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Abstract Accurate volatility prediction is essential for effective investment strategies and risk awareness. Yet, the intricate
and ever-changing characteristics of markets pose considerable challenges, motivating the use of hybrid frameworks by
integrating heteroscedastic models, multifractal analysis, and deep learning techniques. While heteroscedastic models are
simple and widely adopted, they often fail to reflect the inherent nonlinearities and multifractal properties of volatility. In
contrast, LSTM, GRU, and Transformers, while capable of capturing complex structures, require well-chosen explanatory
variables to deliver accurate forecasts.

Accordingly, this study conducts a rigorous comparative investigation across the Dow Jones Islamic Market Index, the Dow
Jones Global Index, and the S&P 500. We confirm the existence of multifractal scaling and evaluate the performance of
deep learning models based on historical features against hybrid models integrating GARCH-type forecasts and multifractal
indicators. Results demonstrate that integrating GARCH, EGARCH, and FIGARCH features significantly improves accuracy
by embedding key stylized facts such as volatility clustering, asymmetry, and long memory, with statistical significance
confirmed by the Diebold-Mariano test. Furthermore, findings indicate that while standalone multifractal features are
insufficient, they serve as complementary inputs. Rather than proposing a single novel model, the contribution of this work
lies in a systematic analysis of feature complementarity, demonstrating that guiding deep learning with econometric signals
enhances predictive robustness across diverse market structures.
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1. Introduction

The increasing complexity of global financial markets has made forecasting volatility dynamics a fundamental
challenge in both academic research and practical financial applications, given the chaotic, uncertain, and incomplete
nature of market information [43] . This challenge is particularly pronounced for the Dow Jones Islamic Market
Index (DJIMI), which has gained significant attention due to its growing role in global finance and the distinctive
features of participative investments [24]. To provide a comprehensive perspective on these dynamics and benchmark
the results against conventional markets, this study extends the analysis to include the Dow Jones Global Index
(DJG) and the Standard & Poor’s 500 (S&P 500). This comparative approach allows for a robust examination of
volatility structures across different investment paradigms.

The Generalized Autoregressive Conditional Heteroscedastic (GARCH) model, introduced by Bollerslev [4],
and its exponential extension EGARCH by Nelson [26], have proven effective in capturing time-varying volatility
and asymmetries. However, these models typically assume a short memory process, where the influence of shocks
decays exponentially over time. In contrast, empirical studies have shown that financial volatility often exhibits
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long memory behavior, with persistent autocorrelation (see [11]). The Fractionally Integrated GARCH (FIGARCH)
model, proposed by Baillie et al. [2], introduces a fractional differencing parameter that adjusts the model’s memory
depth. This extension allows for a more accurate representation of persistent volatility patterns. Nevertheless, due to
the complicated non-linear correlation structures between variables, along with the massive volume of data to be
analyzed, the volatility prediction results of these GARCH-type models remain insufficient [17].

Deep learning models such as Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) have shown strong performance in volatility prediction, as they take into
consideration nonlinearities and temporal dependencies [13]. Despite the success of RNN variants, their inherent
sequential processing nature imposes limitations on capturing long-range dependencies and prevents parallelization
during training. As the sequence length increases, the ability of LSTMs and GRUs to retain information from earlier
time steps can diminish, creating a bottleneck for modeling global temporal structures.

To address these limitations, we introduce the Transformer architecture into our comparative framework.
Transformers rely entirely on self-attention mechanisms, allowing the model to weigh the significance of different
time steps simultaneously—regardless of their distance in the past—thereby capturing complex, non-linear volatility
dynamics more effectively than sequential models. However, they rely heavily on rich and informative explanatory
variables that reflect the empirical structure of financial markets. Exploring various types of input data in deep
learning models helps identify which individual inputs or combinations thereof are most effective [9]. The focus of
this paper is to extract the most meaningful inputs; to do so, we turned to the multifractal analysis.

Originally developed in physics, the concept of multifractality has been successfully applied to finance; studies
have confirmed the performance of multifractal analysis in reflecting the complex aspect of markets [35]. Among
the most prominent tools, Multifractal Detrended Fluctuation Analysis (MF-DFA), developed by Kantelhardt et
al. [18], has been integrated as a dataset enrichment tool, making it possible to extract fine-grained characteristics,
thereby providing a better understanding of market behavior. Its integration into deep neural networks is expected to
improve predictive performance and provide richer explanations for models, particularly in contexts where market
dynamics are complex and multivariate [10].

Prior research has detected the presence of multifractal scaling structures stock indices [25,31], highlighting the
need for more robust analyses of volatility dynamics. In our study, we also identified multifractal behavior, which
we incorporated as an explanatory variable to optimize the predictive performance.

First, we use LSTM, GRU, and Transformers, trained solely on past realized volatility and past returns, to
establish a baseline performance. Second, we enhance them by adding volatility forecasts from GARCH-type
models (GARCH, EGARCH, and FIGARCH). Third, we perform a Multifractal Detrended Fluctuation Analysis
(MF-DFA) to extract the generalized Hurst exponent h, a key indicator in characterizing the temporal dynamics of
volatility. Values of h < 0.5 suggest anti-persistent behavior, where increases are likely followed by decreases and
vice versa, indicating a tendency toward mean-reversion. Conversely, h > 0.5 implies persistent behavior, where
trends are more likely to continue. When h = 0.5, the time series behaves as a purely random process [18]. Thus,
this exponent provides a compact measure of the underlying memory and structure, making it valuable in volatility
forecasting. Finally, we develop a comprehensive hybrid model integrating all these explanatory features—realized
volatility, returns, GARCH-type forecasts, and multifractal indicators to assess their combined effect on predictive
performance.

The article is organized as follows: Section 2 presents a review of existing studies related to time series dynamics
and volatility prediction. Then, Section 3 introduces the methodological framework, focusing on heteroscedastic
models, multifractal analysis approaches, and predictive models. Section 4 describes the dataset, including its
statistical properties and distributional characteristics, which guide the choice of appropriate predictive models.

Section 5 explores the multifractal structure of the time series to understand the evolution of its scaling behavior
and extract relevant indicators that are later used as input in deep learning models. Section 6 is devoted to experiments
and results, where we detail the predictive models, input variables, model architectures, and evaluation metrics, as
well as the obtained results.

The concluding section summarizes the key results, discusses the benefits and shortcomings of every model, and
proposes directions for future research.
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2 VOLATILITY PREDICTION WITH HYBRID MODELS

2. Literature Review

Volatility forecasting has been predominantly grounded in autoregressive conditional heteroskedasticity (ARCH)
models, introduced by Engle [12]. Bollerslev [4] extended this framework by proposing the Generalized ARCH
(GARCH) model, which became the foundation for much of the volatility modeling literature. These models estimate
conditional variance based on past squared residuals and variances, and have proven effective in capturing volatility
clustering in financial time series [4, 15]. Building on this foundation, numerous extensions were developed in
response to specific shortcomings of the standard GARCH framework [5].

One major limitation of the model is its failure to incorporate the leverage effect—also referred to as the
asymmetric volatility response—whereby adverse shocks exert a more pronounced influence on market volatility
than favorable shocks. As empirical studies have confirmed the presence of such asymmetries in financial time
series, the EGARCH model was proposed by Nelson [26] to capture this behavior.

Moreover, several studies have highlighted the presence of persistent temporal structure, a feature that standard
GARCH models fail to model. This gave rise to the FIGARCH model proposed by Baillie et al. [2], which
incorporates a fractional differencing parameter to model the memory depth.

In parallel, volatility prediction has advanced considerably through machine learning algorithms. This area has
emerged as a prominent research trend over the past decade, with deep learning approaches markedly enhancing
predictive performance [9]. Neural network-based techniques, in particular, have demonstrated strong predictive
capabilities in various studies (see [27,42]). In fact, LSTM architectures are widely regarded as essential components
in numerous financial time series forecasting models. Among their variants, GRU networks have gained significant
attention and demonstrated comparable performance to LSTM models.

However, despite their design intended to manage long-term dependencies, recurrent architectures are not immune
to computational limitations. When processing extraordinarily long temporal sequences, LSTMs and GRUs can still
suffer from gradient instability—specifically the vanishing or exploding gradient problem—which hampers their
ability to retain information over extended horizons. By contrast, the Transformer architecture learns information
from all positions in the entire sequence simultaneously, rather than sequentially. This parallel processing capability
effectively avoids the information loss often encountered during iterative training. Consequently, a growing number
of academics are turning to attention-based models to capture complex temporal dynamics that traditional recurrent
networks fail to preserve [36].

Even with these advances, several challenges, such as limited interpretability and substantial data requirements,
continue to affect the effectiveness of the model. In addition, the problem of delayed prediction has been widely
documented; it refers to the delay between the occurrence of relevant market events and the model’s ability to
forecast their effects on time. Such delays result in forecasts that often lag behind actual market trends, limiting
their ability to provide truly forward-looking insights. This issue is particularly critical given that financial markets
respond almost instantaneously to new information and dynamic changes [9].

In light of these challenges, researchers have explored the incorporation of additional features that better
characterize market behavior, leading to the development of hybrid models that seek to combine the strengths of
deep learning and econometric models. For instance, Amirshahi and Lahmiri, in their research [1], developed hybrid
models in which GARCH-type volatility forecasts were used as inputs to a Deep Feedforward Neural Network
(DFNN) and Long Short-Term Memory (LSTM) network, enhancing predictive performance on cryptocurrency
markets. They concluded that GARCH-type volatility is an informative variable that improves the precision of
predictions. In the same vein, Michankow et al. [22] proposed a hybrid model combining GARCH and GRU
and evaluated its robustness across three distinct datasets: the S&P 500 index, gold prices, and Bitcoin. Their
results demonstrated that such hybrid architectures are more performant than standalone models. Following the
paradigm shift towards self-attention mechanisms, recent studies have investigated integrating GARCH features into
Transformer-based architectures to overcome the sequential limitations of RNNs. Pioneering this approach, Ramos-
Pérez et al. [30] introduced a "Multi-Transformer" framework that merges varying GARCH-type forecasts with an
attention-based network. Their study on the S&P 500 volatility demonstrated that this architecture—specifically
when enhanced by a bagging mechanism within the attention heads—statistically outperforms both standalone
GARCH models and hybrid LSTM-GARCH configurations. Extending this line of inquiry, Mishra et al. [23]
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validated the robustness of these Multi-Transformer hybrids across a broader spectrum of assets, including foreign
exchange rates and individual stocks. Their empirical evidence highlights that Transformer-based hybrids maintain
superior predictive accuracy not only during stable periods but also during regimes of extreme market turbulence,
such as the COVID-19 pandemic, thereby confirming that econometric volatility inputs provide crucial guidance to
the self-attention mechanism in noisy financial environments. Nevertheless, financial time series are highly sensitive
and can be influenced by minor indicators, making the problem of selecting the most informative explanatory
variables a persistent challenge [9].

More advanced statistical models have turned to fractal and multifractal modeling. The application of fractals
in finance was notably introduced by Mandelbrot [21], whose work paved the way for multifractal modeling in
asset returns. Building on Mandelbrot’s pioneering work, Calvet and Fisher extend the multifractal paradigm by
providing both theoretical insights and practical tools for analyzing and modeling volatility [8]. Kantelhardt, in
his work [18], proposed a Multifractal Detrended Fluctuation Analysis (MF-DFA) as a tool to extract meaningful
features. In particular, the generalized Hurst exponents which have proven effective in capturing both persistence
and anti-persistence within time series. Multifractal behavior arises when the degree of temporal dependence is
scale-dependent, varying across time horizons, in contrast to monofractal processes that exhibit uniform scaling [10].

A considerable number of studies used the MF-DFA to detect multifractality and its sources [7,31,39]. They
suggest that the formation of multifractality is largely driven by nonlinear dependencies over time, the emergence of
heavy-tailed events, and the departure of return distributions from normality. However, these studies mainly consider
the MF-DFA as a descriptive tool for analyzing the dynamics and structure of financial markets, rather than as a
method for extracting characteristics to train deep learning models for forecasting purposes. Nevertheless, only a
limited number of studies have employed MF-DFA within a predictive framework. For instance, Ying Yuan et al. [41]
found that incorporating multifractal characteristics into the modeling process significantly improves forecasting
performance, especially in times of financial stress or turbulence. Poongjin Cho et al. [10], in their research, trained
RNNs with Hurst exponents. They concluded that those multifractal indicators enhance the predictive ability of
RNNs. Xiang Yu et al. [40] proposed a model that relies on multifractal analysis to detect complicated volatility
features, and they combined this approach with an attention mechanism. More recently, Florindo et al. [14] advanced
this integration by proposing GHENet, a model that explicitly injects non-linear dynamic information via generalized
Hurst exponents into a deep learning predictor. A key innovation of their architecture is the use of a self-attention
module specifically designed to process these fractal features, allowing the model to dynamically attend to the
most relevant scaling behaviors. Their empirical results on worldwide stock indices demonstrate that this attention-
based processing of Hurst exponents significantly boosts forecasting performance compared to traditional feature
integration methods. While these models achieved superior prediction compared with standalone models, they
provided only a limited exploration of the predictive power of different feature sets. In contrast, the present study
extends the literature by integrating econometric, deep learning, and multifractal perspectives into a unified hybrid
predictive framework. This work not only highlights the relative importance of diverse features but also demonstrates
that combining them allows for capturing time-varying volatility, nonlinear dynamics, and multi-scale dependencies
simultaneously.

3. Materials and Methods

3.1. GARCH Models

Although financial return series are generally uncorrelated over time, they exhibit volatility clustering, i.e., large

(small) residuals tend to be followed by other large (small) residuals. This implies that while the conditional mean

can often be treated as constant, the conditional variance displays temporal dependence [4]. To capture this feature,

GARCH model proposed by Bollerslev [4] expresses the conditional variance as a linear function of its own lags.
Formally, the return process is written as the mean equation

Ty = Ut + &, (1)
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where pu; denotes the conditional mean and €; = o;2; is the heteroscedastic error term. The equation of the GARCH
model is given by

0? =w+a(L)e? + B(L)o} )
Given that L is a lag or backshift operator, this equation can also be written in expanded form as:
P q
ol =w+ Z el + Z Bjcrf_j. 3)
i=1 j=1

Where p (respectively q) refers to the number of lagged o7 (respectively €7), with w > 0, o; > 0, and 3; > 0.
To account for the asymmetric response of volatility to shocks—often neglected by standard GARCH—the
EGARCH framework proposed by Nelson [26] is applied, through the inclusion of a parameter .

logo? = w + a(L) (Z) +~(L) < % ~E % ) + B(L) log o2 @)
Equivalently,
p q
log o} = W+Z {Olijt_qi + i < zt_z —-E it_' >] +Zﬁj logcrf_j. (5)
t—1 t—1 t—1

i=1 j=1

We employ the Fractionally Integrated GARCH (FIGARCH) model, which extends the GARCH framework by
introducing a fractional differencing parameter d € (0, 1) [2]. This parameter allows for a more flexible memory
structure that better captures the long-term persistence observed in real-world financial markets.

Following the same notation used in our GARCH specification, the FIGARCH(p, d, ¢) model can be expressed as:
o =w[l = B + M(L)ef (6)

Where A(L) = Y72, AxLF is a lag polynomial with positive coefficients that define the infinite memory in the
conditional variance, which is a distinctive feature of the FIGARCH model [2]. The model can also be reformulated
as:

w oo
=170 k=1

3.2. Multifractal Detrended Fluctuation Analysis

The Detrended Fluctuation Analysis (DFA) method [28] has gained wide popularity for characterizing fractal scaling
properties and uncovering extended correlation structures. Kantelhardt et al. [18] have extended this method by
introducing the Multifractal Detrended Fluctuation Analysis (MF-DFA), which has become one of the most widely
used techniques for extracting meaningful indicators that provide a means of evaluating the persistence within
temporal sequences [10].

Let z(t), . be a time series of length n. The returns are defined as:

B Z(t + At)
= (255 ®
Where A, denotes the discrete time step.
The analysis procedure is described as follows:
 Step 1: Define the accumulated profile y :
y(i) = (-7, i=1...n, ©)

t=1

where 7 denotes the mean of the entire return series.
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* Step 2: The profile is split into n; = [n/s| equally sized segments of length s, ensuring that they do not
overlap. When n is not perfectly divisible by s, a residual portion of the profile remains unsegmented. To
maintain statistical reliability, the segmentation procedure is reapplied from the opposite end, yielding a total
of 2n, segments.

» Step 3: Estimate the total trend using a polynomial regression. The variance of the residuals from these
regressions is then computed as follows:

72{ (I—1)s+k— ™ )(k)}Q, Wherel=1,....n
F%(l,s) = , (10)
72{ n—(l—ng)s+kl— f(m)(k)} , Wherel=mn,+1,...,2n,

where fl(m)(k) is a polynomial of order m, used to approximate the local trends. In this study, we set the
polynomial order to m = 2, as previous research indicates that in typical cases, this value provides an optimal
choice [34].

 Step 4: By computing the mean, the fluctuation function is obtained as follows :

21

1/q
Fy(s) = {2711 3 [Fz(l,s)}q”} . 11

=1

q = 2 corresponds to the standard DFA (see [28]).
 Step 5: Verify that the fluctuation function scales as a power law:

F,(s) oc 5@, (12)

for sufficiently large s.
This is done by analyzing the plots of Fy,(s) versus s, i.e., log(Fy(s)) = h(q)log(s) + constant.
When ¢ — 0, the value of Fy(s) is obtained by logarithmic averaging:

2ng
Fy(s) —exp{ Zln [F2(1, ) }cxsh“)). (13)

To establish the relationship between the Hurst exponent and the scaling exponent—another key indicator of
multifractality—we proceed as follows:

We suppose that the series r; is stationary, strictly positive, and normalized, that is, r; > 0 and Z?Zl re =1.1In
this case, the detrending step can be omitted, as there are no underlying trends that require removal. This assumption
leads to the following relation:

2N 1/q
{2 Zly (Is) — y((1 — 1)s)|* } o 5", (14)
Ng

If n is an exact multiple of s, i.e., ny = %, then the series can be divided perfectly into n, then we obtain :
2ng
y(ls) — Txs .
(Is) —y((I = 1)s ah(g)—1 (15)
The term y(Is) — y((I — 1)s) is the sum of r; within segment [ of size s:

ls

p)= > e =ylls) —y((l—1)s). (16)

t=(1-1)s+1
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6 VOLATILITY PREDICTION WITH HYBRID MODELS

The scaling exponent 7(g) is defined through the partition function Z,(s):

n/s

Zy(s) =D Ips(1)]7 o< 57, 17)
=1

From equations (14), (15), and (16) we derive the following relation:

7(q) = qh(q) — 1. (18)

It serves as a diagnostic for identifying multifractality: A linear relationship between 7(¢) and ¢ reflects a monofractal
structure, whereas a nonlinear relationship reveals the presence of multifractality in the system.

3.3. The Structure of Predictive Models

The objective of this research is to predict the one-day-ahead realized volatility; each predictive model incorporates
a specific combination of explanatory features to test their individual and joint contributions to volatility forecasting.
The input variables vary across models and include past volatility, past returns, volatility forecasts from GARCH
models, and multifractal indicators. The models compared are (i) deep learning models with historical features, (ii)
hybrid GARCH-deep learning models, (iii) deep learning models based on multifractal indicators, and (iv) a final
hybrid model that combines all the aforementioned features.

GARCH GARCH family
-0 +

_ 5EGARCH
- oFIGARCH

Deep Learning Models

Evaluation Metrics :

-RMSE
One day ahead - MAE
- returns . o
um Deep Learning Models Realized volatility -MSE
- volatility MAPE
_R?

Multifractal

Width MEF-DFA

=+
Deep Learning Models

( All features l
> +
L Deep Learning Models J

Figure 1. Architecture of the proposed predictive models.

4. Data Description

To ensure the robustness and generalizability of the proposed framework, the empirical analysis is conducted on
three distinct stock market indices, analyzed over the period from July 1, 2014, to July 1, 2025. The primary focus is
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the Dow Jones Islamic Market Index, which tracks stocks selected based on rules-driven criteria ensuring compliance
with ethical investment principles’, and includes 10 economic sectors, as presented in Table 1. As a representative
benchmark for the global conventional market, we include the Dow Jones Global Index. Additionally, the Standard
& Poor’s 500 is incorporated to capture the dynamics of the U.S. large-cap equity market.

Table 1. Sectors of DJIMI

Sector Name

Basic Materials
Consumer Goods
Consumer Services
Financials

Health Care
Industrials

Oil & Gas
Technology
Telecommunications
Utilities

We define the daily log-return as (r, = In(z;) — In(z;—1)), where z; represents the daily closing value of the
market index. The temporal evolution of returns for the three indices is illustrated in (Fig. 2). These plots visually
confirm that volatility is time-varying and far from constant. Notably, the phenomenon of volatility clustering is
clearly observable across all series: periods of relative tranquility are intermittently interrupted by bursts of high
turbulence, where large fluctuations tend to be followed by other large fluctuations.This behavior aligns with the
well-known empirical findings on financial stylized facts reported by Cont [11].
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Figure 2. Daily returns of the Dow Jones Islamic Market Index, Dow Jones Global Index, and S&P 500
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Table 2. Descriptive statistics of returns

Index

Mean

standard deviation Skewness

Kurtosis

ARCH-LM (p-val)

Lo’s test(p-val)

DIJIMI
DIG

0.000310
0.000254

S&P 500 0.000414

0.009391
0.008922
0.011328

-0.683
-1.122
-0.643

13.069
17.052
15.768

8.48x 10169
3.05 x 107178
4.12 x 107184

0.2605
0.2742
0.2813
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The study demonstrates that the returns for all three indices deviate from normality, as evidenced by their skewness
and kurtosis (see Figures 3, 4, and 5). Moreover, strong evidence of heteroscedasticity was detected across all
series using the ARCH-LM testt, with a pyaiue significantly lower than the 0.05 threshold. This result validates the
hypothesis of heteroscedasticity and confirms the fact that the variance changes as a function of time, suggesting the
suitability of ARCH-type models. Additionally, Lo’s modified R/S test® was employed to assess the persistence in
the time series. The test fails to detect statistically significant persistence in any of the indices (pyaiue > 0.05) (see
Table 2). These preliminary findings support our choice of models and help to justify the strengths and limitations of
the different modeling approaches considered in this study.

5. Multifractal Properties of the Studied Financial Indices

Following the MF-DFA methodology, the functions Fy(s) are evaluated over a range of temporal scales s, starting
from 16 days and extending up to %, where n represents the total number of observations. The choice of the upper
bound 7 is motivated by the findings in [18], which highlight that, for very large scales (i.e., s > 7), the number
of available non-overlapping segments, given by n, = %, becomes too limited. This small number of segments
undermines the statistical robustness of the averaging process involved in computing F(s). Consequently, scales
beyond this limit are excluded from the regression step used to estimate the generalized scaling exponent h(q).

The analysis uses a range of q values from -10 to 10, with steps of 2. As reported in [18], positive q values
highlight large fluctuations, while negative q values give more weight to small variations. This difference helps to
detect how the behavior of the time series changes between calm and volatile periods, giving a better understanding
of market dynamics.

If the time series under study exhibits monofractal characteristics, the function h(q) remains constant across all ¢
values, indicating a uniform scaling across all fluctuation sizes. However, when h(q) varies with g, this signals that
fluctuations of different magnitudes scale differently — a core feature of multifractal systems.

This multifractal nature is further supported by the plots of F(s) versus s illustrated in Figure 6. A distinct linear
scaling behavior is observed consistently across all three indices (DJIMI, DJ Global, and S&P 500). This linearity
confirms that the power-law relation holds true regardless of the specific market structure, validating the applicability
of the MF-DFA method for this comparative study.

DJIMI DJ SP&500

-4

8 9 4 5 6

IS
el
o

7
log(s) log(s)

Figure 6. F'(q) as function of scales for different values of ¢

1This test checks whether the variance changes over time, helping to detect ARCH-type behavior.
8Lo’s modified R/S test is an extension of the classical rescaled range analysis, designed to detect long memory in time series
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10 VOLATILITY PREDICTION WITH HYBRID MODELS

As ¢ increases from —10 to 10, the estimated h(q) for all three indices exhibits a distinct decreasing trend,
dropping from high values to lower values. Such variation in h(q) values reflects heterogeneous market behaviors
across scales, underscoring the relevance of multifractal-based features for volatility modeling.

Additionally, the mass exponent function defined in equation (18) also exhibits a strong non-linear relationship
with ¢, which serves as another robust indicator of multifractality. In contrast, for monofractal series, where h(q) is
constant, and 7(qg) varies linearly with ¢ (see Figure 7).

Hurst exponent h(q) (MF-DFA) Mass exponent T(q)

-100 15 -5.0 -25 0o 25 50 75 100 -100 15 -5.0 -25 00 25 50 75 100
Ll [l

Figure 7. Generalized Hurst Exponent and Mass Function as functions of q.

6. Experiments and Results

The realized volatility is defined as the empirical rolling volatility calculated as the standard deviation of daily
returns over a fixed-size window of w = 30 days. Formally, it is expressed as:

1 w—1 B p
%t =\lw Z(rt,i — )%, where 7 =1In ( i )

Z
i=0 =1

where 7, denotes the log-return at time ¢ and 7; is the mean return over the interval [t — w + 1,¢]. Realized
volatility is directly observable from historical data, which makes it a particularly relevant and practical target for
forecasting and for supporting informed investment strategies [33].

We consider a wide range of models, from traditional econometric approaches to deep learning and hybrid
architectures. Each type of model uses specific input features, as described below, in the following sections:

6.1. Proposed Architectures and Feature Sets

Deep Learning Models for Volatility Forecasting: To capture the complex temporal dependencies of realized
volatility, we employ three distinct Deep Learning architectures: LSTM, GRU, and Transformers. While LSTM and
GRU networks rely on recurrent mechanisms to process sequential data, the Transformer architecture leverages a self-
attention mechanism—specifically implemented here with 4 attention heads—to capture long-range dependencies
in parallel. Despite their architectural differences, we adopt a unified data-driven approach where those baseline
models ingest the exact same input vector. This vector is constructed using an optimal lag length L determined via
grid search, specifically ranging from 5 to 30 past observations. This choice is justified by the structure of financial
markets, it captures dynamics from day traders operating on a weekly basis (short-term) to investors focusing on
monthly trends (medium-term) [6]. The complete input vector at time ¢, shared across all baseline models, is thus
defined as:

baseline __
Xt - [O—thv"'vo-tflv thLv"‘vrtfl}

where L € {5,30}.
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GARCH-deep learning Hybrid Architectures for Volatility Prediction: To accurately predict realized volatility

in a way that reflects market reality, it is essential to develop a model that accounts for various empirical

characteristics. In this regard, we incorporate GARCH-type forecasts into the deep learning input. Consistent

with the prevailing literature, we utilize the (1, 1) order, which has been repeatedly proven to be sufficient for

modeling financial volatility while avoiding the overfitting risk associated with higher-order parameters [1, 17].
Formally, the extended input vector at time ¢ is given by:

hybrid __ GARCH —type
Xt - |:0-t—L7"'7Ut—177nt—La"'7Tt—lao-t

where otG ARCH —type represents the volatility forecast generated by the GARCH, EGARCH, or FIGARCH
model [1,17].

This allows the model to capture statistical structure from GARCH-type models and nonlinear patterns from
recent data. Hybrid models that combine deep learning and GARCH may improve the robustness and interpretability
of volatility forecasts, but do not account for the multifractal nature of financial time series.

Integration of MF-DFA-Based Indicators into Deep Learning Architectures: To enrich the model with
multifractal information while mitigating the risk of overfitting due to high dimensionality, we adopt a selective
feature engineering approach. The generalized Hurst exponents h(q) are computed using the MF-DFA method
applied to a moving window of w = 126 trading days. This window size is chosen to strike a balance between
statistical robustness and the ability to capture evolving market dynamics. This choice is supported by the recent
work of Florindo et al. [14], who established that a window of 100 trading days represents the minimum threshold to
ensure computational stability, noting that larger values increase computational cost without improving forecasting

performance.
Furthermore, instead of incorporating the entire spectrum of ¢ values as inputs, we focus on the extreme moments
q = —b and ¢ = 5. Several studies have highlighted that these specific values effectively characterize the scaling

behavior of small and large fluctuations, respectively [16, 19]. Consequently, we construct a compact multifractal
feature, denoted as Ah;, which represents the multifractal spectrum width (or degree of multifractality) defined as:

Aht = ht <szn) - ht (Qmaz) (19)

where ¢,,s,, = —5 and ¢4, = 5. This indicator captures the richness of the multifractal structure. By using this
condensed metric, we preserve the essential multifractal information without increasing the computational complexity
of the deep learning models. The input vector is then defined as:

X = [Ut—b e O 1, T Ly T, ARy, Aht—l] (20)

Deep Learning Models with Combined Explanatory Features: In this section, we propose a fully integrated
forecasting framework that combines multiple sources of information to enhance the predictive power of Deep
Learning Models. Specifically, we use a set of explanatory variables including historical data, volatility forecasts
obtained from GARCH-type models (GARCH, EGARCH, FIGARCH), and the multifractal feature.

This hybrid design reflects the hypothesis of complementarity, which is based on the idea that each type of input
feature captures distinct but relevant aspects of the volatility structure. Historical returns and realized volatility
reflect the recent price behavior and short-term market dynamics. GARCH-type forecasts, on the other hand, embed
statistical information such as conditional heteroscedasticity, leverage effects, and long-memory behavior that are
not always detectable through raw data. Finally, Multifractal spectrum derived from MF-DFA offers insights into the
multiscale structure of the series. The input vector is then given by:

GARCH—type
Xt = [Utfln-"ao-tf]d Tt—Ly -+, Tt—-1,0 up ) Ahth)"'7Aht71j|
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6.2. Experimental Setup and Evaluation

To ensure a rigorous evaluation and prevent look-ahead bias, we adopted a strict temporal data splitting strategy.
The total dataset was first divided into a training set (first 80%) and a hold-out test set (last 20%). The test set was
strictly preserved for the final out-of-sample evaluation and was never used during the training or hyperparameter
tuning phases.

During the grid search optimization, the training set was further split: 80% was used for training and 20% was set
aside as a validation set. This validation subset played a crucial role in monitoring model convergence and tuning
hyperparameters.

Regarding the training dynamics, we set a maximum of 250 epochs. However, to avoid overfitting and reduce
computational cost, we implemented an early stopping mechanism. This callback monitored the validation loss and
stopped training if no improvement was observed after a patience period (10 epochs), automatically restoring the
model weights that achieved the lowest validation error.

The hyperparameters were optimized via grid search to identify the configuration that minimizes the Mean Squared
Error. We simultaneously optimized structural parameters (number of layers, neurons) and input configurations (lag
lengths for returns, volatility, and multifractal width). The specific search space explored is detailed in Table 3. All
models were trained using the Adam optimizer with a fixed learning rate of 0.001 and a batch size of 32, ensuring
stable convergence.

To ensure the robustness and reproducibility of our findings, and to minimize the bias induced by random seeding,
each optimal model configuration was executed for 30 independent runs. Consequently, all evaluation metrics
reported in the subsequent results section represent the average performance across these 30 trials.

Table 3. Hyperparameter search space and training settings.

Hyperparameter ‘ Search Space / Value

Architecture & Training

Hidden Layers [1,3]
Neurons per Layer | [64, 128]
Batch Size 32
Learning Rate 0.001
Max Epochs 250 (with Early Stopping)
Optimizer Adam
Input Structure (Lags)
Returns Lag [5, 30]
Volatility Lag [5,30]

Multifractal Lag [5,30]

The forecasting accuracy of the proposed models is evaluated using five standard metrics that complement each
other. Here, o; denotes the observed volatility, &; the predicted volatility, &; the mean of observed values, and n the
number of observations.
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Table 4. Evaluation metrics and their descriptions

Evaluation Metrics

Description

MAE = £ 370 |oi — 6i

The mean absolute error measures the average absolute deviation between
predicted and actual volatility, providing an overall measure of accuracy.

MSE = % Z?:l (Cfi — (3'7)2

The mean squared error emphasizes larger deviations by squaring the errors,
making it sensitive to significant prediction errors.

RMSE = /130 (07— 6,)°

The root mean squared error offers an interpretable metric in the same scale
as the original data, summarizing the overall forecasting error.

MAPE — 1 577, -2

The mean absolute percentage error evaluates prediction accuracy in relative
terms by expressing the absolute error as a percentage of the actual values,
making it particularly useful for comparing forecast performance.

2 _ 1 2ii(ei—6:)?
RE=1 Z?:i(tfi—éi)z

The coefficient of determination evaluates the explanatory power of the
model, indicating how well the predicted values approximate the observed
data. An R? value close to 1 indicates that the model explains most of the
variability in the observed data.

6.3. Results and Discussion

Tables below summarize the forecasting performance of all models using five evaluation metrics.

Table 5. Comparison of forecasting performance (DJIMI Index)

Model MSE RMSE MAE R? MAPE
LSTM 1.07 x 1076 0.001031 0.000592 0.9137  6.88
LSTM_MF 1.44 x 1075 0.001191 0.000745 0.8847  8.86
GARCH_LSTM 9.36 x 10=7  0.000963 0.000587 0.9243  6.67

EGARCH_LSTM
FIGARCH_LSTM

1.11 x 107 0.001044 0.000645 0.9099  7.20
1.18 x 1075 0.001071 0.000680 0.9049  7.68

ALL_LSTM 1.22 x 10=%  0.001098 0.000657 0.9022  7.26
GRU 9.39 x 10=7 0.000964 0.000597 0.9240 6.90
GRU_MF 1.15 x 1076 0.001069 0.000657 0.9079  7.78
GARCH_GRU 1.23 x 10~ 0.001092 0.000738 0.9008 8.34
EGARCH_GRU 8.58 x 10=7 0.000913 0.000584 0.9306  6.90
FIGARCH_GRU 9.81 x 107 0.000982 0.000651 0.9206  7.61
ALL_GRU 8.73 x 1077 0.000930 0.000575 0.9302 6.84
Transformer 9.38 x 107 0.000952 0.000609 0.9250 7.29

Transformer MF

GARCH_Transformer
EGARCH_Transformer

3.29 x 107¢ 0.001504 0.000935 0.7370  10.79
1.18 x 1075 0.001030 0.000656 0.9060  7.85
1.52 x 107 0.001026 0.000640 0.8781  7.31

FIGARCH_Transformer  9.01 x 10=7  0.000927 0.000572 0.9279  6.77

ALL_Transformer

1.02 x 1075 0.000980 0.000629 0.9184  7.61
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Table 6. Comparison of forecasting performance (Dow Jones Index)

Model MSE RMSE MAE R? MAPE
LSTM 9.92 x 10~7  0.000994 0.000549 0.8971 7.36
LSTM_MF 1.17 x 1076 0.001077 0.000640 0.8806 9.10
GARCH_LSTM 7.54 x 10=7 0.000867 0.000530 0.9218 7.14
EGARCH_LSTM 777 x 1077 0.000873 0.000545 0.9194 7.46
FIGARCH_LSTM 9.28 x 107 0.000959 0.000550 0.9037 7.16
ALL_LSTM 8.81 x 1077 0.000926 0.000604 0.9099 8.80
GRU 9.46 x 10~7 0.000967 0.000574 0.9018 7.66
GRU_MF 1.09 x 106 0.001044 0.000606 0.8882 8.52
GARCH_GRU 9.12 x 107 0.000950 0.000556 0.9054 7.24
EGARCH_GRU 1.05 x 10~ 0.001001 0.000638 0.8907 8.27
FIGARCH_GRU 7.79 x 10=7  0.000877 0.000549 0.9192 7.46
ALL_GRU 9.77 x 10~7  0.000975 0.000636 0.9001 9.27
Transformer 9.28 x 10~7 0.000937 0.000573 0.9052 7.85
Transformer_ MF 1.04 x 1076 0.001016 0.000652 0.8932 9.00
GARCH_Transformer 7.49 x 10=7  0.000859 0.000499 0.9234 6.77
EGARCH_Transformer 1.29 x 10~¢ 0.000958 0.000620 0.8679 8.42
FIGARCH_Transformer 2.40 x 10~ 0.001231 0.000717 0.7544 9.34
ALL_Transformer 8.50 x 10~7 0.000872 0.000544 0.9130 7.53
Table 7. Comparison of forecasting performance (SP500 Index)
Model MSE RMSE MAE R? MAPE
LSTM 1.75 x 10=%  0.001321 0.000742 0.9195 7.63
LSTM_MF 2.04 x 1075 0.001421 0.000895 0.9074 9.75
GARCH_LSTM 1.30 x 10~ 0.001137 0.000680 0.9403 7.15
EGARCH_LSTM 1.71 x 10=% 0.001301 0.000713 0.9214 7.18
FIGARCH_LSTM 1.53 x 1076 0.001233  0.000693 0.9296 6.96
ALL_LSTM 2.18 x 1076 0.001467 0.000824 0.9007 8.05
GRU 1.75 x 10~% 0.001316 0.000742 0.9195 7.74
GRU_MF 1.95 x 10~ 0.001392 0.000804 0.9114 8.75
GARCH_GRU 1.65 x 1076 0.001271 0.000771 0.9243 7.74
EGARCH_GRU 1.37 x 1076 0.001160 0.000709 0.9368 7.66
FIGARCH_GRU 1.23 x 10~% 0.001104 0.000666 0.9436 7.29
ALL_GRU 1.55 x 1076 0.001233  0.000781 0.9295 8.45
Transformer 4.11 x107% 0.001834 0.001163 0.8128 12.53
Transformer_MF 5.16 x 1075 0.002034 0.001283 0.7653  13.60
GARCH_Transformer 1.62 x 106 0.001240 0.000700 0.9263 7.20
EGARCH_Transformer 2.54 x 10~¢ 0.001394 0.000944 0.8844 10.43
FIGARCH_Transformer 2.19 x 10~ 0.001350 0.000758 0.9002 7.58
ALL_Transformer 3.17x107% 0.001636 0.001053 0.8558 11.02

The forecasting performance of the considered models across the DJIMI, DJ Global, and S&P 500 indices is
summarized in Tables 5, 6, and 7, respectively. The comparison relies on five distinct metrics.

The baseline models (LSTM, GRU, and Transformer), trained solely on historical returns and realized volatility,
establish a robust benchmark but exhibit varying degrees of effectiveness across markets. As shown in Table 5
(DJIMI), the LSTM and GRU models achieve an RMSE of approximately 0.0010, indicating reasonable predictive
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capability. However, the Transformer architecture generally exhibits higher error rates in standalone configurations,
particularly for the Dow Jones Global index (Table 6), where it records the highest RMSE (0.001834). This
performance discrepancy aligns with the comparative analysis of Bilokon and Qiu [3], who investigated the
applicability of Transformers in financial forecasting. Their study concluded that while Transformers may show
advantages in predicting absolute price sequences, LSTM-based models demonstrate superior and more robust
performance on difference sequences, such as price movements and returns. Consequently, without the guidance of
domain-specific features, the self-attention mechanism appears less effective than recurrent architectures in capturing
the short-term, stationary dynamics of realized volatility.

The integration of econometric volatility forecasts constitutes the most significant performance driver. Across
all three indices, models augmented with GARCH, EGARCH, or FIGARCH inputs consistently reduce prediction
errors. For instance, in the case of the DJIMI (Table 5), the EGARCH-GRU model achieves the lowest RMSE
(0.000913), significantly outperforming the standalone GRU (0.000964). Similarly, for the S&P 500 (Table 7), the
GARCH-Transformer yields the best overall performance with an RMSE of 0.000859, improving upon the baseline
Transformer (0.000937). This result is also supported by other research, as the hybridization of GARCH-type models
and deep learning has generally shown better performance compared to standalone models [1].

A more nuanced picture emerges regarding the contribution of multifractal features. Models relying solely
on multifractal indicators frequently exhibit higher error metrics than the baselines. This finding contrasts with
conclusions drawn in recent literature [38,40], where multifractal indicators were reported to significantly enhance
standalone predictive performance. This divergence can be justified by the specific stochastic properties of the
datasets analyzed. As reported in Table 2, Lo’s Modified R/S test failed to detect statistically significant long-memory
persistence in the DJIMI, DJ Global, and S&P 500 indices. Since the predictive power of generalized Hurst exponents
Ah, relies heavily on the presence of persistent autocorrelation structures, their standalone efficacy is naturally
diminished in markets exhibiting weak memory. However, their value becomes evident in the fully integrated "ALL"
architectures. In the DJ Global index, the ALL-GRU model achieves a competitive RMSE of 0.001233 with a high
R? of 0.9295. This demonstrates that while multifractal exponents lack the directional signal required for precise
one-step-ahead forecasting when used in isolation, they act as effective complementary variables.

Table 8. Diebold-Mariano Test Statistics (Positive values indicate Hybrid > Baseline)

Model Variation DJIMI DJ Global S&P 500
Panel A: Comparison against Baseline LSTM

LSTM-MF -1.19 —4.40*** -0.84
GARCH-LSTM 1.77* 2.88*** 3.51%%*
EGARCH-LSTM 0.14 3.53** 0.99
FIGARCH-LSTM -0.22 1.63 1.36
ALL-LSTM -0.45 2.35** -0.96
Panel B: Comparison against Baseline GRU

GRU-MF —2.94%** —3.39** —3.82%**
GARCH-GRU —2.58*** 0.68 0.22
EGARCH-GRU 3.38** -0.29 2.96***
FIGARCH-GRU 0.14 3.06*** 3.06"**
ALL-GRU 2.07** 1.13 0.92
Panel C: Comparison against Baseline Transformer
Trans-MF —7.33%* —4.59%** -0.41
GARCH-Trans 217 1.36 4.25%%*
EGARCH-Trans 3.66"** 2.75%* 4.99%**
FIGARCH-Trans 3.03* 0.61 4.28%**
ALL-Trans 1.86* 1.78% 0.86

Note: Values represent the DM test statistic.
##x** and * denote significance at 1%, 5%, and 10% levels.
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While the reduction in error metrics points towards the superiority of hybrid architectures, we employ the
Diebold-Mariano (DM) test to verify the statistical significance of these improvements. Table 8 presents the pairwise
comparison of selected hybrid models against their respective baselines.

The results of the Diebold-Mariano test, presented in Table 8, provide a rigorous statistical validation of the
proposed hybrid frameworks across the three indices. The test statistics reveal distinct patterns regarding the
contribution of each feature set across different architectures.

Consistent with the RMSE findings, the DM test confirms that integrating multifractal features in isolation
generally fails to yield statistically significant improvements over the baselines. This inefficiency is particularly
pronounced for the DJIMI index, where the Trans-MF configuration records the lowest test statistic in the study
(DM = —7.33***), indicating a severe deterioration compared to the standalone Transformer. Similarly, negative
significant values are observed for the LSTM-MF on DJ Global (DM = —4.40***). This reinforces the conclusion
that while multifractal exponents capture structural roughness, they lack the directional volatility signal required for
precise short-term forecasting when used without concurrent variance estimators.

In contrast, the integration of econometric volatility forecasts delivers the most consistent statistical gains, although
the optimal configuration depends on both the backbone architecture and the specific market. Within the LSTM
framework, improvements remain moderate for the DJIMI (with GARCH-LSTM showing marginal significance
at 1.77*), whereas the EGARCH-LSTM model proves robust on the DJ Global (3.53***). For the GRU network,
results are highly index-dependent: while the GARCH-GRU underperforms on the Islamic index, the EGARCH-GRU
configuration emerges as a top performer for the DJIMI (3.38***), suggesting that the asymmetric leverage effect is a
critical driver for this specific market. Conversely, the FIGARCH-GRU excels on the DJ Global (3.06***), indicating
a better capture of long-memory features in that context. Finally, the Transformer baseline benefits most dramatically
from hybridization across all boards; notably, the EGARCH-Trans model achieves massive improvements for both
the DJIMI (3.66***) and S&P 500 (4.99***), as the explicit volatility path bridges the gap in measuring serial
dependence for the non-recurrent architecture.

Regarding the comprehensive models combining all features, the results generally confirm they outperform
the baselines (e.g., ALL-GRU on DJIMI: 2.07** and ALL-LSTM on DJ Global: 2.35**). However, they do not
systematically generate the highest t-statistics compared to the simpler GARCH or EGARCH hybrids.

7. Conclusion and Future Work

This study proposed and rigorously evaluated a novel hybrid forecasting framework that integrates econometric
volatility estimates (GARCH family) and multifractal features (MF-DFA) into advanced Deep Learning architectures
(LSTM, GRU, and Transformers). By applying these models to the Dow Jones Islamic Market Index, the Dow Jones
Global Index, and the S&P 500, we assessed their ability to capture the complex, non-linear, and long-memory
dynamics of financial volatility.

The empirical results lead to three major conclusions. First, the integration of econometric volatility forecasts
significantly enhances the predictive accuracy of deep learning models, validating the synergy between domain-
specific econometric theory and data-driven representation learning. The Transformer architecture benefited the most
from this hybridization, with the EGARCH-Transformer achieving the highest statistical significance in forecasting
improvements across the S&P 500 and the DJIMI. This suggests that providing an explicit volatility path effectively
compensates for the Transformer’s lack of inherent recurrence, allowing its self-attention mechanism to focus on
refining the volatility trajectory.

Second, standalone multifractal features are insufficient for short-term forecasting. Models relying solely on
multifractal inputs frequently failed to outperform the baselines. This finding implies that while generalized Hurst
exponents successfully characterize structural market roughness, they lack the directional signal required for
one-step-ahead prediction unless paired with robust variance estimators.

Third, model performance is highly sensitive to the specific characteristics of the target index. For the
Islamic market, models incorporating asymmetric volatility yielded the most robust gains (e.g., EGARCH-GRU),
highlighting the importance of capturing the leverage effect in Shariah-compliant equities. Conversely, the Dow
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Jones Global Index favored models capable of handling long-memory dependencies, such as the FIGARCH-GRU.
Furthermore, while the comprehensive "ALL" models generally outperformed the baselines, they consistently

yie

Ided lower test statistics than the GARCH-Deep Learning hybrids.

In summary, this research validates the hypothesis of feature complementarity, demonstrating that the integration of
domain-specific econometric signals significantly enhances the predictive robustness of deep learning architectures.
Future research could extend this framework by exploring high-frequency data to better capture intraday
multifractality or by integrating the recently proposed attention-based processing of Hurst exponents to better
exploit fractal dynamics. Additionally, testing these hybrid architectures on other volatile asset classes, such as
cryptocurrencies or commodities, remains a promising avenue for validation.
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