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1. Introduction

The algebraic structure of residuated lattices has been regarded as a fundamental framework in the study of non-
classical logics, algebraic logic, and soft computing systems. It has been recognized that residuated lattices provide
a unifying foundation for the analysis of implication, conjunction, and order within many-valued and substructural
reasoning [13, 14, 8]. Within these algebraic systems, the concept of filters has been considered as a cornerstone,
since filters enable the characterization of deductive systems and provide essential tools for constructing quotient
structures and analyzing the algebraic behavior of elements.

In the conventional setting, filters in residuated lattices have been employed to describe deductive systems
and algebraic completeness [26, 22, 29]. The framework of filters has further been generalized to fuzzy
and soft environments, in which uncertainty and degrees of membership are incorporated into algebraic
reasoning [18, 19, 21, 25, 3]. Through these generalizations, several important properties such as comaximality,
pseudo-irreducibility[20], and structural indecomposability have been studied, which allow for a more nuanced
understanding of algebraic and logical structures in contexts where classical assumptions may not hold.

Alongside these algebraic advancements, the introduction of the soft set theory [17] and its variants, including
fuzzy soft sets [1, 10], multiset soft sets [2, 7, 24], and rough soft sets, has been recognized as a powerful means
for handling parameterized uncertainty. These theories have been designed to represent data and knowledge that
involve multiple occurrences or uncertain attributes. When combined with the algebraic concepts of residuated
lattices, soft set theory provides a robust framework for managing imprecise, redundant, or uncertain information
while preserving the underlying algebraic structure.
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Within this background, the theory of multiset filters of residuated lattices [4, 5, 25, 30] has been formulated to
merge the principles of multiset-based reasoning with algebraic operations. This unification has been utilized to
analyze decision-making and approximate reasoning models where repetition and multiplicity of parameters occur
simultaneously. The algebraic behavior of these structures has been explored to provide new insights into structural
logic and soft computation [16, 15], enabling more effective approaches for modeling complex systems that require
both multiplicity and order considerations.

Although residuated lattices and their filters have been examined extensively, a comprehensive theoretical
framework for the study of cosets, equivalence relations, and congruence relations of soft multiset filters has not
yet been established. This absence has restricted the development of quotient structures and congruence-based
homomorphisms in the soft multiset setting. Consequently, the present study has been undertaken to extend the
theoretical foundation of residuated lattices by defining cosets and congruence relations of soft multiset filters,
thereby filling a significant gap in the current literature.

Accordingly, the objectives of this study are articulated as follows:

1. To rigorously define and examine the structural framework of cosets of soft multiset filters within residuated
lattices, uncovering their intrinsic algebraic properties;

2. To formulate and explore soft multiset congruence relations generated by these filters, and to establish their
coherence and compatibility with both lattice and monoidal operations;

3. To demonstrate that the ensemble of all cosets naturally constitutes a residuated lattice, and to establish an
isomorphism theorem for this construction, extending the classical results to the soft multiset context; and

4. To highlight the novel contribution of this study by distinguishing the quotient structures over soft multiset
filters from existing results in classical and multiset filter theory.

Through these developments, the algebraic foundation of soft multiset theory has been extended. This extension
has been considered to strengthen the bridge between the theories of residuated lattices and soft algebraic
structures[23], thereby enhancing their mathematical depth and applicability in approximate reasoning, decision
analysis, and soft computing [11, 16, 15, 28].

In recent years, significant attention has been devoted to the structural extensions and generalizations of
residuated lattices. Advancements have been made in the study of uniform residuated lattices and their topological
completions [27], as well as in the analysis of filter-based distance functions and continuity concepts [9]. Further
developments have been reported in the context of residuated multilattices where soft set theory has been
incorporated [6], indicating a growing interest in integrating soft computing principles with algebraic structures
for enhanced theoretical and practical applications.

The present investigation has been structured in accordance with the progressive development of the theory.
Section 2 has been devoted to the fundamental concepts and preliminary results on residuated lattices and soft
multiset filters. Section 3 has included the formulation of cosets of soft multiset filters together with their algebraic
characterizations. Section 4 has presented the notions of soft multiset equivalence and congruence relations. The
paper has been concluded with remarks emphasizing the implications of the results for further research in algebraic
logic and soft computing.

2. Preliminaries

Definition 2.1
[26] A residuated lattice of the type (2,2,2,2,0,0) is an ordered algebraic structure (A,⋏,⋎,⊙,⇀, 0, 1) that satisfies
the following conditions:
X1 : (A,⋏,⋎) is a bounded lattice
X2 : (A,⊙, 1) is a commutative monoid
X3 : e

1
⊙ e

2
⪯ e

3
⇔ e

1
⪯ e

2
⇀ e

3
for any e

1
, e

2
, e

3
∈ A where e

i
⇀ e

j
= max{e

k
∈ A : e

i
⊙ e

k
⪯ e

j
}

Proposition 2.2
[26] In any residuated lattice A , the following conditions hold for each e1 , e2 , e3 , e4 ∈ A
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(r1) : 0 ⇀ e1 = 1 = e1 ⇀ e1 , 1 ⇀ e1 = e1

(r2 ) : e1 ⪯ (e1 ⇀ e2 ) ⇀ e2 ; e1 ⊙ (e1 ⇀ e2 ) ⪯ e2 and e1 ⇀ (e2 ⇀ e1) = 1
(r

3
) : e1 ⇀ (e2 ⇀ e3 ) = (e1 ⊙ e2 ) ⇀ e3 = e2 ⇀ (e1 ⇀ e3 )

(r
4
) : e1 ⇀ e2 ⪯ (e2 ⊙ e3 ) ⇀ (e2 ⊙ e3 )

(r5) : e1 ⪯ e2 ⇒ e1 ⊙ e3 ⪯ e2 ⊙ e3

(r
6
) : e1 ⊙ e2 ⪯ e1 ⋏ e2

(r
7
) : e1 ⊙ (e2 ⋎ e3 ) = (e1 ⊙ e2 )⋎ (e1 ⊙ e3 )

(r8) : e1 ⇀ e2 ⪯ (e3 ⇀ e1) ⇀ (e3 ⇀ e2 ) and e1 ⇀ e2 ⪯ (e2 ⇀ e3 ) ⇀ (e1 ⇀ e3 )
(r

9
) : e1 ⪯ e2 ⇒ e2 ⇀ e3 ⪯ e1 ⇀ e3 and e3 ⇀ e2 ⪯ e3 ⇀ e2

(r10 ) : e1 ⪯ e2 ⇔ e1 ⇀ e2 = 1
(r11) : (e1 ⇀ e2 )⊙ (e3 ⇀ e4 ) ⪯ (e1 ⋏ e3 ) ⇀ (e2 ⋏ e4 )
(r12 ) : (e1 ⇀ e2 )⊙ (e3 ⇀ e4 ) ⪯ (e1 ⋎ e3 ) ⇀ (e2 ⋎ e4 )
(r13 ) : (

∨
i∈

ei ) ⇀ e =
∧
i∈

(ei ⇀ e)

(r14 ) : e1 ⇀ (e2 ⋎ e3) = (e1 ⇀ e2)⋎ (e1 ⇀ e3)

Definition 2.3
[30] A soft multiset (F ,A) over (U,E) is called a soft multiset filter of A if it satisfies the following:
S1 : e1 ⪯ e2 ⇒ C e1

(F ,A)(u) ⩽ C e2
(F ,A)(u) for any u ∈ U, e1 , e2 ∈ A

S2 : min{C e1
(F ,A)(u), C e2

(F ,A)(u)} ⩽ C e1⊙e2
(F ,A)(u) for any u ∈ U, e1 , e2 ∈ A

Proposition 2.4
[30] Let (F ,A) be a softmultiset over (U,E). Then (F ,A) satisfies the following :
S3 : C

e

(F ,A)(u) ⩽ C 1
(F ,A)(u). ∀ e ∈ A

S4 : min{C
e1
(F ,A)(u), C

(e1 ⇀e2 )

(F ,A) (u)} ⩽ C
e2
(F ,A)(u) for any u ∈ U, e1 , e2 ∈ A

S5 : e1 ⪯ e2 ⇀ e
3
⇒ min{C e1

(F ,A)(u), C e2
(F ,A)(u)} ⩽ C e

3

(F ,A)(u) for any u ∈ U, e1 , e2 , e3 ∈ A

S6 : C
e1 ⇀e2
(F ,A)(u) = C

1

(F ,A)(u) ⇒ C
e1
(F ,A)(u) ⩽ C

e2
(F ,A)(u) for any u ∈ U, e1 , e2 ∈ A

S7 : C
(e1 ⇀e2 )

(F ,A) (u) ⩾ min{C
(e1 ⇀e

3
)

(F ,A) (u), C
(e3⇀e2 )

(F ,A) (u)} for any u ∈ U, e1 , e2 , e3 ∈ A

S8 : C
(e1 ⇀e2 )

(F ,A) (u) ⩽ C
((e1 ⊙e

3
)⇀(e2 ⊙e

3
))

(F ,A) (u) for any u ∈ U, e1 , e2 , e3 ∈ A

S9 : C
(e1 ⇀e2 )

(F ,A) (u) ⩽ C
((e2 ⇀e3 )⇀(e1 ⇀e3 ))

(F ,A) (u) for any u ∈ U, e1 , e2 , e3 ∈ A

S10 : C
(e1 ⇀e2 )

(F ,A) (u) ⩽ C
((e

3
⇀e1 )⇀(e

3
⇀e2 ))

(F ,A) (u) for any u ∈ U, e1 , e2 , e3 ∈ A

Example 2.5
Let U = {x1, x2}, E = {e1 ⪯ e2 ⪯ e3}, with ei ⊙ ej = min(ei, ej). Define soft multiset (F ,A) with:

Ce1
(F,A)(x1) = 1, Ce1

(F,A)(x2) = 0

Ce2
(F,A)(x1) = 2, Ce2

(F,A)(x2) = 1

Ce3
(F,A)(x1) = 3, Ce3

(F,A)(x2) = 2

Both filter conditions hold, hence (F, A) is a soft multiset filter.

2.1. Notation

The following notations are employed throughout this paper, with their respective meanings, unless stated
otherwise:

• A = (A,⋏,⋎,⪯,⊙,⇀, 0 , 1) denotes a residuated lattice, where a⋏ b represents the greatest lower bound
(g.l.b) of a, b and a⋎ b represents the least upper bound (l.u.b) of a, b. Here, 0 and 1 denote the g.l.b and l.u.b
of A, respectively.
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• N represents the set of all natural numbers including zero.
• (N,min,max) forms a lattice with respect to the usual order relation ⩽, i.e., for a, b ∈ N, a ⩽ b ⇔
min{a, b} = a and max{a, b} = b.

• A denotes the parameter set of a soft multiset filter (F ,A), where A is a residuated lattice.
• U denotes a universal multiset, and P (U) represents the powerset of the universal multiset U.
• If A is the parameter set of a soft multiset filter (F ,A) forming a residuated lattice, then the quotient structure

A/F is well-defined.
• (FF (1) ,A) = {e1 ∈ A : C

e1
(F ,A)(u) = C

1

(F ,A)(u)}
i.e., e ∈ FF (1) ⇔ C

e

(F ,A)(u) = C
1

(F ,A)(u)

• ξ(ei , ej ) = {u/C (ei ,ej )

(ξ,A×A)(u) | u ∈ U and ei , ej ∈ A} where C (ei ,ej )

(ξ,A×A)(u) = min{C ei⇀ej

(F ,A)(u), C ej⇀ei

(F ,A)(u)}

• ξF (ei , ej ) = {u/C (ei ,ej )

(ξF ,A×A)(u) | u ∈ U and ei , ej ∈ A},

where C
(e
i
,e
j
)

(ξF ,A)
(u) = min{C

(e
i
⇀e

j
)

(F ,A) (u), C
(e
j
⇀e

i
)

(F ,A) (u)} for any u ∈ U, e
i
, e

j
∈ A

3. Cosets of a softmultiset filter

Definition 3.1
Let (F ,A) be a softmultiset filter over (U,E). Then the mapping eiF : A → P (U) for some ’i’ is said to be a coset
of a softmultiset filter (F,A) if it is defined for any e

j
∈ A as C

e
j

(e
i
F,A)

(u) = min{C
(e

i
⇀e

j
)

(F,A) (u), C
(e

j
⇀e

i
)

(F,A) (u)}.

Note that for any e ∈ A, u ∈ U, C e
(1F ,A)

(u) = C e
(F ,A)(u)

Example 3.2
Consider the parameter lattice A = {e1, e2, e3, e4} defined by

e1 ⪯ e2, e1 ⪯ e3, e2, e3 ⪯ e4,

where e2 ⋏ e3 = e1 and e2 ⋎ e3 = e4. Define the residuum on A is given by

ei ⇀ ej =

{
e4, ei ⪯ ej ,

ej , otherwise.

Let U = {x1, x2} and define the soft multiset (F,A) by the multiplicity table

x1 x2

Ce1
(F,A) 1 1

Ce2
(F,A) 2 1

Ce3
(F,A) 1 2

Ce4
(F,A) 3 2

It is readily verified that (F,A) satisfies (S1) for all comparable pairs and (S2) for representative parameter pairs,
and hence forms a soft multiset filter.
According to Definition 3.1, the coset of (F,A) with respect to ei ∈ A is defined by

Cej (eiF,A)(x) = min
{
C

ei⇀ej
(F,A) (x), C

ej⇀ei
(F,A) (x)

}
, ∀ej ∈ A, x ∈ U.

Applying this definition yields the following cosets:
e
1
F (e

1
) = {3/x

1
, 2/x

2
}; e

2
F (e

1
) = {1/x

1
, 1/x

2
}; e

3
F (e

1
) = {1/x

1
, 1/x

2
}; e

4
F (e

1
) = {1/x

1
, 1/x

2
}.

e
1
F (e

2
) = {1/x

1
, 1/x

2
}; e

2
F (e

2
) = {3/x

1
, 2/x

2
}; e

3
F (e

2
) = {2/x

1
, 1/x

2
}; e

4
F (e

2
) = {2/x

1
, 1/x

2
}.

e1F (e3) = {1/x1 , 1/x2}; e2F (e3) = {2/x1 , 1/x2}; e3F (e3) = {3/x1 , 2/x2}; e4F (e3) = {1/x1 , 2/x2}.
e
1
F (e

4
) = {1/x

1
, 1/x

2
}; e

2
F (e

4
) = {2/x

1
, 1/x

2
}; e

3
F (e

4
) = {1/x

1
, 2/x

2
}; e

4
F (e

4
) = {3/x

1
, 2/x

2
}.
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Lemma 3.3
If (F ,A) be a softmultiset filter over (U,E), then e1F = e2F if and only if

C
e
1
⇀e

2

(F ,A) (u) = C
e
2
⇀e

1

(F ,A) (u) = C
1

(F ,A)(u)

Proof
Suppose that (F ,A) is a softmultiset filter over (U,E).
let e

1
, e

2
∈ A, u ∈ U be arbitrary.

e
1
F = e

2
F

⇔ C
e
1

(e1 F ,A)
(u) = C

e
1

(e2 F ,A)
(u) for any e

i
∈ e

1
F (= e

2
F ), u ∈ U

⇔ C
e
1
⇀e

1

(F ,A) (u) = min{C
(e
2
⇀e

1
)

(F ,A) (u), C
(e
1
⇀e

2
)

(F ,A) (u)}
⇔ C

1

(F ,A)(u) = min{C
(e
2
⇀e

1
)

(F ,A) (u), C
(e
1
⇀e

2
)

(F ,A) (u)}
⇔ C

e1⇀e2
(F ,A) (u) = C

1

(F ,A)(u) and

C
e
2
⇀e

1

(F ,A) (u) = C
1

(F ,A)(u) by S3

Corollary 3.4
Let (F ,A) be a softmultiset filter over (U,E). Then e

1
F = e

2
F if and only if

e
1
≡

(FF (1)
,A)

e
2
where e

1
≡

(FF (1)
,A)

e
2
if and only if e

1
⇀ e

2
∈ (FF (1)

,A) and e
2
⇀ e

1
∈ (FF (1)

,A).

Proof
Suppose (F ,A) is a soft multiset filter over (U,E) and let e

1
, e

2
∈ A, u ∈ U be arbitrary.

Since e
1
≡

(FF (1)
,A)

e
2
if and only if e

1
⇀ e

2
∈ (FF (1)

,A) and e
2
⇀ e

1
∈ (FF (1)

,A),

e
1
F = e

2
F

⇔ C
e
1
⇀e

2

(F ,A) (u) = C
1

(F ,A)(u) and

C
e
2
⇀e

1

(F ,A) (u) = C
1

(F ,A)(u)
⇔ e

1
⇀ e

2
∈ (FF (1)

,A) and

e
2
⇀ e

1
∈ (FF (1)

,A)

⇔ e
1

≡
(FF (1)

,A)
e
2

Lemma 3.5
If (F ,A) be a softmultiset filter over (U,E), then for any e ∈ [e2 ](FF (1)

,A)
,

C
e

(e
1

F ,A)
(u) = min{C

(e
1
⇀e

2
)

(F ,A) (u), C
(e
2
⇀e

1
)

(F ,A) (u)} where [a]
(FF (1)

,A)
= {b ∈ A : a ≡

(FF (1)
,A)

b}.

Proof

Let e ∈ [e2 ](FF (1)
,A)

be arbitrary.

⇔ e ≡
(FF (1)

,A)
e2

⇔ e ⇀ e
2

∈ (FF (1)
,A) and

e
2
⇀ e ∈ (FF (1)

,A)

⇔ C
e⇀e

2

(F ,A)(u) = C
1

(F ,A)(u) and

C
e
2
⇀e

(F ,A)(u) = C
1

(F ,A)(u) byDefinition

Now, e ⩽ ((e ⇀ e
1
) ⇀ e

1
) by (r

2
)

⇔ e
2
⇀ e ⩽ e

2
⇀ ((e ⇀ e

1
) ⇀ e

1
) by (r

5
)

= (e ⇀ e1) ⇀ (e2 ⇀ e1) by (r3)
⇒ C

e
2
⇀e

(F ,A)(u) ⩽ C
(e⇀e

1
)⇀(e

2
⇀e

1
)

(F ,A) (u) by (S1)
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Since C
e
2
⇀e

(F ,A)(u) = C
1

(F ,A)(u), it follows that C
1

(F ,A)(u) ⩽ C
(e⇀e

1
)⇀(e

2
⇀e

1
)

(F ,A) (u) which is not possible.
Therefore,

C
1

(F ,A)(u) = C
(e⇀e

1
)⇀(e

2
⇀e

1
)

(F ,A) (u)
C

e⇀e1
(F ,A)(u) ⩽ C

e2⇀e1
(F ,A) (u)

Analogously, C
e
2
⇀e

1

(F ,A) (u) ⩽ C
e⇀e

1

(F ,A)(u) follows.
i.e., C

e
2
⇀e

1

(F ,A) (u) = C
e⇀e

1

(F ,A)(u)
Similarly, C

e1⇀e2
(F ,A) (u) = C

e1⇀e

(F ,A)(u) can be obtained.

C
e

(e
1

F ,A)
(u) = min{C

(e
1
⇀e)

(F ,A) (u), C
(e⇀e

1
)

(F ,A) (u)}
= min{C

(e1⇀e2 )

(F ,A) (u), C
(e2⇀e1 )

(F ,A) (u)}

Corollary 3.6
C

e
2

(e1 F ,A)
(u) = C

e
1

(F ,A)(u) for all e
2
∈ (FF (1)

,A)

Proof Since (FF (1)
,A) = [1]

(FF (1)
,A)

and thus e
1
≡

(F
F (1)

,A)
1

C
e
2

(e
1

F ,A)
(u) = min{C

(e
1
⇀1)

(F ,A) (u), C
(1⇀e

1
)

(F ,A) (u)}
= min{C

e
1

(F ,A)(u), C
e
1

(F ,A)(u)}
= C

e
1

(F ,A)(u)

Lemma 3.7
If (F ,A) is a softmultiset filter over (U,E) then ≡

(FF (1)
,A)

is a congruence relation

Proof Let e
1
∈ A, u ∈ U be arbitrary

e1 ⇀ e1 = 1 by (r1)
⇒ C

e1⇀e1
(F ,A) (u) = C

1

(F ,A)(u) by S
3

⇒ e1 ⇀ e1 ∈ (FF (1)
,A)

⇒ e1 ≡
(FF (1)

,A)
e1

i.e., ≡
(FF (1)

,A)
is reflexive.

Let e
1
, e

2
∈ A, u ∈ U be arbitrary

e
1

≡
(FF (1)

,A)
e
2

⇔ C
e1⇀e2
(F ,A) (u) = C

1

(F ,A)(u) = C
e2⇀e1
(F ,A) (u)

⇔ e2 ≡
(FF (1)

,A)
e1

i.e., ≡
(FF (1)

,A)
is symmetric.

Let e1 , e2 , e3 ∈ A be arbitrary.
Suppose e

1
≡

(FF (1)
,A)

e
2

and e
2
≡

(FF (1)
,A)

e
3
.

So, e1 ⇀ e2 , e2 ⇀ e1 , e2 ⇀ e3 , e3 ⇀ e2 ∈ (FF (1)
,A)

Then for any u ∈ U, it follows that
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6 SOFTMULTISET COSETS AND SOFTMULTISET CONGRUENCE RELATIONS

C
e
1
⇀e

2

(F ,A) (u) ⩾ C
1

(F ,A)(u), C
e
2
⇀e

1

(F ,A) (u) ⩾ C
1

(F ,A)(u), C
e
2
⇀e

3

(F ,A) (u) ⩾ C
1

(F ,A)(u), C
e
3
⇀e

2

(F ,A) (u) ⩾ C
1

(F ,A)(u)

e
1
⇀ e

2
⩽ (e

2
⇀ e

3
) ⇀ (e

1
⇀ e

3
) by(r5)

⇒ C
e1⇀e2
(F ,A) (u) ⩽ C

(e2⇀e3 )⇀(e1⇀e3 )

(F ,A) (u) by S
1

⇒ C
1

(F ,A)(u) ⩽ C
(e2⇀e3 )⇀(e1⇀e3 )

(F ,A) (u)

⇒ min{C
e2⇀e3
(F ,A) (u), C

(e2⇀e3 )⇀(e1⇀e3 )

(F ,A) (u)} ⩽ C
e1⇀e3
(F ,A) (u)

⇒ min{C
1

(F ,A)(u), C
1

(F ,A)(u)} ⩽ C
e
1
⇀e

3

(F ,A) (u)
⇒ C

1

(F ,A)(u) ⩽ C
e
1
⇀e

3

(F ,A) (u)
⇒ e

1
⇀ e

3
∈ (FF (1)

,A)

Similarly, e3 ⇀ e1 ∈ (FF (1)
,A) can be derived in the same way and thus e1 ≡

(FF (1)
,A)

e3
i.e., ≡

(FF (1)
,A)

is transitive.
Let e

1
, e

2
, e

3
, e

4
∈ A be arbitrary.

Suppose e1 ≡
(FF (1)

,A)
e3 and e2 ≡

(FF (1)
,A)

e4
Then e

1
⇀ e

3
, e

3
⇀ e

1
, e

2
⇀ e

4
, e

4
⇀ e

2
∈ (FF (1)

,A)
It follows for any u ∈ U, (F ,A) satisfies the following :

C
e1⇀e3
(F ,A) (u) ⩾ C

1

(F ,A)(u), C
e3⇀e1
(F ,A) (u) ⩾ C

1

(F ,A)(u), C
e
2
⇀e

4

(F ,A) (u) ⩾ C
1

(F ,A)(u), C
e
4
⇀e

2

(F ,A) (u) ⩾ C
1

(F ,A)(u) (1)

Then (e
1
⋏ e

3
) ⇀ (e

2
⋏ e

4
) ⩾ (e

1
⇀ e

2
)⊙ (e

3
⇀ e

4
) by(r

11
)

⇒ C
(e1⋏e3 )⇀(e2⋏e4 )

(F ,A) (u) ⩾ C
(e1⇀e2 )⊙(e3⇀e4 )

(F ,A) (u) by S
1

⩾ min{C
e
1
⇀e

2

(F ,A) (u), C
e
3
⇀e

4

(F ,A) (u)} by S2

⩾ min{C
1

(F ,A)(u), C
1

(F ,A)(u)}
= C

1

(F ,A)(u)
⇒ (e1 ⋏ e3) ⇀ (e2 ⋏ e4) ∈ (FF (1)

,A)

Similarly (e
2
⋏ e

4
) ⇀ (e

1
⋏ e

3
) ∈ (FF (1)

,A) can be showed
Thus (e

1
⋏ e

3
}) ≡

(FF (1)
,A)

(e
2
⋏ e

4
)

Analogously it becomes upon using (r
12
) that (e

1
⋎ e

3
) ≡

(FF (1)
,A)

(e
2
⋎ e

4
)

i.e., ≡
(FF (1)

,A)
satisfies the substitutional property for ′ ⋏′ and ′⋎′

Hence ≡
(FF (1)

,A)
is a congruence relation.

Lemma 3.8
Let (F ,A) be a softmultiset filter over (U,E).
If for any e

1
, e

2
, e

3
, e

4
∈ A, e

1
F = e

3
F and e

2
F = e

4
F , then(1) (e

1
⋏ e

2
)F = (e

3
⋏ e

4
)F ,

(2) (e
1
⋎ e

2
)F = (e

3
⋎ e

4
)F

(3) (e1 ⊙ e2)F = (e3 ⊙ e4)F
(4) (e

1
⇀ e

2
)F = (e

3
⇀ e

4
)F

Proof
Let (F ,A) be a softmultiset filter over (U,E).
Assume e1F = e3F and e2F = e4F for any e1 , e2 , e3 , e4 ∈ A
⇒ e

1
≡

(FF (1)
,A)

e
3

and e
2
≡

(FF (1)
,A)

e
4

using Corollary 3.4

⇒ (e1 ⊙ e2) ≡(FF (1)
,A)

(e3 ⊙ e4) since ≡
(FF (1)

,A)
is a congruence relation

⇒ (e
1
⊙ e

2
)F = (e

3
⊙ e

4
)F

Analogously, (1),(2) and (4) can be obtained in the same manner.

Definition 3.9
Let (F ,A) be a softmultiset filter over (U,E).
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Let A/F denote the set of all cosets of (F ,A). i.e., A/F = {e
1
F : e

1
F is a coset of (F ,A), e

1
∈ A}.

For any e1F , e2F ∈ A/F we define : (e1 ⋏ e2)F = e1F ⊓ e2F
(e

1
⋎ e

2
)F = e

1
F ⊔ e

2
F , (e

1
⊙ e

2
)F = e

1
F ∗ e

1
F , (e

1
⇀ e

2
)F = e

1
F ⧹e

1
F

Theorem 3.10
If (F ,A) is a softmultiset filter over (U,E). Then A/F = (A/F ,⊓,⊔, ∗,⧹, 0F , 1F )
is a residuated lattice

Proof
Clearly, the operations on A/F become well-defined by the above Lemma 3.8 and Definition 3.9. It is to be shown
first that A/(F ,A) forms a bounded lattice.
Let e1 F , e2 F ∈ A/F be arbitrary.
⇒ e1 , e2 ∈ A
⇒ (e1 ⋏ e2 ) ∈ A [since A is a lattice]
⇒ (e1 ⋏ e2 )F ∈ A/F
⇒ e1 F ⊓ e2 F ∈ A/F
Similarly e1 F ⊔ e2 F ∈ A/F exists for every e1 , e2 ∈ A as A is a lattice.
Analogously, it can be shown 0F is the greatest lower bound of (A/F ,⊓,⊔) as 0 is the greatest lower bound of A
and 1F is the least upper bound of (A/F ,⊓,⊔) as 1 is the least upper bound of A. Thus (A/F ,⊓,⊔, 0F , 1F ) is a
bounded lattice.
Next, it is to be shown that A/(F ,A) forms a commutative monoid.
Let e1 F , e2 F , e3 F ∈ A/F be arbitrary. Then it follows from Definition 3.9 that

⇒ e1 , e2 , e3 ∈ A
⇒ e1 F ∗ (e2 F ∗ e3 F ) = e1 F ∗ (e2 ⊙ e3 )F

= (e1 ⊙ (e2 ⊙ e3 ))F
= ((e1 ⊙ e2 )⊙ e3 )F
= ((e1 ⊙ e2 )F ∗ e3 F )
= ((e1 F ∗ e2 F ) ∗ e3 F )

i.e., e1 F ∗ (e2 F ∗ e3 F ) = (e1 F ∗ e2 F ) ∗ e3 F , ∀ e1 F , e2 F , e3 F ∈ A/F
Similarly, e1 F ∗ e2 F =e2 F ∗ e1 F , ∀ e1 F , e2 F ∈ A/F holds and eF ∗ 1F = eF , ∀ eF ∈ A/F holds. Clearly 1F
is the identity element of (A/F , ∗). Thus (A/F , ∗, 1F ) is a commutative monoid.
It is to be shown next that (∗,⧹) is an adjoint pair in A/F .
Define the lattice order relation ⊑ on A/F as e1F ⊑ e2F if and only if e1F ⊔ e2F = e2F and e1F ⊓ e2F = e1F .
Let e

1
F , e

2
F , e

3
F ∈ A/(F ,A) be arbitrary.

e
1
F ∗ e

2
F ⊑ e

3
F

⇔ (e1 ⊙ e2)F ⊑ e3F
⇔ C

(e
1
⊙e

2
)⇀e

3

(F ,A) (u) ⩽ C
1

(F ,A)(u) ∀ u ∈ U

⇔ C
e
1
⇀(e

2
⇀e

3
)

(F ,A) (u) ⩽ C
1

(F ,A)(u) ∀ u ∈ U
⇔ C

e1
(F ,A)(u) ⩽ C

e2⇀e3
(F ,A) (u) ∀ u ∈ U

⇔ e1F ⊑ (e2 ⇀ e3)F
⇔ e

1
F ⊑ e

2
F ⧹e

3
F

i.e., e1F ∗ e2F ⊑ e3F ⇔ e1F ⊑ e2F ⧹e3F
Therefore, (∗,⧹) is an adjoint pair in A/F . Hence (A/F ,⊑,⊓,⊔, ∗,⧹, 0F , 1F ) is a residuated lattice

Theorem 3.11
Let (F ,A) be a softmultiset filter over (U,E). Define φ : A → A/(F ,A)
by φ(e1) = e1F . Then
(1) φ is an onto homomorphism
(2) kerφ = (FF (1),A)
(3) A/(FF (1),A) is isomorphic to A/(F ,A)
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Proof
(1) Clearly φ is one-one and onto.

φ(e
1
⋏ e

2
) = (e

1
⋏ e

2
)F

= e1F ⊓ e2F
= φ(e

1
) ⊓ φ(e

2
)

i.e., φ preserves ‘⋏’. Similarly, it can be shown that φ preserves ‘⋎,⊙ and ⇀’.
(2) Let e ∈ kerφ be arbitrary.
⇔ φ(e) = 1F ⇔ eF = 1F ⇔ e ≡

(FF (1)
,A)

1 ⇔ e ∈ (FF (1)
,A) and hence kerφ = FF (1)

(3) It immediately follows from (1) and (2)
In this section, we have examined the structural characteristics of cosets of soft multiset filters through a sequence

of propositions and intermediate results. The study culminates in two pivotal outcomes: first, the set of all cosets
of a soft multiset filter is shown to form a residuated lattice; and second, a mapping defined from this set to its
corresponding parameter structure is established as an onto homomorphism whose kernel induces an isomorphism
between the associated quotient structures. These foundational results emphasize the algebraic depth of coset
structures and naturally motivate the introduction of relational frameworks, leading to the study of soft multiset
equivalence and congruence relations in the subsequent section.

4. Softmultiset equivalence relation and softmultiset congruence relation

Extending the structural framework developed in the previous section, this part focuses on the relational aspects of
soft multiset theory. We introduce the concepts of soft multiset equivalence and congruence relations along with
their fundamental properties and axioms.

Definition 4.1
A soft multiset relation (ξ,A) over (U,E) is said to be softmultiset
equivalence relation on A × A if it satisfies the following :
ξ(e1 , e1) = sup{ξ(e2 , e3) : e2 , e3 ∈ A} (reflexive)
ξ(e

1
, e

2
) = ξ(e

2
, e

1
) (symmetric)

ξ(e1 , e2) ⪰ ξ(e1 , e3) ⋏ ξ(e2 , e3)} (transitive))

Example 4.2
Let A = {e1, e2, e3} be a finite residuated lattice of parameters subset of E with the order e1 ⪯ e2 ⪯ e3. We define
the following operations over A:
Monoid operation ⊙ : A×A → A

⊙ e1 e2 e3
e1 e1 e2 e3
e2 e2 e3 e3
e3 e3 e3 e3

Residuum operation ⇀: A×A → A by ei ⇀ ej =

{
e3 if ei ⪯ ej ,

e1 otherwise.
Also,

⇀ e1 e2 e3
e1 e3 e3 e3
e2 e1 e3 e3
e3 e1 e1 e3
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Define softmultiset relation ξ : A×A → A by

ξ e1 e2 e3
e1 e3 e2 e1
e2 e2 e3 e2
e3 e1 e2 e3

It is clear that ξ is a softmultiset equivalence relation on A×A

Lemma 4.3

If ξ is a softmultiset equivalence relation on A × A, then ξ satisfies the following :
(1) ξ(1, 1) = ξ(ei , ei), ∀ e1 ∈ A
(2) ξ(1, 1) ⪰ ξ(e

i
, e

j
), ∀ e

1
, e

2
∈ A

Proof
(1) It can easily be deduced from the reflexivity of ξ
(2) Let ei , ej ∈ A be arbitrary. Then ξ(1, 1) = ξ(ei , ej) = sup{ξ(ej , e

k
) : ej , e

k
∈ A} ⪰ ξ(ei , ej)

Definition 4.4
A softmultiset equivalence relation ξ on A × A is called softmultiset congruence
relation on A × A if for any e

1
, e

2
, e

3
, e

4
∈ A it satisfies the following compatibility conditions :

(1) ξ([e
1
⋏ e

2
], [e

3
⋏ e

4
]) ⪰ ξ(e

1
, e

3
) ⋏ ξ(e

2
, e

4
)

(2) ξ([e1 ⋎ e2 ], [e3 ⋎ e4 ]) ⪰ ξ(e1 , e3) ⋏ ξ(e2 , e4)
(3) ξ(e

1
⊙ e

2
, e

3
⊙ e

4
) ⪰ ξ(e

1
, e

3
) ⋏ ξ(e

2
, e

4
)

(4) ξ(e
1
⇀ e

2
, e

3
⇀ e

4
) ⪰ ξ(e

1
, e

3
) ⋏ ξ(e

2
, e

4
)

Example 4.5
The previously defined Example 4.2 satisfies the compatibility conditions with respect to ⋏,⋎,⊙ and ⇀ and hence
ξ forms a softmultiset congruence relation on A×A.

Theorem 4.6
Let ξ be a softmultiset equivalence relation on A × A. Then ξ is a
softmultiset congruence relation on A × A if and only if it satisfies the following :
(1) ξ([e1 ⋏ e3 ], [e2 ⋏ e3 ]) ⪰ ξ(e1 , e2)
(2) ξ([e

1
⋎ e

3
], [e

2
⋎ e

3
]) ⪰ ξ(e

1
, e

2
)

(3) ξ(e
1
⊙ e

3
, e

2
⊙ e

3
) ⪰ ξ(e

1
, e

2
)

(4) ξ(e1 ⇀ e3 , e2 ⇀ e3) ⪰ ξ(e1 , e2) and ξ(e3 ⇀ e1 , e3 ⇀ e2) ⪰ ξ(e1 , e2)

Proof
Suppose ξ is a softmultiset congruence relation on A × A . Then for any e

1
, e

2
, e

3
∈ A , we have

ξ([e
1
⋏ e

3
], [e

2
⋏ e

3
]) ⩾ ξ(e

1
, e

2
) ⋏ ξ(e

3
, e

3
)

= ξ(e1 , e2) ⋏ ξ(1, 1)
= ξ(e

1
, e

2
)

Similarly, (2),(3) and (4) can be derived
Conversely, ξ is a softmultiset equivalence relation on A × A which satisfies (1),(2),(3) and (4). Then for any
e
1
, e

2
, e

3
∈ A , we have

ξ(e
1
⋏ e

2
, e

3
⋏ e

4
}) ⩾ ξ(e

1
⋏ e

2
, e

2
⋏ e

3
) ⋏ ξ(e

2
⋏ e

3
, e

3
⋏ e

4
)

= ξ(e1 ⋏ e3) ⋏ ξ(e2 ⋏ e4)

Similarly, other conditions of Definition 4.4 can be derived
Hence ξ is a softmultiset congruence relation on A × A
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Definition 4.7
Let (F ,A) be a soft multiset filter over (U,E). Consider a softmultiset
relation ξF on A × A induced by (F ,A) is denoted by ξF (e1 , e

2
) and is defined as follows :

C
(e1 ,e2 )

(ξF ,A)
(x ) = min{C

(e1⇀e2 )

(F ,A) (x ), C
(e2⇀e1 )

(F ,A) (x )} for any x ∈ U, e
1
, e

2
∈ A

Theorem 4.8
Let (F ,A) be a soft multiset filter over (U,E). Then the soft multiset relation ξF

on A × A induced by (F ,A) is a soft multiset congruence relation over(U,E).

Proof
(i) Let u ∈ U and e

1
∈ A be arbitrary. Then it follows from Definition 4.7 that

C
(1,1)

(ξF ,A)
(u) = min{C

(1⇀1)

(F ,A) (u), C
(1⇀1)

(F ,A) (u)}
= min{C

1

(F ,A)(u), C
1

(F ,A)(u)}
= min{C

(e
1
⇀e

1
)

(F ,A) (u), C
(e
1
⇀e

1
)

(F ,A) (u)}
= C

(e
1
,e
1
)

(ξF ,A)
(u)

i.e., ξF (1, 1) = ξF (e1 , e
1
)

(ii) Let u ∈ U and e
1
, e

2
∈ A be arbitrary. Then

C
(e
1
,e
2
)

(ξF ,A)
(u) = min{C

(e
1
⇀e

2
)

(F ,A) (u), C
(e
2
⇀e

1
)

(F ,A) (u)}

= min{C
(e2⇀e1 )

(F ,A) (u), C
(e1⇀e2 )

(F ,A) (u)}
= C

(e2 ,e1 )

(ξF ,A)
(u)

i.e., ξF (e1 , e2) = ξF (e2 , e1)

(iii) Let u ∈ U and e1 , e2 , e3 ∈ A be arbitrary.

min{C
(e
1
,e
2
)

(ξF ,A)
(u), C

(e
2
,e
3
)

(ξF ,A)
(u)} = min{min{C

(e
1
⇀e

2
)

(F ,A) (u), C
(e
2
⇀e

1
)

(F ,A) (u)}, min{C
(e
2
⇀e

3
)

(F ,A) (u), C
(e
3
⇀e

2
)

(F ,A) (u)}}

= {min{C
(e
1
⇀e

2
)

(F ,A) (u), C
(e
2
⇀e

1
)

(F ,A) (u), C
(e
2
⇀e

3
)

(F ,A) (u), C
(e
3
⇀e

2
)

(F ,A) (u)}
= min{min{C

(e
1
⇀e

2
)

(F ,A) (u), C
(e
2
⇀e

3
)

(F ,A) (u)}, min{C
(e
3
⇀e

2
)

(F ,A) (u), C
(e
2
⇀e

1
)

(F ,A) (u)}}
⩽ min{C

(e
1
⇀e

3
)

(F ,A) (u), C
(e
3
⇀e

1
)

(F ,A) (u)} by S7

= C
(e
1
,e
3
)

(ξF ,A)
(u) by Definition 4.7

i.e., ξF (e1 , e
3
) ⋏ ξF (e2 , e

3
) ⩽ ξF (e1 , e

2
)

(iv) Let u ∈ U and e1 , e2 , e3 ∈ A be arbitrary. Then it follows from (r1), (r11) that

C
(e1⋏e3 , e2⋏e3 )

(ξF ,A)
(u) = min{C

(e1⋏e3 )⇀(e2⋏e3 )

(F ,A) (u), C
(e2⋏e3 )⇀(e1⋏e3 )

(F ,A) (u)}

⩾ min{C
(e
1
⇀e

2
)⊙(e

3
⇀e

3
)

(F ,A) (u), C
(e
2
⇀e

1
)⊙(e

3
⇀e

3
)

(F ,A) (u)} by (r11) and S1

= min{C
(e
1
⇀e

2
)⊙1

(F ,A) (u), C
(e
2
⇀e

1
)⊙1

(F ,A) (u)} by (r
1
)

= min{C
e1⇀e2
(F ,A) (u), C

e2⇀e1
(F ,A) (u)} by(r

0
)

= C
(e1 ,e2 )

(ξF ,A)
(u) by Definition 4.7

i.e., ξF (e1 ⋏ e
3
, e

2
⋏ e

3
) ⩾ ξF (e1 , e

2
)

(v) It can be shown in the similar way
(vi) Let u ∈ U and e1 , e2 , e3 ∈ A be arbitrary.

C
((e

1
⊙ e

3
), (e

2
⊙ e

3
))

(ξF ,A)
(u) = min{C

((e
1
⊙ e

3
)⇀(e

2
⊙ e

3
))

(F ,A) (u), C
((e

2
⊙ e

3
)⇀(e

1
⊙ e

3
))

(F ,A) (u)}
⩾ min{C

e1⇀e2
(F ,A) (u), C

e2⇀e1
(F ,A) (u)} by S

8

= C
(e
1
,e
2
)

(ξF ,A)
(u) by Definition 4.7

i.e., ξF ((e1 ⊙ e
3
), (e

2
⊙ e

3
)) ⩾ ξF (e1 , e

2
)
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(vii) Let u ∈ U and e
1
, e

2
, e

3
∈ A be arbitrary.

min{C
(e
1
⇀e

3
, e

2
⇀e

3
)

(ξF ,A)
(u), C

(e
3
⇀e

1
, e

3
⇀e

2
)

(ξF ,A)
(u)}

= min{min{C
(e
1
⇀e

3
)⇀(e

2
⇀e

3
)

(F ,A) (u), C
(e
2
⇀e

3
)⇀(e

1
⇀e

3
)

(F ,A) (u)}, min{C
(e
3
⇀e

1
)⇀(e

3
⇀e

2
)

(F ,A) (u), C
(e
3
⇀e

2
)⇀(e

3
⇀e

1
)

(F ,A) (u)}}
⩾ min{min{C

e
2
⇀e

1

(F ,A) (u), C
e
1
⇀e

2

(F ,A) (u)}, min{C
e
1
⇀e

2

(F ,A) (u), C
e
2
⇀e

1

(F ,A) (u)}} by S
9

and S
10

= min{C
(e
1
,e
2
)

(ξF ,A)
(u), C

(e
2
,e
1
)

(ξF ,A)
(u)}

= min{C
(e
1
,e
2
)

(ξF ,A)
(u), C

(e
1
,e
2
)

(ξF ,A)
(u)} by (ii)

= C
(e
1
,e
2
)

(ξF ,A)
(u)

i.e., ξF (e1 ⇀ e
3
, e

2
⇀ e

3
) ⋏ ξF (e3 ⇀ e

1
, e

3
⇀ e

2
) ⩾ ξF (e1 , e

2
)

It is clear from (i),(ii),(iii),(iv) and (v) that ξF is a softmultiset congruence relation on A × A

Note 4.9
Observed from Definition 3.1,4.7 and Theorem 4.8 that Any coset of a soft multiset filter of a residuated lattice is
a softmultiset congruence relation on the residuated lattice.

5. Conclusion

This study has developed a comprehensive framework for analyzing cosets and congruence relations in residuated
lattices using the soft multiset approach, thereby unifying algebraic precision with soft computational flexibility.
The established interrelations among filters, equivalence, and congruence relations enrich the theoretical foundation
of soft algebraic systems. The proposed results extend traditional lattice concepts to uncertain and graded
environments. In future work, this framework can be expanded to soft multiset modules, homomorphisms, and
quotient structures, offering broader applications in fuzzy inference, decision theory, and soft computing models.
Further exploration of algorithmic implementations and real-world data-driven validations is also envisioned.
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