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Abstract Early and accurate detection of colorectal polyps is critical for reducing colorectal cancer risk and improving
patient outcomes. This paper introduces an ensemble deep transfer learning framework with Bayesian hyperparameter
optimization for robust colorectal polyp classification. The method combines three state-of-the-art backbones—ResNet50,
EfficientNetB0, and InceptionV3—whose outputs are fused via probability averaging to improve reliability. Stratified 10-
fold cross-validation provides unbiased performance estimates, while Bayesian optimization fine-tunes model parameters
for high accuracy and efficiency. Experiments on three benchmark datasets demonstrate excellent results, achieving 99.56%
accuracy on CP-CHILD-A, 99.40% on CP-CHILD-B, and 92.80% on Kvasir V2. To illustrate clinical usability, we also
designed user interface prototypes as a computer-aided diagnostic (CAD) system, showing how the framework could be
integrated into real-world screening workflows. These results highlight the potential of the proposed approach for real-time,
clinically deployable colorectal polyp detection.

Keywords Colorectal polyp detection, Ensemble learning, Bayesian optimization, Transfer learning, Stratified cross-
validation, CAD system

1. Introduction

Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide,
with its incidence steadily increasing in many regions [1]. Early detection of precancerous polyps during
colonoscopy is critical to prevent disease progression and improve patient outcomes. However, manual inspection
of colonoscopy images is time consuming, operator dependent and subject to variability in precision, especially in
cases of small, flat, or sessile polyps [2]. These challenges highlight the need for computer-aided solutions that can
help clinicians detect and classify colorectal polyps more accurately and consistently.

In recent years, deep learning — especially convolutional neural networks (CNNs) — has greatly improved the
way we classify medical images and detect lesions [3, 4]. CNN-based methods have shown very promising results
in identifying and segmenting polyps [5, 6]. However, relying on a single model can have some drawbacks. Such
models may overfit to the training data, struggle to perform well on new or different datasets, and lose accuracy
when faced with unseen cases. Another challenge is choosing the best hyperparameters for these models. This
process is often done manually, requires a lot of computing power, and can make it difficult to reproduce results or
scale the approach.

Transfer learning has emerged as a powerful paradigm for medical image analysis, enabling the reuse of
feature representations learned from large-scale natural image datasets such as ImageNet [23]. By initializing
models with pretrained weights, transfer learning mitigates the challenge of limited annotated medical datasets,
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accelerates convergence, and often yields superior generalization performance compared to training from scratch.
Numerous studies have demonstrated that fine-tuning pretrained CNN backbones leads to significant improvements
in classification, detection, and segmentation tasks across a wide range of medical imaging modalities [24, 25].

Ensemble learning is a powerful way to overcome the weaknesses of using a single model by combining the
strengths of several models. In medical image analysis, this approach helps reduce overfitting, lowers prediction
variability, and improves performance on different types of data. By averaging or voting on the outputs of multiple
models, ensembles produce more stable and trustworthy results — an important benefit for clinical applications
like colorectal polyp detection. Recent research shows that ensembles of CNNs often achieve better accuracy and
sensitivity than any single model, especially when working with difficult or imbalanced datasets [26].

To address these limitations, this work proposes an ensemble deep transfer learning framework that integrates
three state-of-the-art CNN backbones: ResNet50 [27], EfficientNetB0 [28], and InceptionV3 [29] and optimizes
them using Bayesian hyperparameter tuning to achieve robust and reproducible classification performance.
Probability-based ensemble fusion is employed to improve prediction reliability, and stratified 10-fold cross-
validation is used to obtain unbiased performance estimates. Additionally, we designed user interface prototypes
for a computer-aided diagnostic (CAD) system, demonstrating how the proposed framework can be integrated into
clinical workflows for real-time polyp screening.

The contributions of this work can be summarized as follows:

1. We present a robust ensemble transfer learning framework that integrates multiple CNN architectures to
enhance colorectal polyp classification performance.

2. We employ Bayesian optimization to systematically tune hyperparameters, ensuring reproducibility and
improving overall model efficiency.

3. We conduct a comprehensive ablation study to demonstrate the effectiveness of the ensemble strategy
compared to individual backbone models, confirming its superior generalization capability.

4. We validate the proposed framework on three benchmark datasets—CP-CHILD-A, CP-CHILD-B, and
Kvasir V2—achieving accuracies of 99.56%, 99.40%, and 92.80%, respectively.

5. We propose a conceptual CAD system interface, emphasizing the framework’s practical potential for real-
world clinical deployment.

2. Related Work

In this section, we review existing research related to colorectal polyp detection and classification, focusing on three
key areas : deep learning approaches for polyp classification, ensemble and hybrid frameworks, and optimization
strategies for medical images.

Deep learning, especially CNN-based architectures, has transformed the field of colorectal image analysis.
Studies such as Raseena et al. [7] have benchmarked multiple CNN backbones including VGG19, ResNet50, and
MobileNetV3 on four major datasets (PolypsSet, CP-CHILD-A, CP-CHILD-B, and Kvasir V2), demonstrating that
transfer learning with fine-tuning can yield high classification accuracy. Other works proposed transformer-based
solutions, e.g., DeepCPD [8], which leverages multi-head self-attention for robust polyp categorization. Similarly,
John Lewis et al. [9] combined CNN and transformer modules in PSNet, achieving state-of-the-art performance
for polyp segmentation with clearer boundary detection.

Mukhtorov et al. [10] developed an explainable deep learning approach for endoscopic image classification
using ResNet152 with Grad-CAM visualizations. Their method achieved 98.28% training and 93.46% validation
accuracy, highlighting its effectiveness for medical image analysis. Zhang et al. [11] developed SSD-GPNet, a CNN
based on the Single Shot MultiBox Detector (SSD) architecture, for real-time gastric polyp detection. These studies
collectively show that deep learning models can effectively capture discriminative features for polyp detection but
also face challenges like overfitting, poor generalization to new datasets.
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To mitigate generalization gaps, ensemble learning has been widely explored. Auzine et al. [12] combined
InceptionV3, InceptionResNetV2, and VGG16 into an ensemble trained on the Kvasir dataset, achieving superior
accuracy through model diversity. Hybrid frameworks have also emerged, integrating CNNs with spatial attention
mechanisms [13] to leverage both local and global feature dependencies. Although these approaches improve
accuracy, they are often computationally expensive. To address this, we combine model outputs through probability
averaging for stable predictions and use Bayesian optimization to efficiently explore the hyperparameter space. This
allows us to find near-optimal configurations with fewer training runs, saving time and computational resources
while improving reproducibility.

Optimization methods are widely used to improve model performance in medical image classification.
Traditional grid and random search methods can be slow and often overfit. Researchers have explored metaheuristic
approaches such as Genetic Algorithms [14], Grey Wolf Optimization [15], and Harris Hawk Optimization [16]
to tune models or select features, reporting better accuracy and lower complexity. Others, like Elsayed et al. [17]
and Mohamed et al. [18], used swarm intelligence and hybrid optimizers for tasks such as COVID-19 and breast
cancer image analysis. In this work, we use Bayesian optimization, which builds a probabilistic model to explore
the search space efficiently, leading to consistent tuning with faster convergence.

Despite impressive results from CNNs, transformers, and ensembles, most studies still face three main
challenges: overfitting, lack of reproducibility, and limited focus on real-time usability. Our work addresses these by
combining transfer learning, probability-based ensemble fusion, and Bayesian tuning into a practical and clinically
oriented solution.

3. Methodology

This section describes the proposed framework for the classification of colorectal polyps. Our approach integrates
three key components: (i) dataset preparation and preprocessing, (ii) CNN backbone training with Bayesian-
optimized hyperparameters, and (iii) ensemble fusion for final predictions. An overview of the methodology is
illustrated in Figure 1 and the proposed framework is summarized in Algorithm 1.

3.1. Dataset and Preprocessing

Images from 1,600 pediatric colonoscopies (ages 0–18 years) were used to construct the CP-CHILD-A and CP-
CHILD-B datasets. The CP-CHILD-A dataset consists of 8,000 colonoscopy images, including 1,000 polyp and
7,000 non-polyp samples. The CP-CHILD-B dataset contains 1,500 images, with 400 polyp and 1,100 non-polyp
samples. Both datasets are publicly available and can be accessed at [19]. Table 1 summarizes the datasets used
in this study. The Kvasir V2 dataset originally comprised eight classes of high-quality endoscopic images of the
gastrointestinal (GI) tract, annotated and verified by medical professionals [38]. Collected using high-definition
endoscopes under the Vestre Viken Health Trust, which serves a population of approximately 470,000 people, the
dataset was refined in this study to include only two relevant classes—polyps and nonpolyps—directly associated
with colorectal conditions. The resulting balanced subset of 2,000 images (1,000 per class) is publicly available at
[41].

Table 1. Summary of CP-CHILD and Kvasir V2 datasets used in this study.

Dataset Total Images Polyp Images Non-Polyp Images

CP-CHILD-A 8,000 1,000 7,000
CP-CHILD-B 1,500 400 1,100
Kvasir V2 1,000 1,000 2,000

All images were resized to 224× 224× 3 pixels to match the input requirements of the CNN backbones. To
enhance generalization and minimize overfitting, we applied on-the-fly data augmentation [20] during training.
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Figure 1. The workflow of the proposed framework.

Instead of permanently enlarging the dataset, transformations were performed dynamically at runtime so that each
training epoch encountered slightly different image variations. This strategy exposed the network to a richer set of
visual patterns, helping it become more robust to natural variations in clinical settings.

The augmentation process included random horizontal flips to simulate changes in colonoscope orientation,
small rotations of up to ±8◦ to account for camera tilts, and zoom-in operations of up to 8% to mimic variations
in colonoscope proximity and polyp size. In some cases, minor intensity adjustments were applied to reproduce
differences in lighting conditions. By combining these transformations, the effective training set size was virtually
expanded, making the model less sensitive to spatial orientation, scale, and illumination changes. Figure 2
illustrates examples of the augmentation process applied to a single polyp image, showing how variability is
introduced without permanently increasing dataset size.

All data augmentations were applied dynamically and exclusively within each training fold after data splitting.
For each iteration of the stratified 10-fold cross-validation, augmentation operations were performed on-the-fly only
on the training subset of that fold. The validation subset remained completely separate and was never augmented,
ensuring that no augmented variant of any image could appear in both the training and validation sets. This strict
separation effectively prevented data leakage and preserved the integrity of the cross-validation procedure.

3.2. Backbone Models

Our framework integrates three well-established convolutional neural network backbones pretrained on ImageNet:
ResNet50 , EfficientNetB0 , and InceptionV3. These architectures were selected because they complement each
other in terms of representation power, efficiency, and ability to capture multi-scale features, making them highly
suitable for colorectal polyp classification.

ResNet50 introduces residual connections that allow very deep networks to train effectively by mitigating the
vanishing gradient problem. This enables the extraction of rich hierarchical features, which is crucial for capturing
subtle visual differences in medical images [27].
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Figure 2. Example of on-the-fly data augmentation applied to a polyp image.

EfficientNetB0 employs a compound scaling strategy that uniformly balances network depth, width, and input
resolution [28]. As a result, it provides strong accuracy with significantly fewer parameters and lower inference
time compared to many conventional architectures, making it well-suited for deployment in real-time or resource-
constrained clinical settings.

InceptionV3 uses factorized convolutions and inception modules that process input features at multiple scales
simultaneously [29]. This design is particularly advantageous for polyp detection, where lesions may vary greatly
in size, shape, and texture.

By combining these three backbones in an ensemble, our framework benefits from their complementary
strengths: ResNet50’s hierarchical feature extraction, EfficientNetB0’s computational efficiency, and InceptionV3’s
multi-scale representation. This fusion, followed by Bayesian hyperparameter optimization, ensures reliable and
well-balanced predictions while keeping the overall model lightweight.

3.3. Bayesian Hyperparameter Optimization

Choosing appropriate hyperparameters is a crucial step in developing deep learning models, as factors such
as the number of neurons (u), dropout rate (p), and learning rate (η) have a direct impact on both model
accuracy and generalization. Rather than relying on trial-and-error methods or exhaustive grid search, which are
computationally expensive and time-consuming, we adopted Bayesian Optimization to systematically determine
the best hyperparameter configuration [30, 31].

Bayesian Optimization builds a probabilistic surrogate model to approximate how hyperparameters affect
model performance. After each training iteration, the surrogate model is updated with the new results, and an
acquisition function is used to decide which hyperparameter values to evaluate next. This process strikes a balance
between exploration—trying novel regions of the hyperparameter space that might lead to improvement—and
exploitation—focusing on areas already known to yield strong performance.

This strategy significantly reduces unnecessary evaluations by avoiding regions that are unlikely to improve
accuracy, leading to faster convergence toward optimal solutions. In our framework, Bayesian Optimization was
used to search for the optimal number of units (u) in the dense layer (64–512), dropout rates (p) (0.1–0.5), and
learning rates (η) (10−3 or 10−4). The resulting hyperparameter configurations consistently improved classification
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performance across folds while reducing overfitting, thereby making the approach both computationally efficient
and reproducible compared to manual tuning or random search.

3.4. Ensemble Strategy

To improve classification robustness and reduce the risk of overfitting to a single model, we adopted a probability-
based ensemble approach. For each backbone — ResNet50, EfficientNetB0, and InceptionV3 — we trained an
independent model using the optimal hyperparameters obtained from Bayesian optimization. Each model outputs
a probability score P for the positive (polyp) class. The final prediction is obtained by averaging the probabilities
of all three models:

Pensemble =
PResNet + PEffNet + PInception

3

where Pensemble is the aggregated probability for a given input image. A classification threshold of 0.5 is then
applied to determine the final label:

ŷ =

{
1 if Pensemble ≥ 0.5

0 otherwise

This probability-level fusion allows each model to contribute proportionally to the final decision, mitigating the
impact of misclassifications from any single backbone. Compared to majority voting on class labels, probability
averaging preserves confidence information and often yields smoother and more reliable predictions, which is
critical for medical decision support systems.

3.5. Evaluation

To ensure unbiased performance assessment, we employed stratified 10-fold cross-validation, which preserves
the class distribution across folds. In each fold, class weights were used to address the natural class imbalance
between polyp and non-polyp samples. Training was further stabilized by early stopping and adaptive learning
rate scheduling: if validation performance plateaued, the learning rate was automatically reduced, enabling more
precise convergence.

The framework was evaluated using a comprehensive set of metrics: accuracy, precision, recall, F1-score,
Cohen’s Kappa, and the area under the receiver operating characteristic curve (ROC–AUC). Performance was
reported as the mean ± standard deviation across folds. Additionally, confusion matrices and ROC curves were
generated to provide a detailed view of classification behavior and model discriminative ability.

The key classification and agreement metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Specificity =
TN

TN + FP
(4)

F1-Score = 2 · Precision · Recall
Precision + Recall

(5)

κ =
po − pe
1− pe

(6)
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where TP , TN , FP , and FN denote true positives, true negatives, false positives, and false negatives,
respectively. po represents the observed agreement between predicted and ground truth labels, and pe is the
agreement expected by chance. Finally, the ROC–AUC metric measures the area under the ROC curve, which
plots the true positive rate against the false positive rate at multiple thresholds. Higher AUC values indicate better
class separability.

Algorithm 1: Ensemble Deep Transfer Learning with Bayesian Optimization and 10-Fold CV
Input: Dataset D = {(xi, yi)}Ni=1, folds K = 10
Output: Aggregated metrics: Accuracy, Precision, Recall, F1, Confusion matrix, ROC–AUC
Preprocess: Resize all images to 224× 224× 3. No augmentation is applied before splitting to ensure strict
data separation.

Define backbones: ResNet50, EfficientNetB0, and InceptionV3 (ImageNet weights, remove top). For each
backbone add: GAP → Dense(u) → Dropout(p) → Sigmoid.

Bayesian tuning: Use Bayesian optimization to search hyperparameters Θ = {u, p, η} (units, dropout,
learning rate) for each backbone; objective: validation accuracy.

for k = 1 to K do
Split D into train D

(k)
train and test D(k)

test (stratified).
Compute class weights on D

(k)
train.

Apply on-the-fly data augmentation (flip, rotation ±8◦, zoom ≤ 8%) only to D
(k)
train during training. The

validation fold D
(k)
test remains pristine and unaugmented to prevent data leakage.

For each backbone b ∈ {ResNet,EffNet, Inc}:
• Initialize model with best hyperparameters Θb from Bayesian tuning.
• Train on D

(k)
train with early stopping.

• Predict probabilities P (k)
b on D

(k)
test .

Compute ensemble probability: P (k)
ens =

1

3

∑
b P

(k)
b .

Threshold: ŷ(k) = 1
[
P

(k)
ens ≥ 0.5

]
.

Store predictions and compute fold metrics (Acc, Prec, Rec, F1).
Aggregate results across folds: report mean ± std of metrics, confusion matrix, ROC curve, and AUC.

Algorithm 1 summarizes the entire pipeline: data preprocessing and augmentation, Bayesian hyperparameter
tuning for each backbone, independent training, probability averaging for ensemble predictions, and final
performance evaluation using stratified 10-fold cross-validation.

4. Results and Discussion

This section presents the experimental results obtained from the proposed ensemble framework and discusses
their significance. We first describe the experimental setup, including implementation details and hyperparameter
tuning results. Then, we report quantitative findings for the CP-CHILD-A, CP-CHILD-B, and Kvasir V2 datasets,
supported by confusion matrices and ROC curves to illustrate classification performance. To further assess the
contribution of each component within the ensemble, we present an ablation study analyzing the effect of individual
classifiers and fusion strategies. We also benchmark our approach against recent state-of-the-art methods on the
same datasets to confirm its competitiveness. Finally, we demonstrate a conceptual clinical deployment design,
highlighting how the framework could be integrated into real-world diagnostic workflows.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



F. ELSHORBAGY, E. ELSALAMOUNY, M.F. MOHAMED 7

4.1. Experimental Setup

To validate the proposed ensemble framework, all experiments were implemented in Python using the TensorFlow
deep learning library and executed on Google Colab with GPU acceleration enabled. The development environment
consisted of a PC running Windows 11, equipped with an Intel Core i7-10510U CPU (1.80 GHz) and 16 GB of
RAM.

Hyperparameter tuning was performed independently for each backbone and dataset using Bayesian
optimization with 5 trials per model. The search space covered the number of dense-layer units (u ∈ [64, 512]),
dropout probability (p ∈ [0.1, 0.5]), and learning rate (η ∈ {1e−3, 1e−4}). Each model was fine-tuned for transfer
learning using ImageNet-initialized weights and trained under stratified 10-fold cross-validation to ensure
generalization.

Table 2 summarizes the optimal hyperparameters found for each backbone on all three datasets (CP-CHILD-
A, CP-CHILD-B, and Kvasir V2). Notably, for the Kvasir V2 dataset, the optimal configuration favored a higher
dropout rate in ResNet50 and moderate dense-layer sizes in EfficientNetB0 and InceptionV3, which aligns with
the dataset’s greater visual variability compared to CP-CHILD, indicating that stronger regularization improved
generalization.

The reported hyperparameters correspond to the final models used in ensemble and ablation experiments,
ensuring a fair comparison across architectures and datasets.

Table 2. Best hyperparameters found by Bayesian optimization for each backbone across datasets. “Units” refers to the
number of neurons in the added dense layer; “Drop” is the dropout rate; “LR” is the learning rate.

Dataset Backbone Units (u) Drop (p) LR (η)

CP-CHILD-A ResNet50 320 0.40 1e−4
EfficientNetB0 64 0.50 1e−3

InceptionV3 128 0.10 1e−3

CP-CHILD-B ResNet50 384 0.10 1e−4
EfficientNetB0 512 0.20 1e−3

InceptionV3 256 0.10 1e−4

Kvasir v2 ResNet50 320 0.50 1e−4
EfficientNetB0 256 0.10 1e−4

InceptionV3 128 0.40 1e−3

Across datasets, the tuning process revealed consistent trends: EfficientNetB0 often required a lower dropout and
moderate dense-layer size to balance its lightweight architecture, while ResNet50 benefited from higher dropout
rates to prevent overfitting, especially on smaller datasets like CP-CHILD-B. InceptionV3 favored intermediate
configurations with slightly higher learning rates, consistent with its faster convergence behavior. These tuned
parameters were subsequently adopted in the ablation study and ensemble evaluation to ensure optimized and
comparable performance across all datasets.

4.2. Quantitative Results on CP-CHILD-A

Table 3 reports the performance of the proposed ensemble framework on CP-CHILD-A across 10 folds of stratified
cross-validation. The model achieves consistently high results, with a mean accuracy of 99.56%± 0.25, precision of
97.99%± 1.52, recall of 98.58%± 0.89, and F1-score of 98.27%± 0.78. These results indicate excellent stability,
as reflected by the low standard deviations across folds. The ROC-AUC value of 99.89% confirms the strong
discriminative power of the model.
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Table 3. Performance metrics across 10-fold cross-validation for the proposed ensemble framework on CP-CHILD-A.

Fold Accuracy F1-score Precision Recall Kappa ROC-AUC

1 99.62 98.31 98.86 97.75 98.09 99.98
2 99.75 98.88 98.88 98.88 98.74 99.96
3 99.75 98.88 98.88 98.88 98.74 99.94
4 99.88 99.50 100.00 99.01 99.43 99.97
5 99.25 97.32 97.32 97.32 96.89 99.88
6 99.62 98.45 96.94 100.00 98.23 99.96
7 99.50 97.94 98.96 96.94 97.65 99.53
8 99.62 98.34 97.80 98.89 98.13 99.76
9 99.62 98.49 98.00 98.99 98.28 99.95
10 99.00 96.61 94.21 99.13 96.02 99.93

Mean 99.56 98.27 97.99 98.58 98.02 99.89
Std 0.25 0.78 1.52 0.89 0.92 0.13

Beyond overall accuracy, greater emphasis is placed on the Recall (Sensitivity) and F1-score, which are
particularly meaningful for imbalanced medical datasets. The high recall of 98.58% confirms that the proposed
ensemble correctly identifies nearly all true polyp cases, while the F1-score of 98.27% reflects a balanced trade-
off between sensitivity and precision. Such a balance is critical in medical imaging, where missing a polyp (false
negative) can have more serious consequences than a false alarm.

Figure 3 illustrates the model’s classification behavior on CP-CHILD-A. The confusion matrix shows that the
model correctly classified most samples, with only 11 false negatives (FN) and 19 false positives (FP) across the
entire test set. This very low number of false negatives demonstrates that the ensemble rarely overlooks true polyp
regions, which is essential for safe clinical deployment. Furthermore, the calculated Specificity—the proportion
of correctly classified non-polyp samples—reached 99.66%, highlighting the model’s strong ability to correctly
identify normal mucosa and avoid unnecessary alerts.

The ROC curve remains very close to the ideal top-left shape, confirming high separability between classes
across all thresholds. Overall, the ensemble achieves an excellent balance between high sensitivity (minimizing
missed polyps) and high specificity (reducing false alarms), demonstrating its robustness and suitability for
practical colonoscopy screening.

4.3. Quantitative Results on CP-CHILD-B

Table 4 summarizes the performance of the proposed ensemble framework on CP-CHILD-B under 10-fold stratified
cross-validation. The model maintained consistently high performance across folds, achieving a mean accuracy of
99.40%± 0.70, precision of 98.03%± 2.62, recall of 99.78%± 0.65, and F1-score of 98.88%± 1.31. These results
confirm the robustness of the ensemble framework, with very low variability between folds. The mean Cohen’s
Kappa of 98.47% indicates excellent agreement beyond chance, while the ROC-AUC of 99.93% demonstrates the
framework’s near-perfect discrimination between polyp and non-polyp regions.

Given the class imbalance in CP-CHILD-B, Recall (Sensitivity) and F1-score provide a more clinically
meaningful assessment of model performance than accuracy alone. The ensemble achieved an exceptionally high
recall of 99.78%, indicating that almost every true polyp instance was correctly detected. The corresponding F1-
score of 98.88% shows that this sensitivity was achieved without sacrificing precision, ensuring balanced detection.
Such performance is crucial for clinical settings, where minimizing false negatives directly translates to improved
diagnostic safety.
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Figure 3. Confusion matrix and ROC curve for the proposed ensemble framework on CP-CHILD-A.

Table 4. Performance metrics across 10-fold cross-validation for the proposed ensemble framework on CP-CHILD-B.

Fold Accuracy F1-score Precision Recall Kappa ROC-AUC

1 100.00 100.00 100.00 100.00 100.00 100.00
2 98.00 96.55 93.33 100.00 95.15 100.00
3 99.33 98.82 97.67 100.00 98.36 100.00
4 98.67 97.06 94.29 100.00 96.20 99.92
5 100.00 100.00 100.00 100.00 100.00 100.00
6 100.00 100.00 100.00 100.00 100.00 100.00
7 100.00 100.00 100.00 100.00 100.00 100.00
8 100.00 100.00 100.00 100.00 100.00 100.00
9 98.67 97.44 95.00 100.00 96.54 99.93
10 99.33 98.90 100.00 97.83 98.42 99.44

Mean 99.40 98.88 98.03 99.78 98.47 99.93
Std 0.70 1.31 2.62 0.65 1.78 0.17

Figure 4 visualizes these findings. The confusion matrix reveals that the model produced only 1 false negatives
(FN) and 8 false positives (FP) in total, underscoring its reliability in distinguishing true polyp regions from normal
non-polyp regions. The computed Specificity reached 99.27%, showing that the model not only detects nearly all
true polyps but also correctly rejects the vast majority of non-polyp areas. This high specificity ensures reduced
unnecessary alerts, which is particularly valuable in real-world colonoscopy assistance systems.

The ROC curve remains tightly aligned with the top-left boundary, confirming a near-ideal balance between
sensitivity and specificity across varying thresholds. Overall, the ensemble framework demonstrated exceptional
consistency and clinical relevance on CP-CHILD-B, maintaining excellent detection sensitivity while keeping false
positives extremely low — a desirable property for computer-aided polyp screening.
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Figure 4. Confusion matrix and ROC curve for the proposed ensemble framework on CP-CHILD-B.

4.4. Quantitative Results on Kvasir V2

The Kvasir v2 dataset used in this study is balanced, containing an equal number of polyp and non-polyp images
(1000 each). This balanced setup provides a fair ground for evaluating the model’s ability to generalize across both
classes without the influence of class imbalance.

Table 5 presents the quantitative performance of the proposed ensemble framework across 10 folds of stratified
cross-validation. Compared with the CP-CHILD datasets, the results on Kvasir v2 are relatively lower, which
is expected given the higher variability and more diverse imaging conditions within this dataset. Nevertheless,
the model maintains strong and stable performance, achieving a mean accuracy of 92.80%± 1.14, precision
of 90.47%± 2.77, recall of 96.09%± 1.14, and F1-score of 93.17%± 1.54. The ROC-AUC of 97.51%± 0.40
demonstrates that the ensemble retains excellent discriminative ability, even under more challenging conditions.

Table 5. Performance metrics across 10-fold cross-validation for the proposed ensemble framework on Kvasir v2.

Fold Accuracy F1-score Precision Recall Kappa ROC-AUC

1 93.50 94.37 92.37 96.46 86.69 97.36
2 93.00 94.07 90.24 98.23 85.57 97.39
3 93.00 94.07 90.24 98.23 85.57 97.46
4 92.50 93.09 90.99 95.28 84.90 97.93
5 91.00 90.62 86.14 95.60 82.02 97.76
6 92.50 92.39 90.10 94.79 85.01 96.74
7 94.50 95.15 94.74 95.58 88.80 97.78
8 94.50 94.84 94.39 95.28 88.95 98.24
9 91.00 90.62 86.14 95.60 82.02 97.27
10 92.50 92.46 89.32 95.83 85.02 97.22

Mean 92.80 93.17 90.47 96.09 85.45 97.51
Std 1.14 1.54 2.77 1.14 2.22 0.40
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While the accuracy is slightly lower than that observed on the CP-CHILD datasets, the model still demonstrates
strong generalization ability across different imaging domains. The high recall of 96.09% suggests that the model
is capable of detecting the vast majority of true polyp cases, while the F1-score of 93.17% indicates a good balance
between sensitivity and precision. This is particularly meaningful since real-world endoscopic images often exhibit
variations in lighting, texture, and appearance, which can challenge even robust models.

Figure 5 illustrates the model’s classification behavior on the Kvasir v2 dataset. The confusion matrix shows that
most samples were correctly classified, with only 18 false negatives (FN) and 37 false positives (FP) observed
across the test set. Given the balanced data distribution, these results confirm that the ensemble is effective in both
detecting true polyps and avoiding excessive false alarms. The corresponding Specificity of approximately 90.59%
further highlights its reliability in identifying non-polyp areas.

The ROC curve, with an AUC of 0.9766, remains close to the ideal top-left shape, indicating a clear separation
between classes. Overall, although the performance on Kvasir v2 is slightly lower than on institution-specific
datasets, the ensemble framework maintains high sensitivity, stability, and robustness, demonstrating promising
potential for deployment across diverse endoscopic imaging settings.
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Figure 5. Confusion matrix and ROC curve for the proposed ensemble framework on the Kvasir v2 dataset.

4.5. Ablation Study: Ensemble vs Individual Backbones

To evaluate whether the ensemble’s added complexity is justified, we compared the final ensemble against each
individually optimized backbone (ResNet50, EfficientNetB0, and InceptionV3). All models were trained under
identical experimental conditions, including the same image preprocessing, data augmentation, optimizer, learning
rate schedule, batch size, and 10-fold cross-validation protocol. This ensures that any observed differences in
performance are attributable solely to the model architecture and the ensemble fusion strategy rather than to training
configuration.
Table 6 presents the comparative performance between the individual backbones and the proposed ensemble
framework across all datasets. Across the three datasets, the ensemble consistently achieves the highest mean values
for accuracy, F1-score, precision, recall, and ROC-AUC, demonstrating the benefit of integrating complementary
feature representations from multiple architectures. While individual models such as ResNet50 and EfficientNetB0
already deliver strong results, particularly on the CP-CHILD datasets, the ensemble provides an additional
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Table 6. Ablation study comparing individual backbones with the proposed ensemble framework across all datasets. Reported
values are mean ± std over 10 folds.

Dataset Model Acc(%) Prec(%) Rec(%) F1(%) AUC(%)

CP-CHILD-A

ResNet50 99.24±0.20 96.08±2.26 97.76±1.38 96.89±1.03 99.83±0.18
EfficientNetB0 98.81±0.34 93.83±2.69 96.86±1.84 95.29±1.43 99.83±0.13
InceptionV3 98.09±0.92 91.61±4.99 94.08±2.98 92.70±2.47 99.13±0.31
Proposed 99.56±0.25 97.99±1.52 98.58±0.89 98.27±0.78 99.89±0.13

CP-CHILD-B

ResNet50 99.07±0.53 96.77±2.06 99.78±0.65 98.24±0.94 99.91±0.22
EfficientNetB0 98.40±0.61 95.61±1.36 98.43±2.07 96.98±1.19 99.92±0.11
InceptionV3 95.87±1.63 89.06±3.87 96.31±2.60 92.49±2.61 99.30±0.61
Proposed 99.40±0.70 98.03±2.62 99.78±0.65 98.88±1.31 99.93±0.17

Kvasir V2

ResNet50 89.70±2.10 87.30±4.36 93.01±2.11 89.98±2.13 95.77±1.20
EfficientNetB0 90.45±2.21 87.39±2.84 94.66±2.72 90.84±1.97 96.14±1.10
InceptionV3 86.80±2.80 84.45±3.96 90.26±2.36 87.22±2.76 94.49±2.42
Proposed 92.80±1.14 90.47±2.77 96.09±1.14 93.17±1.54 97.51±0.40

performance margin of approximately 0.3–1.5% in most metrics. This improvement, though modest in absolute
terms, is consistent across all folds and datasets, indicating that the ensemble fusion enhances robustness rather
than merely fitting a specific dataset.

For the CP-CHILD-A and CP-CHILD-B datasets, which contain more homogeneous imaging conditions, the
ensemble slightly outperforms ResNet50 and EfficientNetB0, achieving peak accuracies of 99.56% and 99.40%,
respectively. These results suggest that while the individual networks already capture discriminative texture and
boundary details effectively, the ensemble leverages their complementary strengths to achieve more reliable
predictions and lower variance across folds.

On the more diverse and challenging Kvasir v2 dataset, the performance gap becomes more evident. The
ensemble achieves an accuracy of 92.80% and an F1-score of 93.17%, surpassing the best single backbone
(EfficientNetB0) by around 2.3% and 2.3%, respectively. This confirms that the ensemble generalizes better to
variations in illumination, color tone, and surface texture—conditions under which single backbones may exhibit
inconsistent feature activation or misclassification of subtle polyp patterns. The consistently higher ROC-AUC of
97.51% further validates its improved discriminative capability.

It is worth noting that EfficientNetB0, despite being a lightweight model, performs competitively across all
datasets, achieving near-ensemble performance in several metrics. This observation is particularly relevant for
real-time or resource-limited environments, where the marginal gain of the ensemble may be traded off for faster
inference and reduced computational cost. Nevertheless, for applications demanding the highest possible reliability,
especially in clinical decision-support systems, the ensemble’s superior balance between sensitivity and specificity
justifies its additional complexity.

Overall, this ablation study clearly demonstrates that combining multiple optimized backbones leads to
a measurable and consistent improvement in predictive stability and generalization. The results validate the
ensemble’s design rationale and highlight its practical advantage in handling dataset variability while maintaining
strong performance.

4.6. Comparison with State-of-the-Art Methods

Table 7 presents a comprehensive comparison between the proposed ensemble framework and several state-of-the-
art approaches on the CP-CHILD-A, CP-CHILD-B, and Kvasir v2 datasets. Our method consistently demonstrates
competitive or superior performance across most evaluation metrics while maintaining reliable generalization
through 10-fold cross-validation.
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For CP-CHILD-A, the proposed ensemble achieves an accuracy of 99.56%, outperforming ResNet50 [7] by over
2% and slightly surpassing the ResNet152GAP model from Wei Wang et al. [22]. These results are obtained under a
rigorous stratified 10-fold cross-validation setting, providing a more reliable and unbiased estimate of performance
compared to prior studies that rely on single-train-test splits.

Similarly, on CP-CHILD-B, our model achieves 99.40% accuracy and the highest recall (99.78%), reflecting
excellent sensitivity with minimal missed polyp cases. Although the DeepCPD model [8] reports a slightly higher
accuracy, its lack of cross-validation makes direct comparison less conclusive. Overall, the ensemble achieves
strong and stable results across both in-house datasets, supporting its robustness and reproducibility.

On the more challenging and diverse Kvasir v2 dataset, the ensemble maintains robust generalization, achieving
an accuracy of 92.80% and F1-score of 93.17%. While the absolute accuracy is slightly lower than on the CP-
CHILD datasets, this reflects the increased variability in imaging conditions, color tone, and surface textures
typical of publicly sourced data. Notably, the recall of 96.09% highlights that the model continues to detect most
true polyp cases even under more heterogeneous conditions. Compared to other methods such as the Spatial-
Attention ConvMixer [38], Explainable Deep Learning framework [39], and Attention-Guided CNN [40], the
proposed ensemble achieves comparable or higher sensitivity, demonstrating its balanced trade-off between recall
and overall accuracy. These findings indicate that the ensemble design enhances feature diversity and robustness
across different data domains while maintaining a clinically acceptable performance level.

Table 7. Comparison of the proposed framework with prior work on CP-CHILD and Kvasir v2 datasets.

Dataset Method Architecture Acc(%) Rec(%) Pre(%) CV Applied?

CP-CHILD-A Proposed ResNet50+EffNetB0+IncV3 (Ensemble) 99.56 98.58 97.99 Yes (10-fold)
Raseena et al. [21] VGG19 99.10 98.00 97.51 No
Raseena et al. [7] ResNet50 97.20 95.00 91.34 No
Wei Wang et al. [22] ResNet152GAP 99.29 97.55 - No

CP-CHILD-B Proposed ResNet50+EffNetB0+IncV3 (Ensemble) 99.40 99.78 98.03 Yes (10-fold)
Raseena et al. [8] ViT 99.75 99.00 100.0 No
Raseena et al. [7] ResNet50 98.75 99.00 96.11 No
Wei Wang et al. [22] ResNet152GAP 99.35 97.70 - No

Kvasir v2 Proposed ResNet50+EffNetB0+IncV3 (Ensemble) 92.80 96.09 90.47 Yes (10-fold)
Demirbaş et al. [38] Spatial-Attention ConvMixer 93.37 93.37 93.66 No
Mukhtorov et al. [39] ResNet152 + Grad–CAM 93.46 - - No
Lonseko et al. [40] Attention-Guided CNN 93.19 92.70 92.80 Yes (5-fold)

4.7. Clinical Deployment Design

To highlight how our framework could be used in real clinical practice, we created conceptual user interface
(UI) mockups using Figma. These mockups demonstrate how the system might fit into the typical workflow of
a clinician. Figure 6 presents two example screens. The first (a) is an image upload screen, where the clinician
or technician can easily select colonoscopy frames or still images for analysis, either manually or by importing
them directly from the endoscopy capture system. The second (b) is a results screen that displays the predicted risk
probability together with a simple color-coded interpretation guide, allowing clinicians to quickly assess whether
a polyp is likely present. Our goal with this design is to make results easy to interpret at a glance and to support
rapid decision-making immediately after image acquisition. While these UIs are currently conceptual mockups,
they are designed for future integration using RESTful APIs to communicate with the trained model hosted on a
local inference device.

Beyond the user interface, Figure 7 illustrates a high-level architecture of the proposed clinical deployment
pipeline. During colonoscopy, still frames are captured by the endoscope and exported to a nearby edge inference
device. This device, equipped with a GPU or embedded accelerator, runs the optimized ensemble model and hosts
the integrated UI. The clinician can upload or review images directly on this device, which performs classification
and visualizes the predicted results on the connected medical monitor. The classified images and prediction scores
can then be stored securely within the hospital network for reporting and follow-up analysis.
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(a) (b)

Figure 6. UI prototype for image-based colorectal polyp classification using the proposed ensemble framework integrated on
an edge inference device.

Deploying AI systems in clinical environments faces key challenges. Integration with existing endoscopy
devices requires compatibility with medical imaging standards such as DICOM [32] for data exchange. All
patient images must be processed locally to comply with data privacy laws, including HIPAA [33] in the
United States and GDPR [34] in Europe. In addition, computer-aided detection (CADe) tools must undergo
regulatory approval—such as FDA 510(k) clearance [35] or CE Mark certification under European MDCG
guidance [36, 37]—to ensure clinical safety, reliability, and interoperability across medical environments.

As a key step toward clinical translation, future work will focus on prospective validation of the ensemble
framework using still colonoscopy images acquired from real-world screening sessions. Collaborations with
clinical partners will enable evaluation of classification accuracy, inference latency, and user experience across
diverse imaging devices and patient populations. Feedback from gastroenterologists will guide interface refinement

Stat., Optim. Inf. Comput. Vol. x, Month 202x



F. ELSHORBAGY, E. ELSALAMOUNY, M.F. MOHAMED 15

Video

Stream

Frame Capture

Colonoscopy

Frame

Edge Inference
Device

Clinical
Display

Hospital
Network

Endoscope

Figure 7. High-level architecture of the proposed clinical deployment pipeline.

and workflow optimization. Ultimately, multi-center studies will be pursued to demonstrate generalizability and to
provide the clinical evidence required for regulatory approval and large-scale adoption in endoscopic practice.

5. Conclusion

This study presented an optimized deep ensemble framework for robust colorectal polyp detection, integrating
three state-of-the-art CNN backbones—ResNet50, EfficientNetB0, and InceptionV3—optimized using Bayesian
hyperparameter tuning. By combining model predictions through probability averaging and employing stratified
10-fold cross-validation, the proposed framework achieved high reliability and reduced the risk of overfitting.

Comprehensive experiments on three benchmark datasets—CP-CHILD-A, CP-CHILD-B, and Kvasir
V2—demonstrated the framework’s strong generalization ability across diverse imaging domains. The ensemble
achieved accuracies of 99.56%, 99.40%, and 92.80%, respectively, with consistently high precision, recall
(sensitivity), F1-scores, Cohen’s Kappa, and ROC–AUC values. These results confirm the method’s robustness
and clinical relevance, especially in maintaining high sensitivity for accurate polyp detection.

An extensive ablation study further validated the ensemble’s effectiveness by comparing it against individual
backbone models. The results showed that the ensemble consistently outperformed single networks across all
datasets, highlighting the benefit of combining complementary feature representations from multiple architectures
to enhance predictive stability and generalization.

In addition, we benchmarked our approach against recent state-of-the-art methods on the same datasets. The
proposed ensemble achieved competitive or superior performance, particularly under rigorous stratified cross-
validation, offering a more reliable and unbiased estimate than single-split evaluations used in prior studies.

Beyond algorithmic performance, a conceptual clinical deployment design was introduced, illustrating how the
framework can be integrated into real-world computer-aided diagnostic (CAD) workflows using mobile or edge-
based devices equipped with GPUs or AI accelerators. This design bridges the gap between research and clinical
application, supporting rapid and consistent decision-making during colonoscopy screenings.
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Future work may explore partial fine-tuning of backbone networks to capture more task-specific
features, integration with real-time colonoscopy video streams, and the development of lightweight models
suitable for edge deployment. In addition, future work will incorporate a computational complexity
analysis, including benchmarking inference time, parameter count, and FLOPs, to better quantify the
trade-off between accuracy and efficiency. Exploring the integration of explainable AI techniques such
as Grad-CAM or SHAP could also provide valuable insights into model decision-making, thereby
increasing transparency and trust among medical practitioners. Overall, the proposed framework represents
a promising step toward reliable, scalable, and clinically deployable colorectal polyp detection systems.
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