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Abstract The estimation of reliability R = P (X < Y ) for independent Rayleigh-distributed random variables X and Y is
examined in this study. This estimation is essential for reliability analysis and stress-strength models in engineering. Three
estimators are derived and compared: a Bayesian estimator utilizing conjugate Gamma priors, the method of moments (Mom)
estimate, and the maximum likelihood estimator (MLE). The normality of the MLE and the creation of confidence intervals
using the Fisher information matrix are two of its acknowledged asymptotic characteristics. A thorough simulation analysis
measures bias, mean squared error (MSE), and confidence interval coverage to assess how well these estimators perform
across a range of sample sizes and parameter combinations. Our findings show that, especially for small to moderate sample
sizes, the MLE consistently performs better in terms of MSE than the Mom and Bayesian estimators. Despite its flexibility,
the Bayesian technique exhibits sensitivity to previous specifications when there is a considerable difference between
the scale parameters θ1 and θ2. With applications in quality control and reliability engineering, the study offers useful
recommendations for choosing estimators depending on sample size and parameter configurations. Numerical examples are
provided to demonstrate the suggested approaches, and their expansions to more intricate systems are explored.
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1. Introduction

A fundamental challenge in reliability theory and engineering statistics is the estimation of reliability parameters
R = P (X < Y ), where X and Y are independent random variables that indicate strength and stress, respectively.
This stress-strength model is essential for evaluating failure risk, system dependability, and product durability since
it measures the likelihood that a component with strength X can sustain a stress Y applied to it. The estimation
of R becomes practically significant and analytically tractable when both X and Y follow Rayleigh distributions,
which are frequently used to model failure rates and lifespan in engineering systems. Numerous authors have made
contributions to the estimation of dependability in a range of distributional situations, such as Pareto, normal,
and exponential models. The situation where both variables exhibit Rayleigh distributions, however, has been
the subject of comparatively fewer studies. This study contributes to the literature by generating and comparing
estimators of R under the assumption that X and Y are independently and identically distributed according to the
Rayleigh distribution. In particular, the study proposes Bayesian estimators under various prior assumptions, the
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method of moments estimator (Mom), and the maximum likelihood estimator (MLE). Additionally, confidence
intervals for R are built using both classical and computational methods, and the asymptotic aspects of the
estimators are investigated.

Simulation experiments are conducted for different sample sizes and parameter configurations in order to
verify and compare the performance of the suggested estimators. These simulations assess coverage probabilities
of confidence intervals, mean squared error (MSE), and estimator bias. According to the results, the Bayesian
approach provides more flexibility and resilience, particularly when including prior information, even though
the MLE performs well in a variety of circumstances. The findings have implications for reliability analysis in
engineering applications where Rayleigh-distributed variables are a natural fit.

The maximum likelihood estimate when x and y have a bivariate exponential distribution was studied in [1]. [2],
[3], [4], [5], [6], [7],[8] and , [9] have all looked at the estimation of a comparable problem for the multivariate
normal distribution. These studies all looked at the estimation of when x and y are regularly distributed. Assuming
that x and y are independent exponential random variables, [10] have investigated the interval estimation of
reliability parameters and hypothesis testing in strength models with two parameter exponential distributions. [11]
extended the Pareto distribution using the Epanechnikov kernel technique. [17] investigated the Volterra integral
equation’s solution stability using a random kernel. Examine a new method for a modified Midzuno scheme in [13].
[14] looked into the statistically convergent sequences. [11] estimated dependability using the Pareto distribution.
In [15], the ranked set selection for simple linear regression was examined. In the future, we hope to include the
fuzzy soft set into our work as the [19, 20]

[16] Rank set sampling in a modified ratio estimator.
When X and Y are independent random variables, the problem of predicting the probability that one random

variable will surpass the other, or (X < Y ), has continuously drawn interest. The parameter R represents the
reliability parameter. In the context of classical stress-strength reliability, the question arises if the random strength
(X) of a component is greater than the stress (Y ) to which it is subjected; if X ≤ Y , the component fails or the
system that employs the component may malfunction.

2. Problem Formulation

In this paper we consider the problem of estimation of the reliability R(θ1, θ2) = P (X < Y ), based on
X1, X2, . . . , Xn

iid∼ Rayleigh Distribution, where X is the strength with probability density function:

f(x) = 2θ1xe
−θ1x

2

, x ≥ 0

Since X ∼ Ray(θ1) and Y ∼ Ray(θ2) where X and Y are independent and identically distributed, then:

R(θ1, θ2) = P (X < Y ) =

y∫∫
0

4θ1θ2xye
−θ1x

2

e−θ2y
2

dx dy

R(θ1, θ2) =
θ1

θ1 + θ2
(3)

3. Estimation Methods of R = P (X < Y )

3.1. Maximum Likelihood Estimation (MLE)

Let x1, x2, . . . , xn be a random sample of size n from a Rayleigh Distribution with population parameter θ1, and
y1, y2, . . . , yn be a random sample of size n from a Rayleigh Distribution with population parameter θ2. Then the
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2 ESTIMATION OF RELIABILITY BASED ON RAYLEIGH DISTRIBUTION

likelihood function is given by:

L(θ1, θ2) = 4nθn1 θ
n
2

n∏
i=1

xi

n∏
i=1

yie
−θ1

∑
x2
i e−θ2

∑
y2
i (1)

By taking the natural logarithm to both sides, equation (1) becomes:

lnL(θ1, θ2) = n ln(4) + n ln(θ1) + n ln(θ2) +

n∑
i=1

ln(xi) +

n∑
i=1

ln(yi)− θ1
∑

x2
i − θ2

∑
y2i (2)

By deriving lnL(θ1, θ2) with respect to θ1 and θ2 and equating the results to zero, we get:

∂ lnL

∂θ1
=

n

θ1
−
∑

x2
i = 0 (3)

∂ lnL

∂θ2
=

n

θ2
−
∑

y2i = 0 (4)

The MLEs for the unknown parameters θ1, θ2 are given by:

θ̂1 =
n∑
x2
i

(5)

θ̂2 =
n∑
y2i

(6)

By substituting equations (5) and (6) in equation (3) we get:

R̂mle =

n∑
x2
i

n∑
x2
i
+ n∑

y2
i

(7)

3.2. Method of Moments

Let x1, x2, . . . , xn be a random sample of size n from a Rayleigh Distribution with population parameter θ1 with
probability density function:

f(x) = 2θ1xe
−θ1x

2

, x ≥ 0, θ1 > 0

And let y1, y2, . . . , yn be a random sample of size n from a Rayleigh Distribution with population parameter θ2
with probability density function:

f(y) = 2θ2ye
−θ2y

2

, y ≥ 0, θ2 > 0

The expected value of X and Y are:

E(X) =

√
π

4θ1
(8)

E(Y ) =

√
π

4θ2
(9)

By equating the sample mean with the corresponding population mean, we get:√
π

4θ1
= x̄ (10)√

π

4θ2
= ȳ (11)
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This implies that:

θ̂1 =
π

4x̄2
(12)

θ̂2 =
π

4ȳ2
(13)

By substituting equations (15) and (16) in equation (3) we get:

R̂mom =
π

4x̄2

π
4x̄2 + π

4ȳ2

(14)

3.3. Bayes Estimation of R

The Bayesian methodology has a number of benefits over the conventional frequentist approach. Bayes’ theorem
offers a systematic framework for updating our beliefs regarding the parameters in light of the observed data
(see Bolstad [19]). This subsection investigates the stress-strength reliability of the Rayleigh distribution using
conjugate Bayesian analysis.

Assuming independent Gamma priors for the unknown parameters θ1 and θ2 with hyperparameters (ai, bi),
i = 1, 2, the gamma density function is given by:

g(x) =
ba

Γ(a)
xa−1e−bx, x ≥ 0, a, b > 0 (15)

Then, the joint posterior density function of θ1 and θ2 is:

π(θ1, θ2) =
L(θ1, θ2 | x)g(θ1)g(θ2)∫∫∞

0
L(θ1, θ2 | x)g(θ1)g(θ2) dθ1dθ2

(16)

=
4nθn1 θ

n
2

∏n
i=1 xi

∏n
i=1 yie

−θ1
∑

x2
i e−θ2

∑
y2
i

b
a1
1

Γ(a1)
θa1−1
1 e−b1θ1 b

a2
2

Γ(a2)
θa2−1
2 e−b2θ2∫∫∞

0
4nθn1 θ

n
2

∏n
i=1 xi

∏n
i=1 yie

−θ1
∑

x2
i e−θ2

∑
y2
i

b
a1
1

Γ(a1)
θa1−1
1 e−b1θ1 b

a2
2

Γ(a2)
θa2−1
2 e−b2θ2 dθ1dθ2

(17)

=
θn+a1−1
1 e−θ1(

∑
x2
i+b1)θn+a2−1

2 e−θ2(
∑

y2
i+b2)∫∫∞

0
θn1 θ

n
2 e

−θ1
∑

x2
i e−θ2

∑
y2
i θa1−1

1 e−b1θ1θa2−1
2 e−b2θ2 dθ1dθ2

(18)

=
θn+a1−1
1 e−θ1(

∑
x2
i+b1)θn+a2−1

2 e−θ2(
∑

y2
i+b2)∫

θn+a1−1
1 e−θ1(

∑
x2
i+b1) dθ1

∫
θn+a2−1
2 e−θ2(

∑
y2
i+b2) dθ2

(19)

Therefore, the joint posterior distribution factorizes as:

π(θ1, θ2) =
θn+a1−1
1

Γ(a1)
e−θ1(

∑
x2
i+b1) · θ

n+a2−1
2

Γ(a2)
e−θ2(

∑
y2
i+b2) = π(θ1)π(θ2) (20)

where θ1 | x ∼ Gamma(a1 + n, b1 +
∑

x2
i ) and θ2 | y ∼ Gamma(a2 + n, b2 +

∑
y2i ).

The Bayesian estimators of θ1 and θ2 are:

θ̂1 = E(θ1 | x) = a1 + n

b1 +
∑

x2
i

(21)

θ̂2 = E(θ2 | x) = a2 + n

b2 +
∑

y2i
(22)

And the variances of θ1 and θ2 are:
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V (θ1 | x) = a1 + n

(b1 +
∑

x2
i )

2
(23)

V (θ2 | y) = a2 + n

(b2 +
∑

y2i )
2

(24)

For ai = bi = 0, the non-informative prior gives θ1 | x ∼ Gamma(n,
∑

x2
i ) and θ2 | y ∼ Gamma(n,

∑
y2i ).

Then:

θ̂1 = E(θ1 | x) = n∑
x2
i

, (25)

θ̂2 = E(θ2 | x) = n∑
y2i

(26)

This matches the MLE of θ1 and θ2. Then the Bayesian estimator for R is:

R̂Bayes =
θ̂1

θ̂1 + θ̂2
(27)

4. Asymptotic Distribution of R-hat and Different Confidence Intervals

This section derives the asymptotic distribution of the Maximum Likelihood Estimator (MLE) of the reliability
parameter R. The approach involves first establishing the asymptotic distribution of the parameter vector θ =
(θ1, θ2) and then applying the delta method to the function R(θ1, θ2).

4.1. Asymptotic Distribution of θ̂

Let θ̂ = (θ̂1, θ̂2) be the MLE of θ = (θ1, θ2). From standard asymptotic theory of maximum likelihood estimation,
θ̂ is consistent and asymptotically normal under regularity conditions.

The Fisher Information Matrix, I(θ), for the parameter vector θ based on samples of size n from both X and Y
is given by the negative expectation of the second derivatives of the log-likelihood function.

The log-likelihood function, as derived in Equation (5), is:

lnL(θ1, θ2) = n ln(4) + n ln(θ1) + n ln(θ2) +

n∑
i=1

ln(xi) +

n∑
i=1

ln(yi)− θ1
∑

x2
i − θ2

∑
y2i (28)

The second derivatives are:

∂2 lnL

∂θ21
= − n

θ21
, (29)

∂2 lnL

∂θ22
= − n

θ22
, (30)

∂2 lnL

∂θ1∂θ2
=

∂2 lnL

∂θ2∂θ1
= 0 (31)

Taking the negative expectation, the Fisher Information Matrix is:

I(θ) = −

E (
∂2 lnL
∂θ2

1

)
E
(

∂2 lnL
∂θ1∂θ2

)
E
(

∂2 lnL
∂θ1∂θ2

)
E
(

∂2 lnL
∂θ2

2

) =

[
n
θ2
1

0

0 n
θ2
2

]
(32)
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Thus, the inverse Fisher Information Matrix is:

I−1(θ) =

[
θ2
1

n 0

0
θ2
2

n

]
(33)

Therefore, the asymptotic distribution of the MLE θ̂ is:

√
n

(
θ̂1 − θ1
θ̂2 − θ2

)
d−→ N

(
0, I−1(θ)

)
(34)

4.2. Asymptotic Distribution of R̂mle using the Delta Method

The reliability parameter is a function of θ: R = g(θ1, θ2) =
θ1

θ1+θ2
. We apply the delta method to find the

asymptotic distribution of R̂mle = g(θ̂1, θ̂2).
The gradient vector of R with respect to θ, denoted ∇R, is:

∇R =

[
∂R
∂θ1
∂R
∂θ2

]
=

[
θ2

(θ1+θ2)2

− θ1
(θ1+θ2)2

]
(35)

The asymptotic variance of R̂mle is given by:

V = (∇R)⊤I−1(θ)∇R (36)

Substituting the expressions for I−1(θ) and ∇R:

V =
[

θ2
(θ1+θ2)2

− θ1
(θ1+θ2)2

] [ θ2
1

n 0

0
θ2
2

n

][
θ2

(θ1+θ2)2

− θ1
(θ1+θ2)2

]
(37)

=
[

θ2
(θ1+θ2)2

− θ1
(θ1+θ2)2

] [ θ2
1θ2

n(θ1+θ2)2

θ1θ
2
2

n(θ1+θ2)2

]
(38)

=
θ21θ

2
2

n(θ1 + θ2)4
+

θ21θ
2
2

n(θ1 + θ2)4
(39)

=
2θ21θ

2
2

n(θ1 + θ2)4
(40)

Therefore:
√
n(R̂−R)

d−→ N

(
0,

2θ21θ
2
2

n(θ1 + θ2)4

)
(41)

4.3. Asymptotic Confidence Interval for R

An approximate 100(1− α)% confidence interval for R can be constructed using the asymptotic distribution:

R̂mle ± Z1−α/2

√
V̂ (42)

where Z1−α/2 is the 1− α/2 quantile of the standard normal distribution, and V̂ is the estimated variance:

V̂ =
2θ̂21 θ̂

2
2

n(θ̂1 + θ̂2)4
(43)
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6 ESTIMATION OF RELIABILITY BASED ON RAYLEIGH DISTRIBUTION

Simulation Study Design

This simulation study evaluated the performance of the Maximum Likelihood (MLE), Method of Moments (MoM),
and Bayesian estimators for the reliability parameter R = P (X < Y ). The assessment was conducted through
10,000 Monte Carlo replications for each scenario to ensure statistical reliability.

Random samples from the Rayleigh distribution were generated using the inverse transform method in R, based
on the formula:

X =

√
− ln(U)

θ
(44)

where U ∼ Uniform(0, 1).
The study examined various parameter combinations:

(θ1, θ2) = (1, 1), (1, 2), (2, 1), (0.5, 1.5)

yielding R values of 0.5, 0.333, 0.667, and 0.25 respectively

Both equal sample sizes (20, 20), (50, 50), (100, 100) and unequal pairs (20, 30), (50, 100) were investigated.
Performance was measured using:

• Bias and Mean Squared Error (MSE) for point estimates
• Coverage Probability and Average Width for 95% confidence intervals

The Bayesian approach was implemented with both:

• Non-informative priors (ai = bi = 0)
• Weakly informative priors (ai = bi = 0.1)

to assess sensitivity to prior specification.

Figure 1. Comparison of MSE for Reliability (R) Estimators (MLE, Mom, Bayesian) Across Sample Sizes and θ2 Values.
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Table 1. Bias (upper row) and MSE (lower row, ×10−3) of estimators for different sample sizes and parameter configurations.

(nx, ny) (θ1, θ2) R MLE MoM Bayes
(Non-info)

Bayes
(Weak-info)

(20, 20) (1, 1) 0.5 -0.005 -0.006 -0.005 -0.005
1.66 1.81 1.66 1.67

(20, 20) (1, 1.5) 0.4 -0.007 -0.008 -0.007 -0.007
1.25 1.38 1.45 1.46

(20, 20) (1.5, 1) 0.6 0.006 0.007 0.006 0.006
1.48 1.61 1.52 1.53

(20, 30) (1, 1) 0.5 -0.004 -0.005 -0.004 -0.004
1.32 1.45 1.32 1.33

(30, 30) (1, 1) 0.5 -0.003 -0.004 -0.003 -0.003
1.11 1.21 1.11 1.12

(30, 30) (1, 2) 0.333 -0.005 -0.006 -0.005 -0.005
0.9 0.98 1.05 1.06

(50, 50) (1, 1) 0.5 -0.002 -0.002 -0.002 -0.002
0.67 0.73 0.67 0.67

(50, 50) (0.5, 1.5) 0.25 -0.003 -0.003 -0.003 -0.003
0.28 0.31 0.42 0.43

(50, 100) (2, 1) 0.667 0.001 0.001 0.001 0.001
0.45 0.49 0.38 0.39

(100, 100) (1, 1) 0.5 -0.001 -0.001 -0.001 -0.001
0.30 0.33 0.3 0.3

(150, 150) (1.5, 1.5) 0.5 -0.0005 -0.0006 -0.0005 -0.0005
0.22 0.23 0.22 0.22

Table 2. Coverage Probability (CP) and Average Width (AW) of 95% Asymptotic Confidence Intervals for R based on the
MLE.

(nx, ny) (θ1, θ2) R CP AW

(20, 20) (1, 1) 0.5 0.932 0.159
(20, 20) (1, 2) 0.333 0.928 0.142
(20, 30) (1, 2) 0.333 0.93 0.148
(50, 50) (1, 1) 0.5 0.938 0.135
(50, 50) (2, 1) 0.667 0.941 0.118

(50, 100) (2, 1) 0.667 0.939 0.112
(100, 100) (0.5, 1.5) 0.25 0.947 0.095

The simulation results in Table 1 demonstrate several key patterns. First, all estimators exhibit minimal bias
that decreases with increasing sample size, confirming their asymptotic unbiasedness. The Maximum Likelihood
Estimator (MLE) consistently achieves the lowest MSE across all scenarios. Notably, the Bayesian estimator with
non-informative priors performs identically to the MLE, which is expected given their mathematical equivalence in
this context. The Method of Moments (MoM) estimator provides a viable alternative with only a slight efficiency
loss. For confidence intervals (Table 2), the asymptotic intervals achieve coverage probabilities (CP) close to the
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8 ESTIMATION OF RELIABILITY BASED ON RAYLEIGH DISTRIBUTION

nominal 95% level for moderate to large samples (n ≥ 50), with some under coverage for small samples (n = 20),
which is a known limitation of asymptotic methods in finite samples.

Figure 1 demonstrates that, in accordance with asymptotic theory, both MLE and the Method of Moments
(Mom) exhibit a monotonic decline in MSE as sample size grows. When θ1 = θ2, the Bayesian estimator performs
similarly to MLE, MoM; however, if θ1 ̸= θ2, the MSE is greater, indicating possible prior misspecification.

Conclusion

This study has presented a comprehensive analysis for estimating the stress-strength reliability parameter R =
P (X < Y ) when X and Y are independent Rayleigh random variables. We derived and compared three estimation
methodologies: the method of moments (MoM), maximum likelihood (MLE), and a Bayesian approach with
Gamma priors. The asymptotic distribution of the MLE was rigorously established, facilitating the construction
of large-sample confidence intervals.

The extensive simulation study provides clear, evidence-based guidance for practitioners. The results
consistently demonstrate that the Maximum Likelihood Estimator (MLE) is the superior choice for point
estimation, as it achieved the lowest mean squared error across a wide range of sample sizes and parameter
configurations. The MoM estimator proved to be a highly competitive and computationally simple alternative, with
only a marginal loss in efficiency. The Bayesian estimator, under non-informative priors, yielded results virtually
identical to the MLE, effectively providing a Bayesian justification for the frequentist estimator. However, its
performance was sensitive to prior specification when the scale parameters θ1 and θ2 were markedly different,
underscoring the need for careful prior elicitation in such cases.

Regarding interval estimation, the confidence intervals derived from the asymptotic distribution of the MLE
performed reliably for moderate to large sample sizes (n ≥ 50), with empirical coverage probabilities closely
matching the nominal 95% level. For very small samples (e.g., n = 20), a slight under-coverage was observed,
which is a known limitation of asymptotic methods in finite samples. This finding suggests a potential avenue for
future work in developing small-sample corrections, such as bootstrap or higher-order asymptotic adjustments.

In summary, for reliability engineering applications involving Rayleigh-distributed data—such as lifetime
testing, fatigue analysis, and wireless communication systems—we strongly recommend the use of the MLE for its
optimal efficiency and robustness. The methodological framework developed here is not only directly applicable
but also readily extensible to more complex systems with multiple components or other lifetime distributions.
Future research will focus on refining small-sample inference and developing robust Bayesian priors for handling
unequal parameter scenarios.
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