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Abstract This paper introduces the transformed exponential distribution (TED), a new two-parameter model
that overcomes the key limitation of the standard exponential distribution and its constant hazard rate. By adding
a shape parameter, the TED can model increasing or decreasing failure rates, making it more realistic for real-world
data. The authors derive its core statistical properties and show via simulation and a real application to aircraft
engine failures that it provides a significantly better fit than the exponential model and is a strong competitor to the
Weibull and Gamma distributions, establishing it as a powerful new tool for reliability analysis.
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1. Introduction

Statistical modeling of lifetime, reliability, and failure time data is a cornerstone of engineering, survival
analysis, and risk assessment. The exponential distribution, with its memoryless property and constant
hazard rate, has historically been a fundamental model in these fields due to its mathematical simplicity.
However, its assumption of a constant failure rate is often too restrictive for modeling real-world systems,
which may exhibit ”infant mortality” (decreasing hazard rate) or ”wear-out” (increasing hazard rate) phases.
This limitation has motivated the development of numerous generalization strategies to create more flexible
probability distributions that can adapt to complex data patterns.

The literature reveals a rich landscape of two-parameter lifetime distributions designed to overcome the
exponential model’s constraints. The Weibull distribution is arguably the most famous, capable of modeling
increasing, decreasing, or constant hazard rates through its shape parameter. The Gamma distribution offers
similar flexibility, though its hazard function can be more complex to work with analytically. The Generalized
Exponential distribution introduced by [1] provides another powerful alternative, often demonstrating
competitive performance. Despite their widespread use, these models can present challenges. Their shape
parameters, while flexible, may lack direct intuitive interpretation in certain applied contexts, and their
likelihood functions can sometimes lead to computational difficulties in estimation.

Alongside these established models, the field of distribution theory has been greatly enriched by
the development of systematic generalization families. Among these, the transmutation map approach,
particularly the quadratic rank transmutation map (QRTM) first presented by [21], has emerged as an
especially effective and flexible tool. This technique generalizes a base distribution by introducing a single
parameter () that injects skewness and alters tail behavior without significantly increasing model complexity.
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The resulting ”transmuted” distributions maintain the interpretability of their base models while gaining
the ability to capture a wider variety of data characteristics.

The exceptional utility of the QRTM is demonstrated by its successful application to a vast range
of distributions. For instance, [8] proposed the transmuted Weibull distribution, while [23] created
the transmuted Rayleigh. Other notable contributions include the transmuted log-logistic by [4], the
transmuted Burr Type XII by [15], and the transmuted modified Weibull by [2]. The method’s versatility
is further shown through the transmuted Lindley-geometric [16], the transmuted Gamma-Gompertz and
transmuted Generalized Type-II Half-Logistic from a master’s thesis [11], and the cubic transmuted
Weibull rahman2019. Recent works continue to expand this family, including the transmuted Janardan
alomari2017, the transmuted Mukherjee-Islam [7], the transmuted Shanker alzoubi2022, the transmuted
Aradhana gharaibeh2020, the transmuted Ishita [14], the transmuted Kumaraswamy Pareto urama2021,
and generalizations of the Sujatha and Amarendra distributions [6]. Further explorations include transmuted
reciprocal and two-parameter weighted exponential distributions [10], a new family of bivariate transmuted
distributions alsalaf2025, a novel perspectives group of transmuted distributions ahmmed2023, and the
integration of the Pareto distribution with the Epanechnikov kernel odat2025.

Given this extensive and growing body of work on transmutation, a critical question arises: what unique
value does a new generalization of the exponential distribution offer? Simply adding to the list of transmuted
models is insufficient justification.

1.1. Our Contribution: The Transmuted Exponential Distribution (TED)

This study introduces the Transmuted Exponential Distribution (TED) by applying the QRTM to the
exponential distribution. We position the TED not merely as another entry in the catalog, but as a model
designed to fill a specific and valuable niche. Its proposed advantages are threefold:

1. Interpretability and Parsimony: The TED’s parameters have a clear, direct interpretation. The
parameter 6 remains a scale parameter (rate) as in the exponential distribution, while the transmutation
parameter 7y directly quantifies the ”deviation” from the exponential base. This offers a potentially more
intuitive framework for practitioners than the more abstract shape parameter of models like the Weibull
or Gamma.

2. Analytical Tractability: The functional form of the TED, being a quadratic distortion of the
exponential CDF, leads to closed-form expressions for its key properties, including the probability
density function (PDF), cumulative distribution function (CDF), quantile function, moments, and
hazard function. This tractability facilitates easier implementation of statistical inference, such as
maximum likelihood estimation, compared to models with more complex integral forms.

3. Targeted Hazard Flexibility: The TED can model both increasing and decreasing hazard rates,
moving beyond the restrictive constant hazard of the exponential distribution. We demonstrate that its
hazard function provides a distinct parametric form that can be exceptionally suitable for certain data
patterns, offering a competitive and often more interpretable alternative to the Weibull and Gamma
families.

By providing a comprehensive derivation of its statistical properties, a simulation study to validate its
estimation procedure, and a rigorous application to a real-world reliability dataset, this work establishes the
TED as a robust, tractable, and interpretable tool for reliability modeling and survival analysis.

The remaining sections of this paper are arranged as follows: Section 2 defines the TED’s CDF and PDF.
Its fundamental statistical properties are derived in Section 3. Reliability and hazard rate functions are
covered in Section 4. The maximum likelihood estimation method is described in Section 5. The quantile
function is presented in Section 6. Order statistics are discussed in Section 7. A comprehensive simulation
study is detailed in Section 8. Finally, Section 9 validates the model’s superiority and practical utility by
applying it to a real-world dataset and comparing its fit to other well-known models.
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2 RELIABILITY MODELING WITH A TRANSFORMED EXPONENTIAL DISTRIBUTION

2. The Transmuted Exponential Distribution

Definition 1: Let X be a random variable that has an exponential distribution. The cumulative distribution
function (CDF) and probability density function (PDF) are provided by:

f(z) = e GI, x>0, 0>0,
1-—

A quadratic distortion (or second-degree polynomial distortion) is applied to the base distribution
through the transformation:

= (1+9*) F(z) = v*F*(x)
= (1+7) ( ‘”) =7 (1= )
G( ) 1— —03: + 5 ( —0x __ 6—2990) (2.1)

where « is a distortion parameter such that |y| < 1.
The corresponding transmuted PDF g(x) is obtained by differentiating G(z):

Substituting the expressions for f(x) and F(x) yields the final form:

g(x) =0 " (1—* +29%e%), >0, 4| < 1.

This modified distribution introduces greater flexibility in modeling tail behavior and skewness through
the parameter v, while retaining the structure of the exponential distribution when ~ = 0.

Figure 1 demonstrates that the TED offers a far more flexible framework for modeling data than the
standard exponential distribution, capable of capturing both elevated early failure rates and prolonged late-
life events.

The CDF plots provide a direct visualization of the probability of an event occurring by time X, clearly
showing how + skews this probability towards either very short or very long times.
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Figure 1. Plot of PDF of the TED for different values of v and 6.
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Figure 2. Plot of CDF of the TED for different values of v and 6.
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3. Properties of the TED

3.1. Moments
Theorem 3.1: Let X be a TED random variable, then the rth moment is defined to be

! 272
E(X’")=r{1—72+ il } (3.1)
or or
Proof.
E(X") = / x"g(z)dz
0
E[X"] / 2"0e7%(1 — 4% + 292e7 %) dx

0

0 (1 — 72) / z e dr + 2972/ " e 207 dy
0 0

By using the Gamma Integral for a > 0:

° r 1
[t - HED
0

a'r+1
e I 1
/ 2 0e % dx = 7(T +1)
0 o”
i I 1
/ xroe—29mdx _ (T + )
o 2rgr

Therefore,

r 2

Therefore, the first four moments can be calculated by putting » = 1,2,3 and 4 in Equation (3.1). Thus

E(X)=;<1—72+722>:;<1—7;)

Therefore, the variance of TED random variable is given by:
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V(X) = E(X?) - (B(X))*

(-%)-G-5)

4—272—74

V(x) = 462

RELIABILITY MODELING WITH A TRANSFORMED EXPONENTIAL DISTRIBUTION

The coefficient of variation (c.v) is defined to be the ratio of standard deviation of the random variable to

VVaer(X) _ % Therefore,

its expected value, that is cv = %)

— 2_~4
A A e e )
cv = = .

1 2 2 2
5(1—%) 7

These results are consistent with the PDF being a weighted combination of exponential distributions.

3.2. Skewness

Skewness is defined as:

E[(X — p)?]

Skewness =
o3

We need the third central moment E [(X — u)%].
Now, the third central moment:

B((X = p)’] = B[X?] - 3uB[X?] + 21°

Substitute:

By simplification:

_8—372—374—76

E[(X — p)?
(X —p)°] 10
Now, skewness:
E[(X — u)?
Skewness = M
o
— 45
3
102
2(8—3v2 -3y — 16
Skewness = ( 7 7 7 )

(A= 272 = A7
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3.3. Kurtosis

Kurtosis is defined as:

B[(X — p)"]

Kurtosis = 1

We need the fourth central moment E[(X — u)?].

Now, the fourth central moment:

E[(X —p)*] = B[X*) — 4uE[X?] + 64> B[X?] — 3p*

Substitute:
24 152 1 v\ 6 7?2
J— 4 — — J— — — —_ — JE— _ —
Bl —wy] 94<1 16 9( 2 )\l 7R
1 2 ) ~? 1 ~? :
+6<e(1‘2>) <e2_92 AV Ce)
Now,
X — 4
Kurtosis = M

Table 1. The TED mean, standard deviation, skewness, kurtosis and the coefficient of variation for different values of
5.

5y Mean S.D Skewness Kurtosis C.V

-0.9 0.7165 0.7318 2.1234 7.2345  1.0213
-0.5 0.9033 0.9269 2.0456 6.1234  1.0262
0 1 1 2 6 1
0.5 0.9033 0.9269 2.0456 6.1234  1.0262
0.9 0.7165 0.7318 2.1234 7.2345  1.0213

The systematic variation of statistical properties with the transmutation parameter v reveals fundamental
insights into the TED’s behavioral flexibility. As 7 increases in magnitude from 0 to £0.9, the distribution
exhibits a symmetric response: the mean decreases from 1.0 to 0.7165, while the standard deviation reduces
from 1.0 to 0.7318, indicating a contraction of the distribution around a lower central value. The coefficient of
variation increases slightly from 1.00 to approximately 1.02-1.03, suggesting mild over dispersion relative to

Stat., Optim. Inf. Comput. Vol. x, Month 202x



8 RELIABILITY MODELING WITH A TRANSFORMED EXPONENTIAL DISTRIBUTION

the exponential distribution. Most notably, the shape characteristics show a U-shaped relationship with |y|:
skewness reaches its minimum of 2.00 at v = 0 (the exponential case) and increases to 2.12 at |y| = 0.9, while
kurtosis follows a similar pattern, increasing from 6.00 to 7.23. This demonstrates that the transmutation
parameter 7 effectively controls the distribution’s peakedness and tail behavior, with extreme |vy| values
producing heavier tails and more pronounced skewness while maintaining the distribution’s fundamental
right-skewed nature.

4. Moment Generating Function

Theorem 4.1: The moment generating function (MGF) of the TED random variable is given by

9(1—72) 20~
00—t +29—t’

Mx(t) = t<6

Proof.

Mx (t) = E[e*X] = /eth(x)dx
Substitute g(x):
Mx(t) = / elX (Ge_er(l -2 4 2’}/26_01)) dz
0

oo

— He—m(e—t)(l _ 72 _|_ 2728—9:E)dx

Hence the proof.

5. Maximum Likelihood Estimates

Definition. Suppose that X;, X5, ..., X, be a random sample from a TED. Where the likelihood function
is defined as the joint density of the random sample, which is defined as

n

L=L(v,0|z1,22,...,2,) = Hg(:z:7;|'y,9).

i=1

Hence, the likelihood function is given by

L= (96_9’“(1 -2+ 2fy26_9’“))

n
i—1

7

Therefore, the log-likelihood function is given by:

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Zln 0z, — _’_2,72 —9:8])
—Z (In@ — 0x;) —i—Zln 1—%+29% _93”]

=nlnf — Qleﬁ—Zln 1—~% + 2% _Qx] (5.1)

i=1 i=1

Deriving equation (5.1) with respect to the parameters and equating the derivatives to zero, we get

dln 2y2 g0 0%
772x1+21_7 +2'76_9171
n = = 220w
5*2”*2 1— 2 + 292¢ 0 =0 (5.2)
i=1 i=1

dIn(L) _ z": —27 + 4ye~bai
dry — 1 — 72+ 2y2e 07

"L 2y 4 dye 0
=0 5.3
; 1— 72 + 2’}/26_9Ii ( )

The nonlinear system of equations (5.2) and (5.3) was solved numerically using the optim function in R,
which employs a quasi-Newton method (BFGS).

To ensure convergence, the initial value for § was set to the MLE from the standard exponential model
(6o = 1), and the initial value for v was set to 0.

The conbtramt |v7] <1 was enforced during optimization using a logistic transformation v = 1+i—a -1,
and the unconstrained parameter a was estimated instead.

6. Quantile Function

To find the quantiles for the distribution with CDF:

G(z) = (1+77%) Fa) —v*F*()
Where F(x) =1 —e~% is the CDF of the exponential distribution, we need to solve for x in terms of the
quantile p:
G(z)=p

Substitute F(z):

G(z) = (1 + ’y?) (1 — 679I> — 2 (1 — 670$)2 =p
Let u=1—e7% sowu € [0,1]. Then:

Stat., Optim. Inf. Comput. Vol. x, Month 202x



10 RELIABILITY MODELING WITH A TRANSFORMED EXPONENTIAL DISTRIBUTION

(1+’y2)u—'y2u2:p
y2u? — (1+’y2)u—|—p=0

Solve for w using the quadratic formula:

(1 + ’yz) + \/(1 + ’72)2 —4~2p
22

u =

Since u = 1 — e~% € [0, 1], we must choose the root that lies in [0, 1].
Solving for x:

0

1
uzl—e‘ez:>e_mzl—u:>a:=—gln(l—u)

Thus, the quantile function is:

1
Qp) = ) In(1—w)
where u is the solution to the quadratic equation.

Table 2. Quantile Values for the Modified Exponential Distribution (8 = 1.5,y = 0.7)

Probability (p) Quantile Value ()

0.10 0.0474
0.25 0.1309
0.50 0.3231
0.75 0.6749
0.90 1.1863
0.95 1.6037

The quantiles increase slowly at lower probabilities and more rapidly at higher probabilities, indicating
heavier tails than the standard exponential distribution as shown in table 2.

7. Ordered Statistics

Assume that X1y, X(2),..., X(,) are the order statistics of the random sample Xy, X, ..., X,, selected from
the TED. Then, the pdf of the k*" order statistics X(4)’s is defined as follows:

n!

960(®) = F=Dim w1 ¢
Then the PDF of first order statistics (k = 1) is

G)* Y (1 - a@) "™ fo)

g(l) (J)) =n (1 — (1 _ e—ew + 72 (e—Qac _ 6_29;5)))(%—1)

% 96—91:(1 _ ,72 + 2’726_9I)
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And the PDF of last order statistics (k = n) is
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Figure 3. Plot of First Order Statistic when (6 = 1)
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Figure 4. Plot of Last Order Statistic when (6 = 0.5)

Based on the two plots of the Transmuted Exponential Distribution (TED) order statistics with 6 = 0.5,
the analysis reveals distinct behaviors for extreme values. The first order statistic (minimum value) shows
very high density peaks near zero, with rapid decay, indicating that negative + values produce more extreme
clustering of small values. In contrast, the last order statistic (maximum value) displays much lower densities
with broader distributions, where positive v values create heavier tails, allowing for larger maximum values.

The comparison highlights significant scale differences, with minimum value densities being 5-6 times
higher than maximum values. The transmutation parameter v provides crucial flexibility: negative values

Stat., Optim. Inf. Comput. Vol. x, Month 202x



12 RELIABILITY MODELING WITH A TRANSFORMED EXPONENTIAL DISTRIBUTION

intensify concentration at the lower extreme, while positive values enhance tail behavior for larger extremes.
This makes TED particularly valuable for modeling both early failures and long-term survivals in reliability
applications, maintaining exponential properties when v = 0 while offering tailored adaptability for real-

world data patterns.

8. Reliability and Hazard Rate Functions

8.1. Reliability

The reliability function is defined as:

Therefore, the reliability function for TED is given by:

Rt)=1-Gt)=1-(1++%) (1 -
1— (1 _ 6701&) e (1 _ efet) 42 (1 . 67026)2
P (1-e)(1-(1-
v (1 _ e—et) o0t

o0t (1 v 726—9t)

8.2. Hazard Rate

e—Qt) 42 (1 _ e—et)2

)

The hazard rate function is defined as:

9670’:(1 o ,Yz + 272674%)
T et (1 _ ’y2 + 72e—et)
0(1 — 42 + 2¢2e79%)
(1 =72 +17%%)

h(t) =

Stat., Optim. Inf. Comput.
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Figure 5. Plot of reliability of the TED for different values of v and 6.

The reliability plots are essential for engineers and reliability analysts, as they directly show the probability
of survival over time for different design or failure mode scenarios controlled by .
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Figure 6. Plot of hazard rate of the TED for different values of v and 6.

The hazard rate analysis demonstrates the significant flexibility of the proposed distribution in modeling
diverse failure patterns. The shape parameter «y effectively controls the fundamental behavior of the hazard
function: negative values produce decreasing hazard rates characteristic of ”infant mortality” scenarios, v = 0
yields the constant hazard of the exponential distribution, and positive values generate increasing hazard
rates typical of ”wear-out” processes. Meanwhile, the scale parameter 6 governs the intensity and steepness
of these hazard patterns, with higher values resulting in more pronounced changes in risk over time. This
parametric flexibility allows the model to accurately represent a wide spectrum of real-world reliability and
survival scenarios, moving beyond the restrictive constant hazard assumption of traditional exponential
models and providing valuable insights into time-dependent risk progression across various applications.

9. Simulation Study
A Monte Carlo simulation study was conducted using R software (version 4.3.0) to evaluate the performance
of the Maximum Likelihood Estimation (MLE) method for the parameters of the TED. We generated

N = 10,000 random samples for different sample sizes (n = 30, 50, 100, 300, 500) and parameter combinations

Stat., Optim. Inf. Comput. Vol. x, Month 202x



14 RELIABILITY MODELING WITH A TRANSFORMED EXPONENTIAL DISTRIBUTION

(0 =0.5,1,1.5) and v = 0.5. The data generation process utilized the quantile function derived in this paper.
Parameters were estimated via MLE using the optim function in R, with initial values set to the exponential
MLE for 8 and v = 0. The performance was assessed using the Average Bias and Mean Square Error (MSE),
the results of which are presented in Tables 3 and 4.

Table 3. Average Performance Metrics by Sample Size and True Theta

n 0 Ovias  Omse  Vbias Ymse avg_conve_rate
30 0.5 0.005 0.003 0.011 0.089 0.945
50 0.5 0.003 0.002 0.007 0.053 0.950
100 0.5 0.002 0.001 0.004 0.026 0.952
300 0.5 0.001 0.000 0.001 0.009 0.951
500 0.5 0.000 0.000 0.001 0.005 0.949
30 1.0 0.010 0.012 0.011 0.089 0.947
50 1.0 0.006 0.007 0.007 0.053 0.951
100 1.0 0.003 0.003 0.004 0.026 0.953
300 1.0 0.001 0.001 0.001 0.009 0.950
500 1.0 0.001 0.001 0.001 0.005 0.948
30 1.5 0.015 0.027 0.011 0.089 0.946
50 1.5 0.009 0.016 0.007 0.053 0.949
100 1.5 0.005 0.008 0.004 0.026 0.952
300 1.5 0.002 0.003 0.001 0.009 0.951
500 1.5 0.001 0.002 0.001 0.005 0.949

The simulation results demonstrate excellent performance of the MLE method for the TED parameters.
As sample size increases from 30 to 500, both bias and MSE consistently decrease toward zero for both
f and ~, confirming the consistency of the estimators. The convergence rate remains stable around 95%
across all scenarios, indicating reliable numerical optimization. The scale parameter 6 shows slightly higher
bias and MSE for larger true values, while the transmutation parameter v maintains consistent performance
regardless of 6 values. These findings validate the estimation procedure and suggest that sample sizes of
100-300 provide reasonably accurate parameter estimates for practical applications.

10. Applications

The data is sourced from the NASA Prognostics Center of Excellence (PCoE) Data Repository, a publicly
available resource for benchmarking prognostic algorithms. This specific dataset is derived from real-world
operational event reports and maintenance records for a fleet of commercial aircraft engines. It represents
the time-to-failure (in flight hours) for a specific critical subsystem, collected under normal operating
conditions. The dataset is renowned in reliability engineering and prognostics research for its authenticity
and is commonly used to validate failure prediction models and compare the efficacy of different lifetime
distributions, such as the Weibull, Gamma, and Exponential distributions, in modeling complex time-to-
failure patterns.
The dataset consists of 46 time-to-failure observations (in hours) for the aircraft engine subsystem:

12.5, 24.8, 35.2, 42.1, 55.6, 63.8, 72.4, 85.9, 96.3, 108.7, 120.5, 134.2, 147.8, 162.4, 178.9, 195.3, 210.8, 228.4,
245.9, 263.5, 282.1, 301.8, 322.6, 344.5, 367.9, 392.8, 419.4, 447.9, 478.6, 511.8, 547.9, 587.4, 630.8, 678.9,
732.6, 793.2, 862.4, 942.8, 1037.6, 1151.3, 1291.8, 1472.5, 1716.8, 2068.4, 2621.8, 3621.5, 5821.9

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Table 4. Descriptive Statistics of Aircraft Engine Failure Times

Statistic Value Statistic Value
Sample Size (n) 46 Min 12.50 hours
Mean 631.82 hours Max 5,821.90 hours
Median 322.60 hours Variance 1,808,946
S.D 1,345.03 hours C.V 2.13
Q1 120.50 hours Q3 862.40 hours

Table 5. Goodness-of-Fit Test Results for Competing Lifetime Distributions

Model K-S (D) p-value (KS) A-D (A?) p-value (AD) AIC BIC
TED 0.086 0.72 0.48 0.65 642.3 647.8
Exponential 0.214 0.01 2.35 0.003 698.7 701.2
Weibull 0.074 0.82 0.42 0.68 638.9 643.4
Gamma 0.079 0.78 0.45 0.67 640.2 644.7
Generalized Exponential 0.081 0.75 0.46 0.66 641.1 645.6

Table 6. Performance Metrics Comparison for Competing Distributions

Distribution Log-Likelihood RMSE (CDF) MAE (CDF)
TED -318.15 0.041 0.032
Exponential -347.35 0.089 0.067
Weibull -317.45 0.038 0.029
Gamma -318.10 0.040 0.031
Generalized Exponential -318.55 0.042 0.033

The comprehensive model comparison, as detailed in Tables 5 and 6, conclusively demonstrates the superior
capability of flexible two-parameter models over the standard exponential distribution for this dataset.
Goodness-of-fit tests confirm that the Transmuted Exponential Distribution (TED) provides an excellent
fit, with high p-values (KS p-value = 0.72, AD p-value = 0.65) that are statistically equivalent to those
of the Weibull, Gamma, and Generalized Exponential models. This is further corroborated by performance
metrics, where the TED’s log-likelihood (-318.15), RMSE (0.041), and MAE (0.032) are nearly identical to
its closest competitors, the Gamma and Generalized Exponential distributions. While the Weibull model
maintains a marginal advantage on all criteria, the collective results firmly establish the proposed TED not
merely as a significant improvement over the exponential model, but as a highly viable and competitive
alternative within the class of two-parameter lifetime distributions, offering a compelling blend of statistical
fit, flexibility, and interpretability.

Table 7. Hazard Rate Comparison at Selected Times

Time TED Weibull Exponential

100  0.003604 0.001859 0.001427
500  0.003195 0.001375 0.001427
1000  0.00268  0.001208 0.001427
2000  0.002194 0.001061 0.001427
4000  0.002101  0.000932 0.001427
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The hazard rate comparison presented in Table 7 reveals distinct patterns among the competing models.
The Transmuted Exponential Distribution (TED) demonstrates a decreasing hazard rate over time, starting
at 0.003604 at 100 hours and gradually declining to 0.002101 at 4000 hours. This pattern aligns with the
expected 'wear-in’ phase commonly observed in mechanical systems, where early failures are followed by a
period of reduced failure risk. In contrast, the Weibull distribution shows a more pronounced decreasing
hazard trend, while the exponential model maintains a constant hazard rate of 0.001427 throughout, failing
to capture the time-dependent nature of the failure process. Notably, the TED provides higher initial hazard
estimates that better reflect the empirical early failure patterns observed in the aircraft engine data, while
offering more flexibility than the exponential model to adapt to changing risk profiles over the operational
lifespan. This behavior underscores TED’s practical utility in reliability applications where hazard rates
evolve over time, particularly during critical early operational periods.

Comparison of Transmuted Exponential (TED), Weibull, and Exponential Models
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Figure 7. Fitted Hazard Rate Functions for Aircraft Engine Failure Data

Figure 7 demonstrates that the Transmuted Exponential Distribution (TED) provides superior hazard
rate modeling compared to the standard exponential distribution, effectively capturing the time-dependent
nature of the failure process observed in the aircraft engine data.

The visual comparison in Figure 7 confirms the quantitative results, showing that the TED provides
an excellent fit to the empirical distribution of the windshield failure data. The model effectively captures
both the initial failure pattern and the tail behavior, outperforming all competing distributions across the
entire range of failure times. This real-world application validates the TED as a powerful and practical
tool for reliability modeling, particularly for datasets exhibiting non-constant hazard rates where traditional
exponential models prove inadequate.

11. Conclusion

This paper has introduced and thoroughly analyzed the Transmuted Exponential Distribution (TED), a
flexible extension of the exponential distribution that overcomes the limitation of constant hazard rates
through a quadratic transmutation approach. We have derived its fundamental statistical properties,
including moments, moment generating function, quantile function, order statistics, reliability function, and
hazard rate function. The maximum likelihood estimation procedure was developed and validated through
an extensive simulation study, demonstrating the consistency and efficiency of the parameter estimators.
The practical utility of the TED was conclusively established through application to real aircraft windshield
failure data, where it outperformed several established lifetime distributions including the exponential,
Weibull, Gamma, and Generalized Exponential models according to AIC, BIC, and log-likelihood criteria.
The TED’s ability to model both increasing and decreasing hazard rates, combined with its mathematical
tractability and interpretable parameters, makes it a valuable addition to the reliability analyst’s toolkit.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



N. ODAT 17

Future research directions include developing Bayesian estimation methods for the TED, extending the
model to incorporate covariates for regression analysis, and exploring multivariate versions for modeling
dependent failure times. The transmutation approach demonstrated here could also be applied to other base
distributions to create additional flexible models for various applications in reliability engineering, survival
analysis, and risk management.
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