp-11 to kp-20) are taken from [1, 14]
in which the items are between 30 and 75. The description of these ten instances are described in Table S2
(supplementary file). Table 2 summarizes the comparison results for all the used different transfer functions.

Obviously, it is evident from Table 2 that the proposed time-varying transfer functions obtained the same best,
worse, mean, and SD values as the standard transfer functions. From Tables 2, for the mean iterations, the proposed
time-varying transfer functions are superior to the standard transfer functions on kp11 to kp20. This indicates that
the proposed time-varying transfer functions is comparatively fast. For example, in kp20, the reduction in mean
iteration of TVS function was 63.15% lower than that of S function. On the other hand, the reduction in mean
iteration of TVV function was 57.94% lower than that of V function.

Further, it was noted that the v-shaped transfer functions are usually yielded the least iterations compared to S-
shaped transfer functions. On the other hand, comparing between the two proposed transfer function, the required
iterations to get optimal solution using TVV is less than of TVS for all the 0-1 Knapsack problems.

5.2.3. High-dimensional size 0-1 KP To further highlight the benefits of our proposed time-varying transfer
functions, three cases have been investigated. The first case handles the uncorrelated problem (kp21 — kp25) where
the weights w; are uncorrelated with the profits ¢;. Each w; and ¢; is randomly chosen from 5 to 20 and from 5 to 40,
respectively. The second case handles the weakly correlated problem (kp26 — kp30). In this case, the weights w; and
the profits ¢; can be expressed as follows: w; € [5,20] and ¢; € [w; — 5, w; + 5]. The third case handles the strongly
correlated problem (kp31 — kp35). In this case, w;and ¢; can be calculated as: w; € [5,20] and ¢; € [w; + 5]. The
knapsack capacity for the kp-21-kp35 can be calculated as M = 0.75 x >, w;. The dimension sizes varying
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Table 1. Results obtained by the transfer functions for the low scale 0-1 KP

Instance Transfer Best Mean Worst SD Mean itera-
function tions
kp-1 S 35 35 35 0 1
\% 35 35 35 0 1
TVS 35 35 35 0 1
TVV 35 35 35 0 1
kp-2 S 23 23 23 0 1
\' 23 23 23 0 1
TVS 23 23 23 0 1
TVV 23 23 23 0 1
kp-3 S 130 130 130 0 1
\" 130 130 130 0 1
TVS 130 130 130 0 1
TVV 130 130 130 0 1
kp-4 S 107 107 107 0 2.15
\' 107 107 107 0 1.08
TVS 107 107 107 0 1
TVV 107 107 107 0 1
kp-5 S 295 295 295 0 3.26
\' 295 295 295 0 2.11
TVS 295 295 295 0 1
TVV 295 295 295 0 1
kp-6 S 52 52 52 0 1.12
A" 52 52 52 0 1.04
TVS 52 52 52 0 1
TVV 52 52 52 0 1
kp-7 S 481.07 481.069 481.07 0 1
\' 481.07 481.069 481.07 0 1
TVS 481.07 481.069 481.07 0 1
TVV 481.07 481.069 481.07 0 1
kp-8 S 1025 1025 1025 0 2.64
\'% 1025 1025 1025 0 1.91
TVS 1025 1025 1025 0 1.67
TVV 1025 1025 1025 0 1
kp-9 S 1024 1024 1024 0 2.86
\'% 1024 1024 1024 0 1.08
TVS 1024 1024 1024 0 1.02
TVV 1024 1024 1024 0 1
kp-10 S 9767 9767 9767 0 5.31
\' 9767 9767 9767 0 3.14
TVS 9767 9767 9767 0 4.02
TVV 9767 9767 9767 0 2.35

from 100 to 2000 items. For all used transfer functions, the maximum iteration is set to 10000. Tables 3 — 5 reports
the comparison results for all the used different transfer functions. Based on the obtained results, several points are
concluded.

1. It can be seen that the proposed time-varying transfer functions significantly outperform the standard transfer
functions on all evaluation measures including the best, mean, worst, and standard deviations.

2. As observed from the results, the proposed time-varying V-shaped transfer functions, TVYV, can easily find
the optimal values with small SD in all uncorrelated, weakly correlated, and strongly correlated problems.

Stat., Optim. Inf. Comput. Vol. 14, November 2025
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Table 2. Results obtained by the transfer functions for the medium size 0-1 KP

Instance Transfer Best Mean Worst SD Mean itera-
function tions
kp-11 S 1437 1437 1437 0 8.15
\% 1437 1437 1437 0 4.24
TVS 1437 1437 1437 0 5.06
TVV 1437 1437 1437 0 2.27
kp-12 S 1689 1689 1689 0 9.51
\' 1689 1689 1689 0 3.94
TVS 1689 1689 1689 0 4.83
TVV 1689 1689 1689 0 1.95
kp-13 S 1821 1821 1821 0 41.08
\'% 1821 1821 1821 0 13.22
TVS 1821 1821 1821 0 28.65
TVV 1821 1821 1821 0 5.83
kp-14 S 2033 2033 2033 0 29.57
\' 2033 2033 2033 0 8.96
TVS 2033 2033 2033 0 19.35
TVV 2033 2033 2033 0 3.14
kp-15 S 2440 2440 2440 0 35.19
A\ 2440 2440 2440 0 12.36
TVS 2440 2440 2440 0 22.28
TVV 2440 2440 2440 0 6.57
kp-16 S 2651 2648.5 2643 2.86 698.4
A" 2651 2651 2651 0 17.25
TVS 2651 2651 2651 0 475.61
TVV 2651 2651 2651 0 9.28
kp-17 S 2917 2917 2917 0 195.73
\' 2917 2917 2917 0 25.36
TVS 2917 2917 2917 0 75.31
TVV 2917 2917 2917 0 9.6
kp-18 S 2818 2815.6 2794 1.73 894.1
\'% 2818 2818 2818 0 11.58
TVS 2818 2818 2818 0 528.7
TVV 2818 2818 2818 0 5.89
kp-19 S 3223 3221.6 3219 0.93 784.5
\'% 3223 3223 3223 0 11.21
TVS 3223 3223 3223 0 5.82
TVV 3223 3223 3223 0 6.18
kp-20 S 3614 3614 3614 0 589.7
\' 3614 3614 3614 0 9.25
TVS 3614 3614 3614 0 217.3
TVV 3614 3614 3614 0 3.89

3. It is obvious that there is an improvement for searching the global optimal solution when using TVV
compared to TVS. This leads to the performance dominance of the inverse tangent hyperbolic transfer
function against the sigmoid transfer function.

4. The mean iteration values of time-varying V-shaped transfer functions, TVV, are obviously superior to S and
V functions for all high-dimensional size problems.

5. Compared to the proposed time-varying V-shaped transfer functions, TVV is significantly improve the
performance metrics with lower SD and mean iterations.
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Table 3. MSE values when n = 100

Method

p=0.90 p=0.95 p=0.99
SPRM 3.612 4.699 6.216
HK1 1.39 2.695 2.905
HK?2 1.431 1.819 2.772
K1 1.446 1.245 2.575
K2 1.158 2.142 2.629
K3 1.49 2.474 2.342
K4 1.332 2.316 2.368
K5 1.467 2.451 2.429
K6 1.374 2.358 2.604
K7 1.503 2.491 2.53
K8 1.15 2.135 2.709
K9 1.509 2.493 2.5
K10 1.183 2.167 2.392
K11 1.507 2.491 2.346
SMA 1.145 1.169 1.186

Table 4. Comparison results of uncorrelated high-dimensional size 0-1 KP

Instance Dimension Transfer Best Mean Worst SD Mean
function itera-
tions
kp-21 100 N 2126 2120.8 2116 15.6 1085
\%4 2126 2126 2126 0 69
TVS 2126 2126 2126 0 520
VvV 2126 2126 2126 0 34
kp-22 500 S 11025 11017.5 11012 18.5 3025
\%4 11025 11024.2 11023 1.46 127
TVS 11025 11023.8 11022 2.18 1582
VvV 11025 11025 11025 0 65
kp-23 1000 S 21963 21958.6 21950 17.1 6853
\%4 21968 21967.1 21965 2.01 839
TVS 21969 21966.9 21963 4.92 2976
TVV 21969 21969 21969 0 491
kp-24 1500 S 32633 32626.2 32620 20.65 5628
Vv 32639 32637.8 32636 2.61 1957
TVS 32637 32635.4 32634 3.48 3273
VvV 32640 32639.2 32638 0.34 978
kp-25 2000 S 43711 43705 43692 31.6 8854
1 43725 43722.6 43720 5.22 3761
TVS 43723 43720.7 43718 3.67 5842
vV 43726 43725 43722 1.93 2072

Stat., Optim. Inf. Comput.
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Table 5. Comparison results of weakly correlated high-dimensional size 0-1 KP

Instance  Dimension Transfer  Best Mean Worst SD Mean iter-
function ations
kp-26 100 S 2015 2012.3 2009 4.29 926
Vv 2015 2015 2015 0 48
TVS 2015 2015 2015 0 352
VV 2015 2015 2015 0 25
kp-27 500 S 10450 10447.2 10446 6.41 1854
v 10450 10449.3 10448 0.84 98
TVS 10450 10447.8 10446 1.68 851
TVV 10450 10450 10450 0 49
kp-28 1000 S 20856 20852.1 20849 6.85 3458
Vv 20856 20854.6 20853 0.93 215
TVS 20856 20854 20852 2.24 2851
VV 20856 20856 20856 0 137
kp-29 1500 S 31625 31620.3 31618 8.02 4183
Vv 31630 31629.5 31626 1.85 1957
TVS 31632 31628.7 31626 2.94 3273
VV 31632 31631.4 31631 0.26 895
kp-30 2000 S 42050 42046 42041 10.93 7794
Vv 42055 42053.1 42049 2.04 2536
TVS 42057 42051.6 42047 7.32 4582
TVV 42057 42056 42054 1.34 1057

Table 6. Comparison results of strongly correlated high-dimensional size 0—1

KP

Instance  Dimension Transfer Best Mean Worst SD Mean iter-
function ations
kp-31 100 N 2669 2669 2669 0 283
Vv 2669 2669 2669 0 36
TVS 2669 2669 2669 0 107
TVV 2669 2669 2669 0 12
kp-32 500 N 13657 13654.1 13652 0.62 564
\%4 13657 13657 13657 0 50
TVS 13657 13657 13657 0 322
TVV 13657 13657 13657 0 28
kp-33 1000 N 27164 27162.5 27159 1.29 921
Vv 27166 27164.6 27164 0.90 127
TVS 27166 27164.4 27162 0.12 619
TVV 27166 27166 27166 0 88
kp-34 1500 N 40461 40459.8 40455 2.58 1766
\% 40466 40465 40463 1.61 293
TVS 40468 40466.3 40464 1.58 835
TVV 40468 40468 40468 0 146
kp-35 2000 S 42050 42048.9 42042 3.01 3905
\% 42054 42053.1 42048 2.18 559
TVS 42057 42055 42051 2.33 2376
TVV 42057 42056.2 42055 0.89 381

Stat., Optim. Inf. Comput.
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6. Conclusion

In this paper, a time-varying transfer function was proposed to improve the exploration and exploitation capability
of the binary monarch butterfly optimization algorithm in solving the 0—1 KP problem efficiently. The experimental
results show that the introduction of time-varying parameter in the transfer function can improve the performance
of binary MBOA in solving small, medium, and high-dimensional sizes 0—-1 KP problems. Additionally, the
experimental results show that proposed time-varying V-shaped transfer function outperforms the S-shaped transfer
function in terms of the best, worse, mean, SD, and the mean iterations.

Appendix

Table 7. The description of the low size 0-1 KP instances

Instance dimension capacity weights W profits C
M

kp-1 4 20 w=[659 7] c=[9 11 13 15]

kp-2 4 11 w=[2467] c=[6 10 12 13]

kp-3 5 80 w=[152017 8 31] c=[33 24 36 37 12]

kp-4 7 50 w=[31 1020194 3 6] c=[702039 3775 10]

kp-5 10 269 w=[954603223728062 c=[5510475450861
65 46] 85 87]

kp-6 10 60 w=[30252018 171152 ¢=[2018 171515105
11] 311]

kp-7 15 375 w=[56.358531 80.874050 c¢=[0.125126 19.330424
47.987304 89.596240 58.500931  35.029145
74.660482 85.894345 82.284005 17.410810
51.353496 1.498459 71.050142  30.399487
36.445204 16.589862 9.140294 14.731285
44.569231 0.466933  98.852504  11.908322
37.788018 57.118442 0.891140 53.166295
60.716575] 60.176397]

kp-8 20 879 w=[84 834344468292 c=[91 7290 46 55 8 35
258356 18 58 1448 70 7561 15774063 7529
96 32 68 92] 75 17 78 40 44]

kp-9 20 878 w=[924438384689282 ¢c=[44469072914075
64432185683259670 35854784077 15 61
48 14 58] 17 75]

kp-10 23 10000 w=[983 982 981 980 979 ¢=[981 980 979 978 977

978 488 976 972 486 486
972 972 485 485 969 966
483 964 963 961 958 959]

976 487 974 970 485
485 970 970 484 484
976 974 482 962 961
959 958 857]
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Table 8. Medium size 0—1 KP test problems

Instance dimension

capacity

M

weights W

profits C

kp-11

kp-12

kp-13

kp-14

kp-15

kp-16

kp-17

kp-18

30

35

40

45

50

55

60

65

577

655

819

907

882

1050

1006

1319

w=[46 17 35 1 26 17 17
483817 32212948318
423769152227 14 42
40 14 31 6 34]

w=[74364763383532
340502218 312 30 31
1333448517 332627
1939153347 17 4140]

w=[28 23 35 38 20 29 11
48 26 14 12 48 35 36 33
39 30 26 44 20 13 15 46
36431932247 24 26 39
1732171633226 12]

w=[18 1238 1223 13 18
46 172043 11 47 49 19
5073929322512 8 32
41 34 24 48 30 12 35 17
38501447 3551347 24
45391]

w=[1540 22 28 50 35 49
545373219164016 31
24 154229414929 11
2537483954749 3148
17461258169303318
33341]

w=[27 15465409 36 12
1111492032312 44 24
1244244 16 1242 22 26
10 8 46 50 20 42 48 45 43
359122221450 1629
31462035114323515
29 16]

w=[7 1347 333841 3 21
37732134242232049
1202531483311639
26 4439 7 4 34 25 25 16
17462338105 1128 34
47392217541203329
13316 14]

w=[47 27 24 27 17 17 50
24 38 3440 14 15 36 10
42 948 37 7 43 47 29 20
2336 1424850 39 50 25
724383444 38311417
42205442291331919
232616241916 38 30
3641436]

c=[57 6450 6 52 6 8
60 70 65 63 96 18 48 85
5077187092 17 43 5
236788353 9148]
¢=[35673069404021
73 82 935220612042
864393387059 11 42
93 6 39 25 23 36 93 51
81 36 46 96]

c=[13 16 42 69 66 68 1
137785759592 2351
79 53 62 56 74 7 50 23
34567542 51 1322 30
45252790 59 94 62 26
11]

¢=[98 70 66 33 2 58 4
2720457763 32308
187399243 8588435
78 71 60 38 40 43 43 22
504 5758887349896
99 16 1 25]
c=[7869875963 1222
445332950 19 94 95
60 19169 8 100 32 81
475948 56 18 59 16 45
5447 84 100 98 75 20 4
19 58 63 37 64 90 26 29
1353 83]

c=[98 74 76 4 12 27 90
98 100 35 30 19 75 72
1944566 79 87 79 44
35682 11128956839
86 68 61 44 97 83 2 15
4959 30 44 40 14 96 37
845438329586 18]
c=[813770649721 60
955855337187 51
100 43 27 48 17 16 27
76 61 97 78 58 46 29 76
10117436 5930 72 37
72100 9 47 10 73 92 9
5256 69 30 61 20 66 70
46 16 43 60 33 84]
c=[47 63 81 57 3 80 28
8369 6139710067 23
1025912248 912045
62606727 43 80 94 47
3144 31281417509
9315177268 36 10 1
38794510 81 66 46 54
5363 6520812042 24
281]

Stat., Optim. Inf. Comput.

Vol. 14, November 2025



16.
17.

18.

G. TBASHEER , L.J. MOHAMMED , Z. Y. ALGAMAL

Table 9. Medium size 0—1 KP test problems (continue)

Instance dimension  capacity

M

weights W

profits C

kp-19

kp-20

70

75

1426

1433

w=[4 16 16 2 944 33 43
14 45 11 49 21 12 41 19
263842205 144047 29
47 30 50 39 10 26 33 44
3150715247121034
174028 12353295019
28471342944 1443 41
1049 13394125466 7
43]
w=[24451540937135
433548502746 24452
73820203122033527
4212233115243731
46 13 12 12 41 36 44 36
3422295048178 21 28
244 4525113735249
4045847 1221123635
14175]

c=[66 76 71 61 4 20 34
6522 899 21 99 62 25
52722612 55223298
31954223216 10046
552789 1183439353
88 36 41 60 92 14 5 41
60 92 30 5579 33 10 45
3681220 54 63 38 61
857140582573 35]

c=[273821249 3578
2983188793206 551
8391712559949061
8084 571264444887
341825732924 14 23
82 3867 94 43 61 97 37
67 32 89 30 30 91 50 21
318 31 9779 68 85 43
71498344 86110028

13

416]
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