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Abstract In the high-stakes domain of financial lending, the precision of credit risk models is often compromised by poorly
calibrated probability estimates, particularly within imbalanced data environments. While traditional ensemble methods like
boosting and bagging offer high discriminative power, their collective reliability in risk calibration remains an open challenge.
This research shifts the focus toward a multi-level Meta-Learning architecture, synthesizing the strengths of heterogeneous
algorithms: XGBoost, Random Forest, Extra Trees, k-NN, and Logistic Regression. The core innovation of our work lies
in the Dynamic Feature Augmentation (DAF) mechanism, which we designed to formally encode model disagreement and
epistemic uncertainty into the meta-learner’s decision process. To ensure structural integrity and eliminate data leakage, we
enforced a 5-fold Stratified Out-of-Fold (OOF) training protocol. Empirical evaluations on real-world credit datasets reveal
that our DAF-Stacking framework consistently exceeds the performance of standalone learners. Notably, the architecture
achieved a superior AUC of 0.8801 and significantly mitigated the LogLoss to 0.3055, outperforming the strongest baseline,
XGBoost (Logloss 0.3122). This reduction underscores a tangible improvement in probability calibration. Furthermore,
McNemar'’s statistical tests confirm that the error reduction relative to Random Forest and Extra Trees is highly significant
(p < 0.001), establishing our DAF-augmented Stacking as a robust and mathematically grounded solution for modern credit
risk assessment.
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1. Introduction

As the primary engines of global economic liquidity, banking institutions rely heavily on credit facilities to stimulate
growth and sustain interest-driven revenue streams [1]. Yet, this financial intermediation is inextricably linked to
default risk a latent threat that remains notoriously difficult to neutralize despite sophisticated risk management
protocols [2]. Within today’s volatile economic landscape, the imperative for financial stability has elevated credit
risk assessment from a standard operational requirement to a critical strategic necessity for portfolio preservation
[3].

While traditional scoring mechanisms provided a foundation for decades, they frequently fail to decipher the
intricate, non-linear patterns inherent in modern borrower behavior. This gap has catalyzed a sector-wide transition
toward machine learning. Although specialized algorithms such as Random Forest and XGBoost have delivered
substantial improvements over conventional logistic regression [4, 5], they are not silver bullets; their performance
often fluctuates due to inherent inductive biases relative to specific dataset geometries. Recent scholarly efforts,
particularly those exploring solvability scoring [13] and market-specific default dynamics [12], underscore an
urgent demand for frameworks that do not merely predict, but generalize robustly across heterogeneous financial
environments.
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The central hypothesis of this study is that a hybrid ensemble learning model can leverage the diverse strengths
of multiple algorithms to outperform standalone estimators. Building upon the foundational theories of stacked
generalization [9], we propose a stacking architecture that integrates five heterogeneous base learners: XGBoost,
Extra Trees, Random Forest, and k-NN. These are coordinated by a Meta-XGBoost learner, specifically optimized
with L; and L, regularization to handle the augmented feature space created by our Dynamic Feature Augmentation
(DAF) operator.

By mapping inter-model consensus and divergence into the meta-feature space addressing issues often overlooked
in basic stacked generalization [11] this study provides a more calibrated decision manifold. This approach aligns
with the need for more transparent and optimized financial decision-making currently sought in the field [16].

The remainder of this paper is organized as follows: Section 2 reviews the theoretical background. Section 3
describes the proposed methodology, including the DAF operator. Section 4 presents the empirical results and
discussion, and Section 5 concludes the work.

2. Literature Review

The assessment of credit risk remains a fundamental challenge for financial stability, especially in the wake of
global financial shifts that have prompted a reevaluation of traditional forecasting methods. Recent literature has
increasingly focused on the application of advanced machine learning (ML) and artificial intelligence (Al) to
enhance the predictive accuracy of credit scoring models.

Regional studies published in this journal provide critical insights into the performance of supervised learning
models. For instance, Faris and Elhachloufi [6] conducted a comprehensive study on the Moroccan credit market,
evaluating six supervised models including Logistic Regression, Random Forest (RF), and SVM. Their findings
highlight the superiority of Random Forest in handling class imbalance and its strong discriminative power in local
financial contexts. This is echoed by the work of Seliem et al. [7], who investigated credit risk prediction with a
focus on feature selection. By applying the Boruta algorithm, they demonstrated that optimizing the feature space
significantly enhances the accuracy of ensemble methods like Random Forest, which achieved up to 80% accuracy
in their experiments.

Beyond traditional classification paradigms, recent literature has explored innovative geometric and partitioning
methodologies to refine risk assessment. A notable example is the work of Hjouji et al. [8], who introduced a novel
approach termed the "Method of Separating the Learning Set into Two Balls.” By partitioning customers based on
feature vector proximity, this technique offers a fresh perspective on class separation; however, it also highlights the
inherent difficulty in classifying borrowers located at the fuzzy decision boundaries.

To bridge these diverse predictive signals, the mathematical framework of stacked generalization—initially
proposed by Wolpert [9] and further refined by Breiman [10] and Ting and Witten [11] provides a rigorous
foundation for meta-learning. Historical benchmarks established by Chopra et al. [3] and Ayobami et al. [12] have
consistently demonstrated that such ensemble architectures tend to outperform standalone decision trees or neural
networks [5]. Nevertheless, as emphasized in recent banking literature [13, 14], the persistent challenge in credit
scoring is not merely the choice of models, but their optimal integration to minimize epistemic uncertainty and
improve predictive calibration.

Our research bridges the gap between the ensemble superiority noted by Faris [6] and Seliem [7] and the need for
more dynamic separation techniques similar to the "Two Balls” method [8]. By introducing the Dynamic Feature
Augmentation (DAF) operator within a Stacking framework, we move beyond static feature selection to a dynamic
quantification of model consensus, thereby refining the decision manifold for high-stakes credit prediction.

3. Theoretical Background

To provide a rigorous mathematical foundation for XGBoost, we first outline the principles of gradient descent
applied to decision tree ensembles. Here is a detailed explanation:
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2 STACKING OF ENSEMBLE AND BOOSTING METHODS FOR CREDIT RISK PREDICTION

3.1. Gradient Descent:
Gradient descent is an optimization method used to minimize a cost function. The idea is to adjust the model’s

parameters to reduce the error (the difference between the model’s predictions and the actual values).

General Formulation: Let L(y, §) be the loss function we want to minimize, where y is the actual value and § is
the prediction. Gradient descent updates the model parameters # according to the following rule:

0«0 —nVoL(y,7)

where 7 is the learning rate, and Vy L(y, §) is the gradient of the loss function with respect to the parameters.

3.2. Gradient Boosting:
Gradient Boosting is a method that builds an ensemble model of decision trees sequentially, with each tree correcting

the errors made by the previous trees.

It starts with a simple model F(z), often chosen as the mean of the target values in the case of regression and as
log-odds of the proportions of the classes for binary classification.

Fo(@) = log(1),  or Fy() = argmin, S, L(y;,7)
where z represents the features of the data set, p is the proportion of the positive class and + is the value that

minimizes the sum of the loss function.

Iteration: At each step m, a new tree h,, () is fitted to the residuals (errors) of the previous model. The residuals
are the negative gradients of the loss function.

OL(yi, F(z:))

Tim = — [ OF (x;) ]F(m):Fm,l(m)

The model is then updated:
Fr(z) = Frm1(2) + nhin ()

where 7 is a learning rate (regularization factor) that controls the contribution of each new tree and helps prevent
overfitting

3.3. XGBoost

XGBoost is an advanced implementation of Gradient Boosting that introduces several improvements, including
regularization, handling missing values, and parallelization.

it is a supervised machine training method for classification and regression. XGBoost stands for extreme gradient
boosting.

3.3.1. Mathematical Formulation: Consider a loss function L(y;, §;) to minimize.

The model at the t-th iteration is updated by adding a new decision tree f; to the previous prediction g}i(t*l) :

ZJIO) = Ql(t_l) + fe(x;)

XGBoost minimizes the regularized objective:
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LO = Lya, i) + Yy Q(F)

where (f) is a regularization term to control the model’s complexity:
Q(f) =T + 3Allwl

where T is the number of leaves in the tree, w are the weights of the leaves, and + and A are regularization
hyperparameters that penalize model complexity.

3.3.2. Gradient Approximation: For each tree, XGBoost adjusts the leaf weights using a second-order approximation
of the loss function (Taylor expansion). The gain of a split in the tree is based on:

G= Zieleaf 9i H = Zieleaf hZ

where g; and h; are the first and second derivatives (gradients) of the loss function, respectively.
The gain of a split is then given by:

in—1[_G1 GL_ _ (GL+Gr)®
Gain = 3 [HL+A T HL X T HotHaix|

where G, Gr and H, Hg are the sums of the gradients and hessians for the two subsets formed by the split.

XGBoost represents an important advance in analyzing structured data, achieving a harmonious equilibrium
among efficiency, precision, and flexibility. Its architecture, built upon sophisticated regularization through the
and X parameters, prevents overfitting by constraining the complexity of decision trees, while also intelligently
managing missing data via automatic exploration of diverse branches.

The approach is grounded in mathematics, utilizing iterative minimization of a regularized cost function via
gradient descent, alongside the development of decision trees, making it a powerful tool for predictive modeling

3.4. Random Forest

Random Forest is one of the most widely used supervised learning algorithms. It can be used for both regression and
classification. RF makes a number of decision trees at training time and then votes them to maximize accuracy and
avoid overfitting. The core principle behind Random Forest is to create a ‘forest’ of decision trees, each trained on a
random subset of the data and features.

This random behavior helps make the model more robust and makes it more resistant to overfitting. During the
training process, each tree is built using a different bootstrap sample from the original dataset. At each node of
the tree, a random subset of features is considered for splitting, which guarantees diversity among the trees. For
classification tasks, the resulting prediction comes from majority voting among all the trees, while for regression
tasks, the result is obtained by averaging the outputs of all trees.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



4 STACKING OF ENSEMBLE AND BOOSTING METHODS FOR CREDIT RISK PREDICTION

Dataset

1st Decision Tree 2nd Decision Tree Nth Decision Tree
¥ ¥ ¥
1st Result 2nd Result Nth Result

Y
S [ Averaging -- Majority Voting l R E—

Figure 1. Random Forest Simplified

Robustness is one of the main strengths of Random Forest. By averaging the predictions of numerous trees, it
avoids overfitting and improves generalization. Moreover, Random Forest provides feedback on feature importance,
which can be very helpful in feature selection. It can even handle missing values, without loss of precision even
when a large percentage of data are missing.

3.5. Performance Metrics and Statistical Validation

To ensure a comprehensive evaluation of the credit scoring models, we utilize a multi-faceted set of metrics. Beyond
traditional classification accuracy, we focus on probabilistic calibration and statistical significance to address the
requirements of high-stakes financial decision-making.

Area Under the ROC Curve (AUC) and Partial AUC (pAUC)
The AUC measures the model’s ability to discriminate between good and bad payers across all thresholds. However,
in credit risk, the performance at low False Positive Rates (FPR) is often more critical. Thus, we introduce the
Partial AUC (pAUC), calculated at a threshold of F’PR < 0.1. It focuses on the area under the ROC curve within a
specific range:

€0
PAUC(eq) = / TPR(f)df (1)
0
where eg = 0.1 represents the maximum acceptable rate of false alarms.

Logarithmic Loss (LogLoss)
While Accuracy only considers the final class, LogLoss penalizes false classifications based on the confidence of
the prediction. It is a more sensitive metric for model calibration:

1 n
LogLoss = — ;[yz In(p;) + (1 —y;) In(1 — p;)] @)

where p; is the predicted probability of the positive class. A lower LogLoss indicates a better-calibrated model.
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Accuracy and F1-Score
Accuracy remains a baseline metric, but given the class imbalance, the F1-Score is prioritized as it provides the
harmonic mean of Precision and Recall:

Precision - Recall
F,=2. 3
! Precision + Recall 3)

Statistical Significance Tests
To rigorously compare the Stacking ensemble with base learners, we employ two statistical tests:

e McNemar’s Test: A non-parametric test used on paired nominal data to determine if there is a statistically
significant difference in the error rates of two classifiers.

* Bootstrap AUC Test: We utilize bootstrap resampling (1,000 iterations) to calculate the 95% Confidence
Intervals (CI) for the AUC and determine the p-value of the difference between the Stacking model and

individual classifiers.

4. Methodology and Experimental Setup

4.1. Data Description

In this work, we utilized a real dataset from a banking institution that has observed a significant increase in credit
risk. In any industry, the nature of data is constantly changing, requiring regular updates to risk management
systems. The present research develops a multi-stage analytical framework, initiated by a rigorous statistical
characterization of the feature space and culminating in the design of a high-dimensional stacking architecture. The
primary dataset comprises n ~ 20, 000 observations characterized by d = 47 heterogeneous attributes, providing a
granular representation of credit-related risk factors. This table summarizes the variables included in the dataset,

indicating their type, a brief description, and the proportion of unavailable data. The high rate of missing data for
co-applicant variables highlights that the majority of applications involve only a single applicant, as evidenced by
the feature “coapp”.

Table 1. Description of Variables in the Dataset

Variable name Type Description Missing %
nb_enf Numerical Number of children of the applicant. 0.0
situfam Categorical | Family situation of the applicant. 0.2
telfixe Categorical Landline phone presence for the applicant. 0.1
telport Categorical | Mobile phone presence for the applicant. 0.1
typlog Categorical Type of housing of the applicant (owner, renter, etc). 0.5
typhab Categorical Type of residence of the applicant. 0.5
coapp Binary (0/1) | Presence of co-applicant. 0.0
sexe_app Categorical Gender of the applicant. 0.1
age_app Numerical Age of the applicant. 0.0
sex_coapp Categorical Gender of the co-applicant. 95.0
age_coapp Numerical Age of the co-applicant. 95.0
anc_banque_app Numerical Seniority with the bank for the applicant. 1.3
anc_banque_coapp | Numerical Seniority with the bank for the co-applicant. 95.0
anc_emploi_app Numerical Employment seniority of the applicant. 27.8
catprof_app Categorical | Professional category of the applicant. 0.3
type-contrat_app Categorical Type of employment contract. 0.3
secteur_app Categorical | Employment sector of the applicant. 0.3
regime_app Categorical Social security/employment regime. 0.3
anc_emploi_coapp Numerical Employment seniority of the co-applicant. 95.0
catprof_coapp Categorical Professional category of the co-applicant. 95.0
type_contrat_coapp | Categorical Type of employment contract (co-app). 95.0
secteur_coapp Categorical | Employment sector (co-app). 95.0
regime_coapp Categorical Social security regime (co-app). 95.0
Salaire Numerical Monthly salary of the applicant. 2.1
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Variable name Type Description Missing %
Alloc Numerical Monthly allowances received. 15.4
Pension Numerical Pension income of the applicant. 2.0
Autre_rev Numerical Other sources of income. 6.8
Rev_locatif Numerical Rental income received. 8.3
PA _percue Numerical Received monthly payments. 3.7
Rentes Numerical Annuities received by the applicant. 6.0
Pension_inv Numerical Pension or investment returns. 4.2
PA _payer Numerical Monthly payments to be made. 0.5
Loyer Numerical Rent to be paid by the applicant. 2.3
Pret_immo Numerical Mortgage payments by the applicant. 0.7
Autres_credits Numerical Other loan payments. 0.6
Cession Numerical Wage garnishments or assignments. 1.1
Pret_voit Numerical Car loan payments. 0.9
nbtel Numerical Number of phone numbers available. 0.0
canal Categorical | Communication channel. 0.1
tel_perso Binary (0/1) | Personal telephone available. 0.0
tel_prof Binary (0/1) | Professional telephone available. 0.0
gsm_perso Binary (0/1) | Personal mobile phone available. 0.0
gsm_prof Binary (0/1) | Professional mobile phone available. 0.0
cible Categorical | Target: client credit profile (good/bad). 0.0
montant_dem Numerical Amount of credit requested. 0.01
date_acc Categorical | Date of credit acceptance. 0.0
date_adr Categorical Date of last address update. 0.0

The dataset utilized in this study integrates multi-dimensional information pertaining to the primary applicant
and, where applicable, the co-applicant. The features are categorized into numerical, categorical, and binary types,
spanning demographic, socio-professional, financial, and behavioral domains. The target variable, cible, defines the
credit profile as a binary outcome (good vs. bad payer).

Demographic attributes provide a profile of the household structure, including variables such as the number
of dependents, marital status, gender, and age. Socio-professional features capture the economic stability of the
applicants, encompassing professional categories, contract types (e.g., permanent vs. temporary), industry sectors,
and employment seniority. Financial features offer a granular view of the applicants’ solvency, recording diverse
income streams (salaries, allowances, rental income) alongside existing debt obligations (mortgages, car loans, and
other outstanding credits).

Furthermore, contact and temporal features account for applicant accessibility and residential stability, providing
proxy indicators for behavioral reliability. This comprehensive feature set allows the model to evaluate both the
capacity to pay and the historical propensity for financial commitment.

Table 2. Descriptive Statistics of Numerical Features

Variable Count Mean Median Std Min Max
nb_enf 19,670 0.6427 0.000 | 0.9701 0.00 10.000
age_app 19,670 47.667 48.000 11.746 18.00 71.000
age_coapp 2,158 47.831 48.000 12.272 18.00 71.000
anc_banque_app 19,640 6.173 6.000 4.550 0.00 49.000
anc_banque_coapp 763 74.599 68.000 | 59.382 1.00 369.000
anc_emploi_app 14,202 92.937 62.000 | 93.928 0.00 540.000
anc_emploi_coapp 978 73.541 42.000 86.498 0.00 526.000
Salaire 19,670 688.461 723.205 | 531.672 0.00 | 6,048.150
Alloc 19,670 64.940 0.000 | 136.905 0.00 1,588.040
Pension 19,670 256.021 0.000 | 409.601 0.00 | 4,579.750
Autre_rev 19,670 33.747 0.000 | 146.276 0.00 | 4,000.000
Rev_locatif 19,670 0.100 0.000 6.026 0.00 500.000
PA _percue 19,670 2.596 0.000 | 29.008 0.00 1,500.000
Rentes 19,670 17.303 0.000 | 232.043 0.00 | 15,616.598
Pension_inv 19,670 3.221 0.000 | 34.047 0.00 1,180.070
PA _payer 19,670 -0.446 0.000 10.534 -500.00 0.000
Loyer 19,670 -10.571 0.000 | 41.269 -700.00 0.000
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Variable Count Mean Median Std Min Max
Pret_immo 19,670 51111 0.000 | 121.708 | -1,466.94 0.000
Autres_credits 19,670 -131.849 -99.225 | 159.208 | -2,500.00 0.000
Cession 19,670 -1.822 0.000 21.822 | -1,165.92 0.000
Pret_voit 19,670 -9.799 0.000 51.926 -881.42 0.000
nbtel 19,667 1.455 1.000 0.612 1.00 7.000
montant_dem 19,463 | 2,172.121 | 2,000.000 | 921.193 0.00 5,000.000

The age_app variable, with 19,670 observations and no missing values, has a mean of approximately 47.7 years
and a median of 48, indicating a relatively symmetric distribution with moderate variability (standard deviation:
11.75). The nb_enf variable shows a mean of 0.64 and a median of 0, reflecting that most applicants have no children.

Financial variables, such as Salaire, display substantial dispersion (standard deviation: 531.67) with values
ranging from 0 to 6,048, while medians are close to the mean, suggesting moderate skewness. Other financial
obligations, including Pret_immo and Autres_credits, exhibit negative values representing outflows, with medians
at zero, highlighting that many applicants have no such obligations.

The montant_dem variable, representing the requested credit amount, has a mean of 2,172 and a median of
2,000. Its minimum value is 0, but only four observations were affected, likely due to data entry errors; these were
subsequently removed. Communication-related variables, such as nbtel, have a mean of 1.46 and a median of 1,
showing that most applicants provide at least one contact number. Co-applicant variables have high proportions of
missing values, reflecting that the majority of applications involve a single applicant.

The target variable cible represents the credit repayment status and exhibits a pronounced class imbalance, with
16,122 “good payers” (1) and 3, 548 “bad payers” (0). This distribution reflects a common characteristic of real-
world credit datasets, where the majority of applicants successfully meet their financial obligations. Such imbalance
must be explicitly considered during model development and evaluation to ensure robust and unbiased predictive
performance. To address this issue, the Synthetic Minority Over-sampling Technique (SMOTE) is employed; details
of its integration are provided in the proposed DAF-Stacking pipeline.
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Figure 2. target distribution

Categorical variables highlight the main socio-demographic and professional characteristics of the applicants.
Most applicants are married, live in a house, and are property owners, while mobile phone ownership is nearly
universal and landline access is moderate. Professionally, the majority are employed under permanent contracts
in the private sector, with retirees forming a substantial minority. Co-applicant variables show high proportions
of missing data. Preferred communication channels are mainly notoriety campaigns, press, and television. These
distributions provide an overview of applicant profiles, emphasizing common household, professional, and contact
characteristics.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



Count

STACKING OF ENSEMBLE AND BOOSTING METHODS FOR CREDIT RISK PREDICTION

Distribution of situfam

Distribution of telfixe

Distribution of telport

10000
8000
8000
6000
# £ 6000
3 3
S 4000 ©
4000
2000 2000
0 o .
o o
Distribution of typlog Distribution of typhab Distribution of sexe_app
10000 14000
12000
12000
8000 10000
10000
. 6000 L w00 . 8000
8 8 g e000
S S 6000 S
4000
4000 4000
2000 2000 2000
0 o 4
X o o o
& o e i e
« S
& e IS E
<
o
of sex_coapp of catprof_app Distribution of type_contrat_app
14000
1000 12000
800 10000
= 8000
600 g
© 6000
400
4000
200 2000
0 4
W < & & 3 & o o © » o ©
@ 3o " «f @ A €
@ P o« o < K R
s < e e
o o
of secteur_app of regime_app Distribution of catprof_coapp
10000 14000 1000
8000 12000 800
10000
6000 £ s000 L. G500
é E
4000 6000 400
4000
2000 200
2000
0 o o
& . o o i o & o & & & 5 N <
S i o o o S & o i s 3 & & o
& o€ 9 Ea o A <@ o e & )
R o“c& vﬁeﬁ 6@gv° B R o o dy*a o«
x© « «
B
of type_contrat_coapp Distribution of secteur_coapp Distribution of regime_coapp
1200
1200 1200
1000 1000 1000
800 800 800
3 00 3 600 g oo
400 400
200 200
0 o
&
e ) ° o . » & &
e o«
Distribution of canal Distribution of tel_perso Distribution of tel_prof
6000
10000
5000
8000
4000
e € 6000
2 3000 H
8 8
2000 4000
1000 2000
0 o
e <« ° 5
- & &
Distribution of gsm_perso Distribution of gsm_prof
20000
16000
17500
14000
15000
12000
12500
10000 =
2000 g 10000
6000 7500
4000 5000
2000 2500
0 o
S ° ° pS

Figure 3. Categorical variables distributions

Stat., Optim. Inf. Comput.

Vol. x, Month 202x



N. NOR AND M. KAICER 9

4.2. Feature Engineering and Data Preprocessing

Feature engineering is a critical phase in credit risk modeling, as the quality of input representations directly
dictates the discriminative power of the ensemble architecture. To ensure a robust training set and enhance the
predictive signals captured by the base learners, we implemented a multi-stage preprocessing and engineering
pipeline designed to convert raw administrative records into economically significant variables.

Data Cleaning and Dimensionality Reduction: In the initial stage, features exhibiting a missing value ratio
> 85% were systematically excluded from the feature space. This decision primarily affected co-borrower-related
variables, which were sparsely populated and lacked sufficient statistical relevance for the majority of the population.
The removal of these high-sparsity features is essential to reduce model noise and prevent the risk of overfitting on
uninformative patterns. Additionally, temporal variables, specifically date_acc (credit acceptance date) and date_adr
(last address update), were standardized into a uniform datetime format to facilitate the calculation of longitudinal
stability metrics.

Engineered Predictive Indicators: To enhance the model’s capacity to capture nuanced applicant behavior
and long-term solvency, specialized features were derived. While raw financial data provides a static snapshot of
wealth, credit risk is fundamentally a function of stability and financial margin. For clarity in the following formal
definitions, English descriptors are utilized; their corresponding technical variable names from the original dataset
are detailed for reference in Table 1.

The first key indicator, Residential Stability (7%;.;), was quantified by calculating the temporal difference
(measured in days) between the application date (date_acc) and the most recent address update (date_adr). In the
context of credit scoring, T, serves as a reliable proxy for social stability, where a longer tenure at a single
residence is historically correlated with more consistent repayment behavior and lower default probabilities.

Furthermore, we synthesized the granular and often volatile financial streams into two aggregate indicators:
Total Income (I;,;), which consolidates primary salaries, pensions, and various secondary allowances, and Total
Expenses (E;,;), which aggregates fixed monthly costs such as rent, mortgage payments, and other outstanding loan
obligations. These consolidated metrics were finally integrated into a global Solvency Ratio, or Debt-to-Income
(DTYI) ratio, formally defined as:

FEiotat Y Expenses

DTI = =
Liotal >~ Incomes

“4)

The DTI ratio provides a normalized and dimensionless measure of the applicant’s repayment capacity. By
focusing on the relative weight of debt rather than absolute currency values, this feature allows the meta-learner
to effectively compare creditworthiness across disparate professional categories and income brackets, thereby
neutralizing the scale effects inherent in absolute financial figures.

4.3. Outlier treatment

Anomaly detection was performed using the Isolation Forest algorithm to identify and remove abnormal observations
within each target class separately. Specifically, the model was trained on subsets of the data corresponding to each
class of the target variable (target = 0 and target = 1), using different contamination rates (0.1 and 0.2, respectively).
This approach is justified because the dataset is unbalanced, as noted earlier. Furthermore, a variability analysis and
statistical tests (e.g., variance comparison) indicated that class 1 exhibits slightly higher dispersion than class 0,
supporting the use of a higher contamination rate for that class. Instances predicted as anomalies were considered
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10 STACKING OF ENSEMBLE AND BOOSTING METHODS FOR CREDIT RISK PREDICTION

outliers and subsequently removed from the dataset. This procedure improves data quality and enhances model
robustness by eliminating extreme or inconsistent samples.

Algorithm 1: Class-Conditional Outlier Filtering
In :D = {(x;,y;)}]~,; Contamination c, € {0.1,0.2}; Ns = 250
Out :Filtered Dataset D*
D* )
foreach t € {0,1} do
S« {x; | (xi,v:) € D,y; =t}
Train M; « IForest(S;, o, Nest)

Ly  {x; € § | M;.predict(x;) # —1} // Keep inliers
D* «+ D*U{(x,t) | x € L4}

end

return D*

5. The Proposed DAF-Stacking Methodology

Our approach is founded upon an extended ”Stacked Generalization” framework, specifically engineered to mitigate
the calibration deficiencies often encountered in conventional boosting models within imbalanced data environments.
Diverging from standard stacking architectures that rely on linear meta-models, we introduce a Dynamic Feature
Augmentation (DAF) mechanism. This component maps the probabilistic outputs of a heterogeneous ensemble
H ={hxgs,hrr,her, hLr, hin N} into a manifold of epistemic uncertainty descriptors, which subsequently
supervise a meta-learning XGBoost classifier (£ x ¢ p) under rigorous regularization constraints.

5.1. Architectural Formalization and Leakage Prevention

Let D = {(x;, y;)}}_, represent the banking dataset, where x; denotes the financial feature vector and y; € {0,1}
indicates credit default. To maintain the integrity of performance estimates, we enforce a K = 5 stratified fold
partitioning protocol. This structure facilitates the generation of ”Out-of-Fold” (OOF) meta-features, ensuring that
the meta-learner is exclusively trained on probabilities derived from samples unseen by the base estimators during
their respective training phases.

Class imbalance is addressed strictly within each training fold’s localized scope. We employ the Synthetic Minority
Over-sampling Technique (SMOTE) with a fixed over-sampling ratio o = 0.8, initiated only after isolating the
validation fold. This isolation is paramount; it precludes any synthetic contamination that would otherwise introduce
an optimistic bias in the assessment of the model’s generalization capabilities. Simultaneously, standardization
parameters are computed solely on the training subset Dt(f ) and projected onto the validation subset Df}];)l, preserving
total informational airtightness.

5.2. Dynamic Feature Augmentation (DAF)

The central innovation lies in the DAF operator, which projects the probability vectors p; ,,, into a higher-order
interaction space. For each observation ¢, we extract three key indicators of convergence and divergence:

M M
1
Vdi'u,i = M Z:l(ﬁi,'m - ]ji)27 Vconf,i = mrgx(ﬁi,m) - mniln(ﬁi,'rn)a ‘/cons,i = Z:l H(ﬁzm Z 05) (5)

Here, V4, captures the variance in judgment across the model committee, while Vo and Veopns quantify
the magnitude of disagreement and the classification consensus, respectively. The resulting meta-input vector,
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Z; = [pi,---Di,Ms Vidiv,is Veonf,is Veons,i]» €nables the second-level learner to adaptively weigh decisions based
on the perceived reliability of the primary level’s signals.

5.3. Meta-Learning and Regularization Strategy

For the Level-2 stage, we have deployed a specialized XGBoost instance (L xp) configured with conservative
hyper-parameters (maximum depth d = 3, A = 1.0). This technical choice is motivated by the requirement to capture
non-linear interactions between base learners while preventing over-fitting on the augmented meta-feature space Z.
Optimization is conducted via the Log-Loss objective function to ensure a refined calibration of final probabilities
an essential requirement for risk-gradient differentiation in production environments.

Algorithm 2: DAF-Stacking Protocol with Meta-XGBoost and Local SMOTE

Input :Dataset D, Base learners H, Meta-learner £ x5, SMOTE ratio o = 0.8
Output : Optimized DAF-Stacking model H*

// I. Stratified OOF Generation
Partition D into K = 5 stratified folds {D1,..., Dk}
for k <+ 1to K do
Dtr <_D\Dk ;D'ual <_Dk
Compute scaling factors on Dy, and transform {Dy,., D,q; }
D;, < SMOTE(D;,, «)
for each h,, € H do
Train h,, on Dj,. using grid-search parameters
Generate OOF predictions p; ., for all ¢ € D,,q;
end
end
// II. Meta-Feature Engineering & Training
Compute DAF indicators (Vyiv, Veonfs Veons)
Construct Z and train L xgp (maz_depth = 3, A = 1.0)
// III. Final Global Refit
Refit all h,,, € H on the full resampled dataset D’ for deployment
return H*(x) = Lxgp(Z)

5.4. Implementation and Hyperparameter Tuning

To ensure empirical validity, hyperparameter optimization was conducted through an exhaustive Grid Search within
the stratified 5-fold cross-validation framework. The final optimized configurations are detailed in Table 3.

Table 3. Optimized hyperparameters of base learners and the meta-learner.

Model Configuration | Model Configuration

XGBoost 7 :0.05, nest : 300 Logistic Reg. Penalty: L2

(Base) Max depth: 5, Subsample: 0.8 Reg. (C): 1.0

Random Forest Nest : 500 k-NN Neighbors (k): 7
Max depth: 12

Extra Trees Nest : 300 SMOTE Sampling (a): 0.8
Criterion: ’Gini’

Meta-XGBoost 1 :0.01, Max depth: 3, & : 0.1, A : 1.0
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6. Results and Discussion

The empirical performance of the proposed DAF-Stacking framework is summarized in Table 4, where it is
rigorously evaluated against heterogeneous base learners using 95% Confidence Intervals (CI), Bootstrap AUC
p-values, and McNemar’s statistical significance test. The experimental results demonstrate that the DAF-Stacking
model (STACK) achieves a superior AUC of 0.8801 and an optimized LogLoss of 0.3055, outperforming the
strongest standalone estimator, XGBoost (AUC 0.8779, LogLoss 0.3122). While the improvement in discriminative
power over XGBoost is incremental, the reduction in Logloss is of significant scientific interest. This gain indicates
a substantial enhancement in probabilistic calibration, ensuring that the predicted default probabilities are more
representative of true empirical risk frequencies a critical factor for capital allocation and risk-based pricing in
financial institutions.
Table 4. Consolidated Performance Metrics and Statistical Validation (STACK vs. Baselines).

Model AUC [95% CI] pAUC LogLoss Acc. F1-Minority McNemar p
XGBoost 0.8779 [0.861,0.891] 0.0426 03122  0.8742 0.9241 0.838
Random Forest  0.8621 [0.844,0.877] 0.0350  0.3443  0.8573 0.9129 < 0.001
Logistic Reg. 0.8626 [0.845,0.877] 0.0385 0.4162  0.8267 0.8886 < 0.001
Extra Trees 0.8616 [0.845,0.877] 0.0406  0.3871 0.8392 0.8991 < 0.001
k-NN 0.8061 [0.787,0.824] 0.0279  0.6897  0.7413 0.8262 < 0.001

DAF-Stacking 0.8801 [0.864, 0.894] 0.0424  0.3055  0.8733 0.9242 —

The structural superiority of this framework is fundamentally rooted in the Dynamic Feature Augmentation
(DAF) operator. By mapping inter-model divergence and consensus into the meta-feature space, the meta-XGBoost
learner effectively reconciles orthogonal predictive signals from the base ensemble. For instance, the inclusion
of k-NN despite its lower individual AUC (0.8061) provides a distance-based perspective that contrasts with the
recursive partitioning of tree ensembles. The DAF operator identifies instances of high model disagreement, allowing
the meta-learner to regularize the final decision and minimize localized overfitting.

Statistical validation further supports the proposed architecture. McNemar’s test confirms that STACK significantly
outperforms Random Forest (p < 0.001), Extra Trees (p < 0.001), and k-NN (p < 0.001). Although the classification
shift relative to XGBoost is not statistically significant (p = 0.838), the consistent information-theoretic gain
(LogLoss) and a competitive partial AUC (pAUC) in the low false-positive region (FPR < 0.1) indicate a more
refined decision manifold. This suggests that the DAF-Stacking model is particularly adept at assigning more
reliable risk scores to “borderline” cases. From an operational perspective, this increased granularity in probability
estimation allows financial institutions to implement more robust risk management strategies, bridging the gap
between raw predictive performance and financial stability.

7. Conclusion

In this work, we have demonstrated that the DAF-Stacking framework offers a significant advancement in the
reliability of credit risk modeling, primarily through the strategic synthesis of heterogeneous learners and dynamic
feature enrichment. By merging the distinct inductive biases of tree-based ensembles (XGBoost, Random Forest,
Extra Trees) and distance-based estimators (k-NN), our architecture effectively addresses the precision-calibration
dilemma that often plagues imbalanced financial datasets. A key technical feature of this approach is the dual
deployment of XGBoost, which serves both as a robust base learner and as a sophisticated meta-learner optimized
with distinct hyperparameter configurations. The tangible performance gains evidenced by a 3.3% reduction in
LogLoss suggest that encoding model disagreement via the DAF mechanism is a viable path toward quantifying
epistemic uncertainty. For banking institutions, this improved calibration translates into a more precise differentiation
of risk gradients, directly informing more resilient capital allocation strategies.

However, no model is without its constraints. We recognize that our current analysis is based on a static snapshot
of credit data, which may not account for the high-velocity temporal shifts characteristic of modern economic
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cycles. Furthermore, we acknowledge the inherent ”black-box” tension within the DAF-Stacking manifold; the very
complexity that drives its predictive power can also obscure the path to direct interpretability, a factor that remains
sensitive in highly regulated lending environments.

Looking ahead, the evolution of this framework will follow two critical paths. Our immediate priority is to integrate
post-hoc Explainable Al (XAI) layers, specifically SHAP-based attribution, to decompose the meta-learner’s
decision logic into human-readable justifications. Beyond interpretability, we intend to stress-test the DAF-Stacking
framework against synthetic macroeconomic shocks. By simulating liquidity crises or inflationary pressures, we can
assess how the model’s risk manifold responds to systemic volatility. Ultimately, these developments aim to solidify
the bridge between theoretical meta-learning and the practical demands of high-stakes financial risk management.

wn
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