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Abstract In the real world, many reversal phenomena occur—for instance, situations in which a statement once regarded
as false is later recognized as true. Upside-Down Logic provides a framework that formalizes such reversals as a logical
system: it flips the truth and falsity of propositions via contextual transformations, thereby capturing ambiguity and reversal
within reasoning processes. A Plithogenic Set represents elements using attribute-based membership and contradiction
functions, extending the traditional frameworks of fuzzy, intuitionistic, and neutrosophic sets. In this paper, we investigate
Plithogenic Fuzzy Control, which both generalizes classical fuzzy control and furnishes a formal mechanism for analyzing
and implementing inversion (upside-down) operations.
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1. Introduction

1.1. Fuzzy, Neutrosophic, and Plithogenic Paradigms

Classical (crisp) sets record membership in a binary way and therefore cannot natively encode partial truth or
vagueness. In 1965, Zadeh introduced fuzzy subsets, providing degrees of membership in [0, 1] and opening a
large body of work on uncertain and imprecise information [1]. Owing to both scientific impact and practical
value, applications of fuzzy sets span, among others, social systems, control, and decision analysis [2, 3, 4].
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Atanassov later proposed intuitionistic fuzzy sets, where each element is described by a membership degree and
a non-membership degree, with the remaining margin representing uncertainty [5, 6]. Furthermore, as extended
concepts of the Fuzzy Set, several generalizations are known, such as the Hesitant Fuzzy Set [7, 8, 9], the m-polar
Fuzzy Set [10, 11, 12], the Picture Fuzzy Set [13, 14, 15], and the Spherical Fuzzy Set [16, 17, 18].

Subsequently, Smarandache developed the neutrosophic set formalism, assigning to every element three
independent assessments: truth (T ), indeterminacy (I), and falsity (F ). This representation accommodates
inconsistency and incompleteness and has been adopted in many application areas [19, 20]. Related families
include Vague Sets [21, 22], Bipolar Neutrosophic Sets [23, 24, 25], q-rung orthopair neutrosophic Sets [26, 27],
Pythagorean Neutrosophic Sets [28, 29], HyperNeutrosophic Sets [30, 31], and Hesitant Neutrosophic Sets
[32, 33], each tailoring multi-valued descriptions to specific modelling needs. Compared with fuzzy sets, a key
advantage of neutrosophic sets is their explicit ability to handle indeterminacy—parameters whose truth status is
unknown—rendering the framework scientifically significant and enabling a wide range of applications.

More recently, the philosophical idea of Plithogeny (Smarandache, 2017) motivated the development of
plithogenic sets, logic, probability, and statistics [34, 35, 36]. A plithogenic set augments traditional multi-valued
frameworks by coupling (i) attribute–value-based appurtenance with (ii) an explicit, symmetric degree of
contradiction between attribute values. This design captures not only gradual belonging but also the intensity
of conflict among alternatives—an aspect that becomes crucial when real-world evidence is noisy, evolving, or
even self-contradictory. Because contradiction naturally arises across philosophy[37], the social sciences[38, 39],
and everyday decision-making[40, 41], the plithogenic paradigm is likewise of substantial importance. Table 1
summarizes the core differences among several set extensions (notation harmonized for this paper).

Table 1. Representative set extensions and their canonical descriptors.

Set Type Canonical data attached to each element
Fuzzy Set Membership µ : X → [0, 1].
Intuitionistic Fuzzy Set Membership µ and non-membership ν with µ(x) + ν(x) ≤ 1; residual encodes

hesitation.
Neutrosophic Set Triple (T, I, F ) with T, I, F ∈ [0, 1] mutually independent (truth, indeterminacy,

falsity).
Plithogenic Set Tuple (P, v, Pv, pdf, pCF) where pdf : P × Pv → [0, 1]s (appurtenance along

s dimensions) and pCF : Pv × Pv → [0, 1]t (symmetric contradiction along t
dimensions).

Within the plithogenic family, one recovers the plithogenic fuzzy, plithogenic intuitionistic fuzzy, and plithogenic
neutrosophic variants by choosing appropriate appurtenance and contradiction dimensions (e.g., s = t = 1 for a
scalar case) [42, 43, 44, 45, 46]. If the contradiction map pCF is suppressed (identically zero), the respective
classical fuzzy/intuitionistic/neutrosophic models are retrieved (cf. [47]). Within the plithogenic family, one
recovers three scalar-contradiction specializations. Table 2 summarizes them concisely.

Table 2. Concise summary of plithogenic variants (scalar contradiction; t = 1).

Variant s t Appurtenance vector (semantics) Reduces to if pCF ≡ 0

Plithogenic fuzzy 1 1 µ ∈ [0, 1] (membership) Classical fuzzy set / controller
Plithogenic intuitionistic fuzzy 2 1 (µ, ν) ∈ [0, 1]2; 1− µ− ν ≥ 0

(hesitation margin)
Intuitionistic fuzzy model

Plithogenic neutrosophic 3 1 (T, I, F ) ∈ [0, 1]3 (truth, indeterminacy,
falsity)

Neutrosophic model
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2 UPSIDE-DOWN LOGIC IN PLITHOGENIC FUZZY CONTROL SYSTEM

1.2. Upside-Down Logic

Upside-Down (UD) Logic formalizes the idea that, under systematic changes of context or interpretation,
propositions may swap their truth status (true ↔ false), providing a principled way to reason about reversals
and ambiguity [48, 49, 50]. As an illustration, statements publicly framed as “beneficial” can, after a contextual
shift (new evidence, reframing, or policy re-evaluation), become demonstrably harmful—an inversion that UD
Logic is designed to capture within a formal semantics. Early studies have examined UD-style transforms inside
neutrosophic and plithogenic settings [49, 51], where contradiction measures and multi-valued appurtenance
provide natural levers for representing such flips.

1.3. Fuzzy Control

As noted earlier, fuzzy sets have been extensively investigated in diverse applications because of their theoretical
significance and practical usefulness (cf. [52, 53]). A control system measures outputs, compares them to
references, and adjusts inputs automatically to achieve stability, accuracy, and desired performance [54, 55, 56].

In this paper, we focus on fuzzy control. A fuzzy control system is a rule-based decision-making framework
that utilizes fuzzy sets and approximate reasoning to convert crisp sensor inputs into smooth actuator outputs, thus
enabling robust control of complex, nonlinear, and uncertain processes without requiring precise mathematical
models [57, 58]. Related concepts of fuzzy control include closed-loop fuzzy control [59, 60, 61], adaptive fuzzy
control[62, 63, 64], direct adaptive fuzzy control[65, 66], and neuro-fuzzy control[67, 68, 69], for which numerous
studies have also been reported.

In addition, related approaches include Intuitionistic Fuzzy Control [70, 71], HyperFuzzy Control[72], and
Neutrosophic Control [73, 74], among others (cf. [75]).

1.4. Motivation and Our Contribution

From the above, research on fuzzy control has been widely explored. However, studies on fuzzy control in
connection with plithogenic sets have not yet been conducted. To fill this gap, in this paper, we investigate
Plithogenic Fuzzy Control, which both generalizes classical fuzzy control and furnishes a formal mechanism for
analyzing and implementing inversion (upside-down) operations. Plithogenic Fuzzy Control adds contradiction-
aware weighting and context-triggered inversion, resolving conflicting rules and improving robustness and safety
under sensor/actuator sign flips, while keeping classical fuzzy control’s interpretability and adaptability. For
reference, Table 3 presents a comparison between Fuzzy Control and Plithogenic Fuzzy Control (PFCS).

Note that the Plithogenic Fuzzy Control System (PFCS) proposed in this paper, while highly novel, should be
regarded primarily as a theoretical contribution presenting a new control concept. Experimental validation and
empirical studies by experts will be essential in future work to confirm its practical effectiveness.

1.5. Contents in this paper

The remainder of this paper is organized as follows. Section 2 introduces the fundamental definitions of Upside-
Down Logic, Plithogenic Sets, and Fuzzy Control. Section 3 presents the main results, namely the proposed
Plithogenic Fuzzy Control System (PFCS) and its corresponding Upside-Down Logic. Section 4 describes the
algorithmic design and computational aspects. Finally, Section 5 concludes the paper with a summary and
discussion of future research directions.
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Table 3. Fuzzy Control vs. Plithogenic Fuzzy Control (PFCS)

Aspect Fuzzy Control Plithogenic Fuzzy Control (PFCS)

Basis Rules on fuzzy memberships Fuzzy rules + contradiction map (pCF )
Rule strength t-norm of memberships t-norm × contradiction attenuations (β, γ)
Contradictions Not explicit Explicit, symmetric pCF ∈ [0, 1] between

terms
Context inversion Not modeled Upside-Down transform (flip + reset)
Anchors None Uses input/output anchors (bi, by)
Reduction — Recovers classical fuzzy control when

pCF ≡ 0

Robustness Sensitive to sign/polarity errors More robust under sensor/actuator sign flips
Interpretability High (rule base) High (rules + pCF /anchors)
Compute cost Low Low–moderate (extra multipliers)

2. Preliminaries

This section introduces the basic constructs and symbols employed in the sequel. Unless stated otherwise, all
underlying sets and structures are assumed to be finite.

2.1. Upside-Down Logic

We formalize the intuition that, under suitable changes of interpretation, a statement may switch its truth status. In
particular, context shifts can turn truths into falsehoods and conversely, thereby modelling reversal and ambiguity
in reasoning systems (see, e.g., [48, 49, 50, 76, 77, 78]). The notation below will be used throughout.

Definition 2.1 (Logical structure). (cf. [79]) A logical structure is a triple

M = (P,V, v),

where P is the set of well-formed propositions of a language L, V is a set of truth values (e.g. {⊤,⊥} in the
classical case), and v : P → V is a valuation. One may optionally specify a set of axioms A ⊆ P and a collection
of inference rules I that license derivations.

Notation 2.2 (Context-sensitive valuation)
Given a proposition set P and a family of contexts Ctx, we write

Θ : P × Ctx −→ {⊤,⊥, ⋆}

for the context-indexed truth assignment, where ⋆ may encode indeterminacy. Thus Θ(A,C) is the truth status of
A when evaluated in context C.

Example 2.3 (Thermal loop with actuator polarity as context). Proposition. Let e := Tsp − T be the temperature
error and consider a proportional controller u = Kpe with Kp > 0.

A : “For e0 > 0 at t = 0, ė(0) < 0 (the error initially decreases).”

Plant models (contexts). With time constant τ = 10 and gain k = 0.5, define

Cheat : Ṫ = − 1
τ (T − Tenv) + k u, Ccool : Ṫ = − 1

τ (T − Tenv)− k u.
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4 UPSIDE-DOWN LOGIC IN PLITHOGENIC FUZZY CONTROL SYSTEM

In both cases ė = −Ṫ , hence

ė =


1
τ (T − Tenv)− kKpe (Cheat),

1
τ (T − Tenv) + kKpe (Ccool).

Numerical evaluation. Take Kp = 1, initial error e0 = 2, and let ∆ := T (0)− Tenv.

(i) Heating context. If ∆ = 0,

ė(0) = 0− (0.5)(1)(2)︸ ︷︷ ︸
=1

= −1 < 0 ⇒ Θ(A,Cheat) = ⊤.

(ii) Cooling (polarity-flipped) context. If ∆ = 0,

ė(0) = 0 + (0.5)(1)(2)︸ ︷︷ ︸
=1

= +1 > 0 ⇒ Θ(A,Ccool) = ⊥.

(iii) Balanced-disturbance context. Let

Cbal : ∆ ∈ [9, 11] so 1
τ∆ ∈ [0.9, 1.1].

In Cheat, ė(0) = 1
τ∆− 1 ∈ [−0.1, 0.1], whose sign cannot be decided a priori:

Θ(A,Cbal) = ⋆.

Summary.
Θ(A,Cheat) = ⊤, Θ(A,Ccool) = ⊥, Θ(A,Cbal) = ⋆.

This exhibits a context-sensitive valuation: the same proposition about initial error reduction changes truth with
actuator polarity, and becomes indeterminate under a disturbance window that straddles the balance point.

Example 2.4 (Collaborative robot speed safety with distance context). Proposition. For a cobot moving at speed
v, with controller reaction time tr and maximum deceleration amax, define the stopping distance

sstop(v) = v tr +
v2

2amax
.

Let D be the measured human-to-robot separation and dh a safety offset.

B : “Command v = 0.60 m/s is safe, i.e., sstop(v) ≤ D − dh.”

Fixed parameters. Take tr = 0.20 s, amax = 3.0 m/s2, dh = 0.05 m. Then

sstop(0.60) = 0.60(0.20) +
0.602

2(3.0)
= 0.12 +

0.36

6
= 0.12 + 0.06 = 0.18 m.

Contexts.

Cop : D = 2.00 m, Cmaint : D = 0.30 m, Coccl : D ∈ [0.30, 0.34] m (occluded sensor).
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Evaluation.

(i) Normal operation. D − dh = 2.00− 0.05 = 1.95 m:

0.18 ≤ 1.95 ⇒ Θ(B,Cop) = ⊤.

(ii) Close-maintenance mode. D − dh = 0.30− 0.05 = 0.25 m:

0.18 ≤ 0.25 ⇒ Θ(B,Cmaint) = ⊤ (still safe at this speed).

If the plant enforces a tighter envelope, e.g. tr = 0.30 s and amax = 2.0 m/s2 in maintenance,

sstop(0.60) = 0.60(0.30) +
0.36

4
= 0.18 + 0.09 = 0.27 m > 0.25 ⇒ Θ(B,C′

maint) = ⊥.

(iii) Occluded sensing (interval distance). D − dh ∈ [0.30− 0.05, 0.34− 0.05] = [0.25, 0.29] m. Since 0.18 <
0.25 would be safe, but under degraded braking (tr = 0.30, amax = 2.0) we have 0.27 > 0.25 which can be unsafe,
the truth of B cannot be fixed without resolving the context precisely:

Θ(B,Coccl) = ⋆.

Summary.
Θ(B,Cop) = ⊤, Θ(B,C′

maint) = ⊥, Θ(B,Coccl) = ⋆.

Thus, safety at a given speed is a context-indexed truth: it depends on separation, braking capability, and sensing
fidelity.

Notation 2.5
Let L be a fixed formal language and M = (P,V, v) a logical structure as above. We use ⊤/⊥ interchangeably
with True/False when convenient.

Definition 2.6 (Upside-Down Logic). [49, 50] An Upside-Down (UD) version ofM is any systemM′ obtained
by a transformation U acting on propositions and/or contexts, with the following property: for every A ∈ P and
C ∈ Ctx, there exist transformed objects U(A) and/or U(C) such that

• True→False: if Θ(A,C) = ⊤, then Θ
(
U(A), U(C)

)
= ⊥;

• False→True: if Θ(A,C) = ⊥, then Θ
(
U(A), U(C)

)
= ⊤.

Moreover, U must be well defined so that the transformed systemM′ remains internally coherent (i.e., its axioms
and rules do not yield triviality).

Example 2.7 (Polarity flip in heating vs. cooling (setpoint tracking)). Consider a first–order thermal plant with
input u (positive = “add heat”):

Ṫ (t) = −1

τ

(
T (t)− Tenv

)
+ k u(t), e(t) := Tsp − T (t).

With proportional control u = Kpe, the error dynamics are

ė = −Ṫ =
1

τ

(
T − Tenv

)
− kKpe.
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6 UPSIDE-DOWN LOGIC IN PLITHOGENIC FUZZY CONTROL SYSTEM

Context C (heating): actuator adds heat, k > 0. PropositionA: “forKp > 0 and e > 0, the control action u = Kpe >
0 reduces the error” is True (the −kKpe term drives ė negative). Now apply the transformation U that switches the
physical mode to cooling so that a positive command removes heat:

U(C) : Ṫ = −1

τ
(T − Tenv) − k u (equivalently k 7→ −k).

UnderU(C), keeping u = KpewithKp > 0 makes the same statementA False (a positive u decreases T , increasing
e). Define the transformed proposition U(A): “use inverted control u = −Kpe”. Then for e > 0 we command
u < 0 (cooling), and the error decreases; thus U(A) is True in U(C). Numerical check: take τ = 10, k = 0.5, Tenv
arbitrary. If e = 2 andKp = 1, then heating (k > 0): ė = 1

10 (T − Tenv)− 1.0 · e is reduced by the−e term; cooling
(k 7→ −0.5): with u = Kpe = +2, ė gains +1.0 · e and grows; with u = −Kpe = −2, ė gains −1.0 · e and decays.

Example 2.8 (Anti-windup under saturation (back-calculation flips integrator direction)). Consider a PI controller
u = Kpe+KiI , İ = e, acting on any plant, and a symmetric actuator saturation sat(·) with limit umax. In the
nominal (unsaturated) context C we have the proposition A: “if e > 0 then İ > 0 (the integrator grows)”, which is
True since İ = e. When saturation occurs, the context changes to

U(C) : ucmd = Kpe+KiI, u = sat(ucmd), İ = e − kb
(
ucmd − u

)
,

with back-calculation gain kb > 0. Under U(C), if the actuator is saturated high (u = umax < ucmd), then
ucmd − u > 0 and the term−kb(ucmd − u) can dominate, making İ < 0. HenceA becomes False. The transformed
proposition U(A) is: “under high saturation, the integrator decreases (winds down), i.e. İ < 0”. This is True in
U(C). Numerical check: let e = 0.1, Kb = 5, and ucmd − u = 0.5 at saturation. Then

İ = 0.1 − 5× 0.5 = −2.4 < 0,

so the integrator direction is inverted relative to e > 0, preventing windup.

Example 2.9 (Stability decision flips with sensor/plant-sign inversion). A unity-feedback loop with plant G(s) =
k

τs+ 1
and proportional control u = Kpe has closed-loop pole

s = −1 +Kpk

τ
.

In context C where the net loop gain is positive (k > 0), propositionA: “Kp > 0 stabilizes the loop” is True because
1 +Kpk > 0. Suppose a wiring change inverts the sensor or actuator polarity, effectively sending k 7→ −k; that is,
move to

U(C) : G(s) =
−k

τs+ 1
, pole s = − 1−Kpk

τ
.

Now A is False: if Kp > 1/k the pole becomes positive (unstable). The transformed proposition U(A) is:
“choose Kp < 0 to stabilize when the loop gain is negative”. This is True, because with Kp < 0 one has
1−Kpk = 1 + |Kp|k > 0. Numerical check: take τ = 1, k = 2. With inversion (U(C)) and Kp = +1, the pole is
s = −(1− 2) = +1 (unstable). With Kp = −1, the pole is s = −(1 + 2) = −3 (stable). Thus the stability decision
flips under the sign-inverting context.

2.2. Plithogenic Set

A Plithogenic Set [34, 80, 35] represents elements by coupling an attribute–value membership with an explicit
contradiction measure, thereby extending the formalisms of fuzzy [1, 81], intuitionistic [82, 83], and neutrosophic
sets [19, 84].
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Definition 2.10 (Fuzzy Set). [1, 85] A Fuzzy set τ in a non-empty universe Y is a mapping τ : Y → [0, 1]. A fuzzy
relation on Y is a fuzzy subset δ in Y × Y . If τ is a fuzzy set in Y and δ is a fuzzy relation on Y , then δ is called a
fuzzy relation on τ if

δ(y, z) ≤ min{τ(y), τ(z)} for all y, z ∈ Y.

Example 2.11 (Fuzzy Set in HVAC setpoint tracking). Let the universe be the temperature error Y = R (in ◦C),
e := Tsp − T . Define the fuzzy set “Positive Error” by

τ(e) =


0, e ≤ 0,

e/5, 0 < e < 5,

1, e ≥ 5,

so τ : Y → [0, 1].

Define a fuzzy relation (“compatibility of positive errors”) on Y by

δ(e1, e2) := min{τ(e1), τ(e2)} exp
(
−|e1 − e2|/10

)
,

which satisfies δ(e1, e2) ≤ min{τ(e1), τ(e2)} for all e1, e2. Numerical check: if e1 = 6, e2 = 3, then τ(6) = 1,
τ(3) = 0.6, hence

δ(6, 3) = 0.6 e−0.3 ≈ 0.6× 0.740818 = 0.44449 ≤ 0.6 = min{τ(6), τ(3)}.

This fuzzy set/relation pair models how a heater controller grades “how positive” an error is and how similar two
error values are when aggregating rules.

Definition 2.12 (Plithogenic Set). [86, 34] Let S be a universal set and let P ⊆ S be nonempty. A Plithogenic Set
is a quintuple

PS = (P, v, Pv, pdf, pCF ),

consisting of:

• an attribute v;

• a set Pv of admissible values of v;

• a Degree of Appurtenance Function (DAF) pdf : P × Pv → [0, 1]s;†

• a Degree of Contradiction Function (DCF) pCF : Pv × Pv → [0, 1]t.

The DCF satisfies, for all a, b ∈ Pv,

Reflexivity: pCF (a, a) = 0, Symmetry: pCF (a, b) = pCF (b, a).

Here s ∈ N is the appurtenance dimension and t ∈ N is the contradiction dimension.

Example 2.13 (Plithogenic Set for PID tuning styles). Let S = R3
>0 be all PID gains x = (Kp,Ki,Kd), and P ⊂ S

a finite catalog of admissible tunings. Take the attribute v =“tuning style” with value set

Pv = {Aggressive (A), Nominal (N), Conservative (C)}.

†In the literature, DAFs appear in several forms: some are powerset–valued while others take values in the hypercube [0, 1]s. We adopt the
latter, classical convention; cf. [87].
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For s = 2, define the Degree of Appurtenance Function pdf : P × Pv → [0, 1]2 as

pdf(x, a) =
(
tracking(x | a), robustness(x | a)

)
,

both components normalized to [0, 1] from step-response ITAE and gain/phase margins. For the Degree of
Contradiction Function pCF : Pv × Pv → [0, 1]t with t = 1, set

pCF (A,A) = pCF (N,N) = pCF (C,C) = 0, pCF (A,N) = pCF (N,A) = 0.4,

pCF (N,C) = pCF (C,N) = 0.3, pCF (A,C) = pCF (C,A) = 0.8,

which is symmetric and reflexive. Example (concrete gains): for x0 = (Kp,Ki,Kd) = (2.0, 0.8, 0.05) we might
obtain

pdf(x0,A) = (0.90, 0.30), pdf(x0,N) = (0.75, 0.55), pdf(x0,C) = (0.55, 0.80).

Interpretation: x0 fits “Aggressive” with high tracking (0.90) but low robustness (0.30), while “Conservative”
exhibits the opposite trade-off; the large contradiction pCF (A,C) = 0.8 captures their incompatibility in controller
design.

Definition 2.14 (Plithogenic Fuzzy Set (s = 1, t = 1)). [88, 89, 34, 44] When the appurtenance and contradiction
dimensions are both one, a Plithogenic Fuzzy Set is a Plithogenic Set PS = (P, v, Pv, pdf, pCF ) with

pdf : P × Pv → [0, 1], pCF : Pv × Pv → [0, 1].

For x ∈ P and a ∈ Pv, set
µP (x | a) := pdf(x, a) ∈ [0, 1],

the (scalar) fuzzy membership of x relative to a. For a, b ∈ Pv, define the scalar contradiction

c(a, b) := pCF (a, b) ∈ [0, 1], c(a, a) = 0, c(a, b) = c(b, a).

Example 2.15 (Plithogenic Fuzzy Set for cruise-control throttle). Let P = R≥0 be the speed error e := vsp − v
(km/h, only underspeed considered), and v =“throttle linguistic level” with

Pv = {Low (L), Medium (M), High (H)}.

With s = t = 1, define the fuzzy memberships pdf(e, a) = µP (e | a) ∈ [0, 1] (triangles):

µP (e | L) = max
{
0, 1− e

10

}
, µP (e | M) = max

{
0, 1− |e−10|

10

}
, µP (e | H) = max

{
0, 1− |e−20|

10

}
.

Define a scalar contradiction c : Pv × Pv → [0, 1] by

c(L,L) = c(M,M) = c(H,H) = 0, c(L,M) = c(M,L) = 0.5,

c(M,H) = c(H,M) = 0.6, c(L,H) = c(H,L) = 0.9.

Numerical evaluation at e = 12 km/h:

µP (12 | L) = max{0, 1− 1.2} = 0, µP (12 | M) = 1− |12−10|
10 = 0.8, µP (12 | H) = 1− |12−20|

10 = 0.2.

Thus Medium dominates for e = 12, while the high contradiction c(L,H) = 0.9 encodes that “Low” and “High”
throttle are strongly conflicting linguistic actions. This (P, v, Pv, pdf, pCF ) is a Plithogenic Fuzzy Set specialized
to a cruise-control context.
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2.3. Fuzzy Control

Fuzzy control systems employ fuzzy set theory and rule-based (IF–THEN) inference to translate precise sensor
measurements into smooth actuator commands (cf.[57, 58]).

Definition 2.16 (Fuzzy Control System). [57, 58] A fuzzy control system implements a mapping from a vector of
crisp inputs to a crisp control output via fuzzy-logic reasoning. Formally, let

x = (x1, . . . , xn) ∈ X1 × · · · ×Xn, y ∈ Y

be the input and output universes. A fuzzy controller is specified by:

1. Fuzzification: For each input xi one defines a finite family of fuzzy sets

Ai1, Ai2, . . . , Aimi
⊆ Xi, µAij

: Xi → [0, 1].

2. Rule Base: A collection of K IF–THEN rules

Rk : IF x1 is A1j1 ∧ . . . ∧ xn is Anjn THEN y is Bk,

where each consequent Bk ⊆ Y is a fuzzy set with membership µBk
: Y → [0, 1].

3. Inference: Given a specific input x, each rule fires with strength

αk = T
(
µA1j1

(x1), . . . , µAnjn
(xn)

)
,

where T is a chosen t-norm (e.g. T (a, b) = min(a, b)).

4. Aggregation: The fuzzy output set B′ ⊆ Y is formed by

µB′(y) = SKk=1

[
αk ⊗ µBk

(y)
]
,

where ⊗ is typically the minimum and S the maximum operator.

5. Defuzzification: A crisp control action y∗ ∈ Y is extracted, often via the centroid formula

y∗ =

∫
Y

y µB′(y) dy∫
Y

µB′(y) dy

.

Example 2.17 (Vehicle cruise-control (fuzzy throttle adjustment)). Consider an automobile cruise controller that
adjusts throttle to track a speed setpoint. Inputs are the speed error e := vsp − v (km/h) and the error rate ė (km/h/s).
The output is the throttle change ∆u (percentage points).

Fuzzification. Let

X1 = {−20 ≤ e ≤ 20} ⊂ R, X2 = {−5 ≤ ė ≤ 5} ⊂ R, Y = {−50 ≤ ∆u ≤ 50} ⊂ R.

Use triangular fuzzy sets:

For e: Negative/Zero/Positive (N/Z/P),

µe,N(e) = max
{
0, 1− |e+10|

10

}
, µe,Z(e) = max

{
0, 1− |e|

10

}
, µe,P(e) = max

{
0, 1− |e−10|

10

}
.
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10 UPSIDE-DOWN LOGIC IN PLITHOGENIC FUZZY CONTROL SYSTEM

For ė: Negative/Zero/Positive (N/Z/P),

µė,N(ė) = max
{
0, 1− |ė+2.5|

2.5

}
, µė,Z(ė) = max

{
0, 1− |ė|

2

}
, µė,P(ė) = max

{
0, 1− |ė−2.5|

2.5

}
.

Rule base (Mamdani antecedents). With T = min,

R1 : IF (e is P) ∧ (ė is Z) THEN ∆u is P,
R2 : IF (e is P) ∧ (ė is P) THEN ∆u is M,

R3 : IF (e is Z) ∧ (ė is P) THEN ∆u is N,
R4 : IF (e is N) THEN ∆u is N,
R5 : IF (e is Z) ∧ (ė is Z) THEN ∆u is Z.

For the consequents we use a standard zero-order Sugeno choice (singleton outputs)

∆u(N) = −30, ∆u(Z) = 0, ∆u(M) = +20, ∆u(P) = +40 (percentage points).

Numerical evaluation (one step). Suppose e = 8 km/h (underspeed) and ė = −0.5 km/h/s (error decreasing
slowly). Membership degrees:

µe,P(8) = 1− |8−10|
10 = 0.8, µe,Z(8) = 1− |8|

10 = 0.2, µe,N(8) = 0,

µė,Z(−0.5) = 1− 0.5
2 = 0.75,

µė,N(−0.5) = 1− |−0.5+2.5|
2.5 = 1− 2.0

2.5 = 0.2,

µė,P(−0.5) = 0.

Rule firing strengths (αk = min of antecedent degrees):

α1 = min(0.8, 0.75) = 0.75, α2 = min(0.8, 0) = 0, α3 = min(0.2, 0) = 0,

α4 = 0, α5 = min(0.2, 0.75) = 0.2.

Defuzzification (Sugeno weighted average). With singleton consequents yk ∈ {−30, 0, 20, 40},

y∗ =

∑
k αk yk∑
k αk

=
0.75 · 40 + 0.2 · 0

0.75 + 0.2
=

30

0.95
≈ 31.58.

Thus the controller commands an increase of about 31.6 percentage points in throttle, consistent with a large
positive error that is already shrinking slowly.

2.4. Upside-Down Logic on a Plithogenic Fuzzy Set with Contradiction Reset

The Upside-Down mechanism with contradiction reset in a Plithogenic Fuzzy Set inverts fuzzy memberships once
a contradiction surpasses a chosen threshold and then neutralizes the corresponding contradictions. This yields a
consistent representation in contexts where previously conflicting values must be reconciled (cf. [90, 51]).
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Definition 2.18 (Upside-Down transform with contradiction reset). (cf. [90, 51]) Let PS = (P, v, Pv, pdf, pCF )
be a Plithogenic Fuzzy Set and write

µP (x | a) := pdf(x, a) ∈ [0, 1], c(a, b) := pCF (a, b) ∈ [0, 1],

with c(a, a) = 0 and c(a, b) = c(b, a). Fix an anchor b ∈ Pv and a threshold τ ∈ [0, 1]. Define the activation set

Aτ (b) :=
{
a ∈ Pv : c(a, b) ≥ τ

}
.

The Upside-Down transform produces a new Plithogenic Fuzzy Set

PSUb,τ =
(
P, v, Pv, pdfUb,τ , pCFUb,τ

)
,

where

pdfUb,τ (x, a) :=

{
1− µP (x | a), a ∈ Aτ (b),

µP (x | a), a /∈ Aτ (b),

and the updated contradiction map pCFUb,τ is given, for all u, v ∈ Pv, by

pCFUb,τ (u, v) :=

{
0, {u, v} = {a, b} for some a ∈ Aτ (b),

pCF (u, v), otherwise.

In words: if the pair (a, b) activates (i.e., c(a, b) ≥ τ ), then the membership at a is flipped and the post-transform
contradiction between a and the anchor b is reset to zero.

Example 2.19 (Data-center cooling fans under quiet-hours noise limits). Let the universe be the temperature rise
above target,

P = {e ∈ [0, 20] ◦C},

and take the attribute v =“fan level” with values

Pv = {Low(L), Medium(M), High(H)}.

Define triangular memberships (all clipped to [0, 1]):

µP (e | L) = max{0, 1− e
8}, µP (e | M) = max{0, 1− |e−8|

8 }, µP (e | H) = max{0, 1− |e−16|
8 }.

Fix the anchor b = M (quiet-hours “preferred” level) and set the contradiction map to reflect acoustic constraints:

c(L,M) = 0.25, c(H,M) = 0.85, c(M,M) = 0,

with symmetry c(a, b) = c(b, a). Choose the threshold τ = 0.80. Then the activation set is

Aτ (M) = {H} since c(H,M) = 0.85 ≥ 0.80.

Numerical instance. For a hot day with e = 14◦C:

µP (14 | L) = max{0, 1− 14
8 } = 0, µP (14 | M) = 1− |14−8|

8 = 1− 6
8 = 0.25,

µP (14 | H) = 1− |14−16|
8 = 1− 2

8 = 0.75.

Applying the Upside-Down transform with contradiction reset gives

µUP (14 | H) = 1− µP (14 | H) = 1− 0.75 = 0.25, µUP (14 | M) = 0.25, µUP (14 | L) = 0,
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12 UPSIDE-DOWN LOGIC IN PLITHOGENIC FUZZY CONTROL SYSTEM

and updates the contradiction to the anchor as

pCFU (H,M) = 0, pCFU (u, v) = pCF (u, v) otherwise.

Because “High” strongly contradicts the anchor during quiet hours, its membership is flipped (discouraged) and
its contradiction to the anchor is neutralized. After the transform, M and H are equally plausible (both 0.25), biasing
decisions away from sustained high-speed fans while keeping the representation consistent.

Example 2.20 (AGV forklift speed in a pedestrian zone: flipping “Fast” and neutralizing conflict). Let P be the
aisle width (meters) measurable by the AGV’s lidar:

P = {w ∈ [1.2, 4.2] m}.

Take v =“speed level” with
Pv = {Slow(S), Nominal(N), Fast(F)}.

Use symmetric triangular memberships (half-width 0.9m) centered at 1.5, 2.4, 3.3m:

µP (w | S) = max
{
0, 1− |w−1.5|

0.9

}
, µP (w | N) = max

{
0, 1− |w−2.4|

0.9

}
, µP (w | F) = max

{
0, 1− |w−3.3|

0.9

}
.

In a signed pedestrian zone, set anchor b = N and reflect policy conflicts by

c(S,N) = 0.20, c(F,N) = 0.90, c(N,N) = 0,

and choose τ = 0.80. Thus
Aτ (N) = {F}.

Numerical instance. At width w = 3.0m:

µP (3.0 | S) = max{0, 1− |3.0−1.5|
0.9 } = 0,

µP (3.0 | N) = 1− |3.0−2.4|
0.9 = 1− 0.6

0.9 = 1
3 , µP (3.0 | F) = 1− |3.0−3.3|

0.9 = 1− 0.3
0.9 = 2

3 .

Applying the Upside-Down transform with contradiction reset (on F) yields

µUP (3.0 | F) = 1− 2
3 = 1

3 , µUP (3.0 | N) = 1
3 , µUP (3.0 | S) = 0,

and the contradiction is neutralized for the activated pair:

pCFU (F,N) = 0, pCFU (u, v) = pCF (u, v) otherwise.

In a pedestrian zone, “Fast” conflicts with the nominal policy. The transform flips its membership (from 2/3 to
1/3) and resets the conflict with the anchor, steering the decision surface away from fast travel while restoring local
consistency for subsequent reasoning.

2.5. Two-mode De-Plithogenication

We now formalize Two-mode De-Plithogenication. The mechanism covers two distinct situations: (i) a
contradiction that reflects a real conflict, and (ii) a contradiction that is merely apparent and should not cause
an inversion (cf. [90, 51]).
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Definition 2.21 (Improved De-Plithogenication (two-mode; general plithogenic set)). (cf. [90, 51]) Let PS =
(P, v, Pv,pdf,pCF) be a plithogenic set with pdf : P × Pv → [0, 1] the Degree of Appurtenance Function (DAF)
and pCF : Pv × Pv → [0, 1] the Degree of Contradiction Function (DCF), symmetric and satisfying pCF(a, a) =
0. Fix an anchor b ∈ Pv and a threshold τ ∈ [0, 1].

Activation. For a ∈ Pv, declare that a activates (relative to b, τ ) when

Act(a | b, τ) := 1
[
pCF(a, b) ≥ τ

]
= 1.

Mode selection. Let M : Pv × Pv → {0, 1} be a (policy) mode selector on unordered pairs, with M({a, b}) =
M({b, a}). For any activated pair {a, b}, the semantics are:

• Mode 0 (Neutralize-only): M({a, b}) = 0 means the contradiction is only apparent. No appurtenance
coordinate associated with a (or b) is flipped; the contradiction is simply reset to 0.

• Mode 1 (Invert+Neutralize): M({a, b}) = 1 means the contradiction is genuine. We first invert the
appurtenance coordinate(s) tied to a (or b) and then reset their contradiction to 0.

Two-mode Upside-Down operator. Define U imp
b,τ,M(PS) =: (P, v, Pv,pdfU , pCFU ) by

pdfU (x, a) :=

{
1− pdf(x, a), Act(a | b, τ) = 1 andM({a, b}) = 1,

pdf(x, a), otherwise,
(x ∈ P, a ∈ Pv),

pCFU (u,w) :=

{
0, Act(u | b, τ) = 1 or Act(w | b, τ) = 1,

pCF(u,w), otherwise,
(u,w ∈ Pv, with symmetry preserved).

Two-mode De-Plithogenication sequence. A finite composition

PSimp-dep := U imp
bk,τk,Mk

◦ · · · ◦ U imp
b2,τ2,M2

◦ U imp
b1,τ1,M1

(PS)

is called an Improved De-Plithogenication when, for every pair {u,w} ⊆ Pv that activates at least once in the
sequence, the final contradiction vanishes: pCFimp-dep(u,w) = 0. If the activated pairs cover all of Pv × Pv, then
pCFimp-dep ≡ 0. Moreover, once this stabilized state is reached, the operator acts idempotently.

Example 2.22 (Battery-pack cooling level: Mode 0 (Neutralize-only) for an apparent contradiction). Setup. Let
the measurable variable be the coolant-to-pack temperature rise

P = {∆T ∈ [0, 25] ◦C },

and take the attribute v =“fan setting” with values

Pv = {Low(L), Medium(M), High(H)}.

Define triangular memberships (clipped to [0, 1]):

µP (∆T | L) = max
{
0, 1− ∆T

10

}
, µP (∆T | M) = max

{
0, 1− |∆T−10|

10

}
, µP (∆T | H) = max

{
0, 1− |∆T−20|

10

}
.

Fix the anchor b = M. The contradiction map (quiet-hours acoustic policy) is

c(L,M) = 0.30, c(H,M) = 0.82, c(M,M) = 0,
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14 UPSIDE-DOWN LOGIC IN PLITHOGENIC FUZZY CONTROL SYSTEM

with symmetry c(a, b) = c(b, a). Take threshold τ = 0.80.

Activation.
Aτ (M) = {H} since c(H,M) = 0.82 ≥ 0.80.

Numerics (pre-transform). At ∆T = 18◦C,

µP (18 | L) = max{0, 1− 18
10} = 0, µP (18 | M) = 1− |18−10|

10 = 0.2, µP (18 | H) = 1− |18−20|
10 = 0.8.

Mode selection. A sensor bias is diagnosed (apparent conflict), so choose Mode 0 for the activated pair:

M({H,M}) = 0.

Two-mode operator effect. By U imp
b,τ,M,

pdfU (x,H) = µUP (x | H) = µP (x | H) (no flip in Mode 0),

pCFU (H,M) = 0, pCFU (u,w) = pCF(u,w) otherwise.

Hence at ∆T = 18◦C,
µUP (18 | H) = 0.8, µUP (18 | M) = 0.2, µUP (18 | L) = 0,

but the post-transform contradiction to the anchor is neutralized: cU (H,M) = 0.

The contradiction was only apparent; therefore the memberships are not inverted, yet the conflict to the anchor
is cleared so downstream reasoning proceeds without penalizing H due to a spurious policy clash.

Example 2.23 (3D printer travel speed for delicate features: Mode 1 (Invert + Neutralize) for a genuine
contradiction). Setup. Let the measurable variable be the feature width (e.g. wall thickness)

P = {w ∈ [0.2, 0.8] mm }.

Let v =“travel speed level” with

Pv = {Slow(S), Normal(N), Fast(F)}.

Use triangles (clipped to [0, 1]) centered at 0.25, 0.50, 0.70 mm with half-widths 0.20, 0.25, 0.20 respectively:

µP (w | S) = max
{
0, 1− |w−0.25|

0.20

}
, µP (w | N) = max

{
0, 1− |w−0.50|

0.25

}
, µP (w | F) = max

{
0, 1− |w−0.70|

0.20

}
.

Fix the anchor b = N. For a fragile material/overhang policy, set

c(S,N) = 0.30, c(F,N) = 0.90, c(N,N) = 0,

and τ = 0.85.

Activation.
Aτ (N) = {F} since c(F,N) = 0.90 ≥ 0.85.

Numerics (pre-transform). At w = 0.65 mm,

µP (0.65 | S) = max{0, 1− |0.65−0.25|
0.20 } = 0, µP (0.65 | N) = 1− |0.65−0.50|

0.25 = 1− 0.15
0.25 = 0.4,
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µP (0.65 | F) = 1− |0.65−0.70|
0.20 = 1− 0.05

0.20 = 0.75.

Mode selection. QC flags stringing/warping at high travel on this geometry (genuine conflict), hence choose
Mode 1:

M({F,N}) = 1.

Two-mode operator effect. For the activated pair, U imp
b,τ,M flips the appurtenance and resets the contradiction:

µUP (0.65 | F) = 1− µP (0.65 | F) = 1− 0.75 = 0.25, µUP (0.65 | N) = 0.4, µUP (0.65 | S) = 0,

pCFU (F,N) = 0, pCFU (u,w) = pCF(u,w) otherwise.

Because the contradiction is real, Mode 1 suppresses the previously dominant “Fast” by inversion (from 0.75 to
0.25) while neutralizing its conflict with the anchor. Subsequent decision-making is steered toward safer speeds for
delicate features without residual penalty artifacts.

3. Main Results

In this section, we present and explain the results of this paper.

3.1. Plithogenic Fuzzy Control System

We formalize a Plithogenic Fuzzy Control System (PFCS) by enriching each linguistic variable with (i) an
attribute–value set and (ii) a contradiction function that modulates rule firing.

Definition 3.1 (Plithogenic Fuzzy Control System (PFCS)). Fix input universesX1, . . . , Xn and an output universe
Y . For each input i ∈ {1, . . . , n}, let (

Xi, vi, Pvi, µi,·, pCFi
)

be a plithogenic fuzzy variable, where:

• vi is an attribute of Xi with admissible values Pvi (linguistic terms);

• for each a ∈ Pvi, µi,a : Xi → [0, 1] is the (scalar) membership function;

• pCFi : Pvi × Pvi → [0, 1] is the (symmetric, reflexive) contradiction function with pCFi(a, a) = 0.

Similarly, the output variable is
(
Y, vy, Pvy, µy,·, pCFy

)
with a ∈ Pvy 7→ µy,a : Y → [0, 1] and pCFy : Pvy ×

Pvy → [0, 1].

A rule base is a finite set

R ⊆ Pv1 × · · · × Pvn × Pvy, r = (a1, . . . , an ⇒ b).

Let T : [0, 1]n → [0, 1] be a t-norm for antecedent aggregation, S : [0, 1]K → [0, 1] an s-norm for rule aggregation,
and ⊗ a shaping operator (typically min) acting on (firing, consequent µ) pairs. Let D be a defuzzifier (e.g.
centroid).
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Anchors b1, . . . , bn ∈ Pv1 × · · · × Pvn and by ∈ Pvy are fixed design parameters (contextual reference values).
For input x = (x1, . . . , xn) and a rule r = (a1, . . . , an ⇒ b) ∈ R define:

αbase
r (x) := T

(
µ1,a1(x1), . . . , µn,an(xn)

)
,

βr :=

n∏
i=1

(
1− pCFi(ai, bi)

)
∈ [0, 1], γr := 1− pCFy(b, by) ∈ [0, 1],

and the plithogenic firing strength

αr(x) := αbase
r (x) · βr · γr ∈ [0, 1].

The aggregated output fuzzy set B′
x ⊆ Y has membership

µB′
x
(y) := S r∈R

[
αr(x) ⊗ µy, br (y)

]
,

where br denotes the consequent of r. Finally, the crisp control action is

y∗(x) := D
(
µB′

x

)
.

We call

PFCS :=
(
(Xi, vi, Pvi, µi,·, pCFi)

n
i=1, (Y, vy, Pvy, µy,·, pCFy), R, T, S,⊗, D, b1, . . . , bn, by

)
a Plithogenic Fuzzy Control System.

Remark 3.2. The scalars βr and γr attenuate rule firing according to pairwise contradictions between the
rule’s linguistic values and the anchors. Choosing bi (resp. by) is a design choice capturing the prevailing
context/reference for input i (resp. output).

Example 3.3 (Adaptive cruise control with plithogenic attenuation (safety–aware throttle)). Consider a PFCS with
two inputs and one output.

Inputs:
x1 = e := vsp − v ∈ [−20, 20] (km/h), x2 = ė ∈ [−5, 5] (km/h/s).

For x1 use Pv1 = {N,Z,P} (Negative/Zero/Positive) with triangular memberships

µ1,N(e) = max
{
0, 1− |e+10|

10

}
, µ1,Z(e) = max

{
0, 1− |e|

10

}
, µ1,P(e) = max

{
0, 1− |e−10|

10

}
.

For x2 use Pv2 = {N,Z,P} with

µ2,N(ė) = max
{
0, 1− |ė+2.5|

2.5

}
, µ2,Z(ė) = max

{
0, 1− |ė|

2

}
, µ2,P(ė) = max

{
0, 1− |ė−2.5|

2.5

}
.

Output (throttle increment ∆u in percentage points):

Pvy = {N,Z,P}, ∆u(N) = −30, ∆u(Z) = 0, ∆u(P) = +40 (Sugeno singletons).

Anchors and contradictions (safety–aware design):

b1 = Z, b2 = Z, by = Z,
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pCF1(N,Z) = pCF1(P,Z) = 0.2, pCF1(Z,Z) = 0,

pCF2(N,Z) = pCF2(P,Z) = 0.1, pCF2(Z,Z) = 0,

pCFy(N,Z) = pCFy(P,Z) = 0.3, pCFy(Z,Z) = 0.

Rule base (Mamdani antecedents, T = min; Sugeno aggregation/defuzzification):

R1 : (P,Z)⇒ P,

R2 : (P,P)⇒ M (not used; omit),
R3 : (Z,P)⇒ N,

R4 : (N, ∗)⇒ N,

R5 : (Z,Z)⇒ Z.

Numerical evaluation at
e = 8 km/h, ė = −0.5 km/h/s.

Memberships:
µ1,P(8) = 1− |8−10|

10 = 0.8, µ1,Z(8) = 1− |8|
10 = 0.2, µ1,N(8) = 0,

µ2,Z(−0.5) = 1− 0.5
2 = 0.75, µ2,N(−0.5) = 1− |−0.5+2.5|

2.5 = 0.2, µ2,P(−0.5) = 0.

Base firings (αbase
r = min of antecedents):

αbase
R1

= min(0.8, 0.75) = 0.75, αbase
R5

= min(0.2, 0.75) = 0.2, others = 0.

Plithogenic attenuations:

βR1
= (1− 0.2)(1− 0) = 0.8, γR1

= 1− 0.3 = 0.7,

βR5
= (1− 0)(1− 0) = 1, γR5

= 1− 0 = 1.

Plithogenic firings:
αR1 = 0.75× 0.8× 0.7 = 0.42, αR5 = 0.2× 1× 1 = 0.2.

Sugeno output:

∆u∗ =
0.42 · 40 + 0.2 · 0

0.42 + 0.2
=

16.8

0.62
=

840

31
≈ 27.10 pp.

Thus PFCS attenuates rule R1 (“go high throttle”) via pCF against the neutral anchor, yielding a safer command
than classical fuzzy control.

Example 3.4 (Robot arm pick-and-place: speed command with contradiction to precision anchor). Inputs:

x1 = epos ∈ [0, 6] (mm), x2 = vRMS ∈ [0, 1] (g; vibration severity).

For x1 use Pv1 = {S,M,L} with triangles centered at 0, 3, 6 mm (half–width 3 mm):

µ1,S(e) = max
{
0, 1− |e−0|

3

}
, µ1,M(e) = max

{
0, 1− |e−3|

3

}
, µ1,L(e) = max

{
0, 1− |e−6|

3

}
.

For x2 use Pv2 = {L,M,H} with triangles centered at 0, 0.5, 1 g (half–width 0.5 g):

µ2,L(v) = max
{
0, 1− |v−0|

0.5

}
, µ2,M(v) = max

{
0, 1− |v−0.5|

0.5

}
, µ2,H(v) = max

{
0, 1− |v−1|

0.5

}
.
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Output (end–effector speed s in m/s):

Pvy = {Slow,Medium,Fast}, s(Slow) = 0.1, s(Medium) = 0.3, s(Fast) = 0.6.

Anchors (favor precision):
b1 = M, b2 = M, by = Medium.

Contradictions (higher conflict for extremal choices):

pCF1(S,M) = 0.4, pCF1(L,M) = 0.6, pCF1(M,M) = 0,

pCF2(L,M) = 0.3, pCF2(H,M) = 0.5, pCF2(M,M) = 0,

pCFy(Slow,Medium) = 0.2, pCFy(Fast,Medium) = 0.7, pCFy(Medium,Medium) = 0.

Rule base (T = min):
R1 : (L,L)⇒ Fast,

R2 : (L,M)⇒ Medium,

R3 : (M,M)⇒ Medium,

R4 : (M,H)⇒ Slow,

R5 : (S, ∗)⇒ Slow.

Numerical evaluation at epos = 3.2 mm and vRMS = 0.7 g:

µ1,L = 1− |3.2−6|
3 = 1− 2.8

3 = 1
15 ≈ 0.0666667, µ1,M = 1− |3.2−3|

3 = 1− 0.2
3 = 14

15 ≈ 0.9333333, µ1,S = 0,

µ2,L = 0, µ2,M = 1− |0.7−0.5|
0.5 = 0.6, µ2,H = 1− |0.7−1|

0.5 = 0.4.

Base firings:

αbase
R2

= min
(

1
15 , 0.6

)
= 1

15 , αbase
R3

= min
(

14
15 , 0.6

)
= 0.6, αbase

R4
= min

(
14
15 , 0.4

)
= 0.4, others = 0.

Plithogenic attenuations:
βR2

= (1− 0.6)(1− 0) = 0.4, γR2
= 1,

βR3
= (1− 0)(1− 0) = 1, γR3

= 1,

βR4
= (1− 0)(1− 0.5) = 0.5, γR4

= 1− 0.2 = 0.8.

Plithogenic firings:

αR2
= 1

15 · 0.4 · 1 = 0.4
15 ≈ 0.0266667, αR3 = 0.6 · 1 · 1 = 0.6, αR4 = 0.4 · 0.5 · 0.8 = 0.16.

Sugeno output:

s∗ =
αR2
· 0.3 + αR3

· 0.3 + αR4
· 0.1

αR2 + αR3 + αR4

=
0.008 + 0.18 + 0.016

0.4
15 + 0.6 + 0.16

=
0.204

0.7866
=

153

590
≈ 0.2593 m/s.

Thus PFCS down–weights risky choices (“Fast” under significant vibration and non–medium error) via pCF ,
biasing the decision toward safer speeds.
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Theorem 3.5 (PFCS generalizes fuzzy control)
Fix a PFCS with (T, S,⊗, D) as above and the same rule base R. If

pCFi ≡ 0 for all i = 1, . . . , n, and pCFy ≡ 0,

then, for every input x, the PFCS output y∗(x) coincides with the output of the classical fuzzy control system that
uses the same µi,·, µy,·, T, S,⊗, D, and R.

Proof
Under the stated hypothesis, for every rule r = (a1, . . . , an ⇒ b),

βr =

n∏
i=1

(
1− pCFi(ai, bi)

)
=

n∏
i=1

(1− 0) = 1, γr = 1− pCFy(b, by) = 1− 0 = 1.

Hence αr(x) = αbase
r (x) · 1 · 1 = αbase

r (x) for all r and all x. Therefore the aggregated fuzzy output satisfies

µB′
x
(y) = S r∈R

[
αr(x)⊗ µy,br (y)

]
= S r∈R

[
αbase
r (x)⊗ µy,br (y)

]
,

which is precisely the classical fuzzy inference surface produced by (T, S,⊗) andR. Applying the same defuzzifier
D yields identical crisp output:

y∗(x) = D(µB′
x
) (PFCS) = D(µB′

x
) (classical).

Thus PFCS reduces to classical fuzzy control when contradiction is identically zero, proving that PFCS is a strict
generalization.

Lemma 3.6 (Singleton reduction)
If, for each i, Pvi is a singleton and Pvy is a singleton, then regardless of the values of pCFi, pCFy we have
βr = γr = 1 for every rule r, and PFCS reduces to classical fuzzy control with the given (T, S,⊗, D).

Proof
If Pvi = {bi}, then in any rule r we necessarily have ai = bi, hence pCFi(ai, bi) = pCFi(bi, bi) = 0 by reflexivity;
thus each factor in βr equals 1. Similarly, Pvy = {by} forces b = by in any rule, so γr = 1. The rest follows as in
Theorem 3.5.

Notation 3.7
Unless otherwise stated, we assume a zero–order Sugeno defuzzifier with rule–wise singletons {yr}r∈R ⊂ R. For
a rule r = (a1, . . . , an ⇒ b) and input x = (x1, . . . , xn) we recall

αr(x) = αbase
r (x) · βr · γr, βr =

n∏
i=1

(
1− pCFi(ai, bi)

)
, γr = 1− pCFy(b, by).

The crisp output is

y∗(x) =

∑
r∈R αr(x) yr∑
r∈R αr(x)

=:
N(x)

W (x)
.

Theorem 3.8 (Uniform attenuation cancels in zero–order Sugeno)
Suppose there exists a constant λ ∈ (0, 1] such that for all r ∈ R, βrγr = λ (i.e., all rules are attenuated by the same
factor, independent of the antecedent/consequent values). Then y∗(x) coincides with the output of the classical
Sugeno controller (no contradictions):

y∗(x) =

∑
r α

base
r (x) yr∑

r α
base
r (x)

.
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Proof
Under the hypothesis, αr = λαbase

r . Hence N =
∑

r λα
base
r yr = λNbase and W =

∑
r λα

base
r = λWbase.

Therefore y∗ = N/W = Nbase/Wbase.

Corollary 3.9 (A simple sufficient condition for Theorem 3.8)
If for each input i there is a constant ci ∈ [0, 1) with pCFi(ai, bi) = ci for every ai ∈ Pvi, and on the output side
there is a constant cy ∈ [0, 1) with pCFy(b, by) = cy for every b ∈ Pvy, then βrγr = λ :=

(∏n
i=1(1− ci)

)
(1− cy)

for all r, and Theorem 3.8 applies.

Theorem 3.10 (Monotonicity and exact sensitivity w.r.t. a contradiction parameter)
Fix a rule r0 and one contradiction entry c := pCFi(ai, bi) that appears in βr0 . Treating all other quantities as
constants, we have

∂αr0
∂c

= − αr0
1− c

.

For the zero–order Sugeno output,
∂y∗

∂c
= − αr0

(1− c)W
(
yr0 − y∗

)
.

Consequently:

i) If yr0 > y∗, then ∂y∗/∂c < 0 (increasing the contradiction on an “above-average” rule pushes y∗ down).

ii) If yr0 < y∗, then ∂y∗/∂c > 0 (increasing the contradiction on a “below-average” rule pushes y∗ up).

Proof
Write αr0 = αbase

r0

(∏
j ̸=i(1− pCFj)

)
· (1− c) · γr0 =: K (1− c) with K > 0 constant in c. Then ∂αr0/∂c =

−K = −αr0/(1− c). For y∗ = N/W and only αr0 depending on c,

∂y∗

∂c
=

(
∂αr0/∂c

)
yr0 W −

(
∂αr0/∂c

)
N

W 2
=
∂αr0
∂c
· yr0 − y

∗

W
= − αr0

(1− c)W
(yr0 − y∗).

The sign conclusions follow immediately.

Remark 3.11 (Concrete sensitivity check). In the adaptive cruise control example (numbers already given), take
rule R1 with yR1

= 40, αR1
= 0.42, the active contradiction c = pCF1(P,Z) = 0.2, and W = αR1

+ αR5
= 0.62.

Then
∂y∗

∂c
= − 0.42

(1− 0.2) · 0.62
(40− 27.10) ≈ − 0.42

0.496
· 12.90 ≈ −10.94 pp

unit of c
.

Thus a +0.05 increase in c would (locally) decrease y∗ by about 0.55 percentage points.

Theorem 3.12 (Continuity of the PFCS mapping)
Assume each membership xi 7→ µi,ai(xi) is continuous and that the chosen t–norm T , s–norm S, shaping operator
⊗, and defuzzifier D are continuous in their arguments (e.g. T = min, S = max, ⊗ = min, D = centroid, or zero–
order Sugeno). Then x 7→ y∗(x) is continuous in x and continuous in each contradiction entry pCFi(ai, bi) and
pCFy(b, by).

Proof
Each αbase

r (x) is continuous by continuity of the µ’s and T . The factors βr and γr are continuous polynomials in the
pCF ’s. Hence αr depends continuously on (x, {pCF}). The fuzzy aggregation and defuzzification are continuous
by hypothesis, thus y∗ is continuous.
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Theorem 3.13 (Representation as a weighted Sugeno controller for T =
∏

)
If T is the product t–norm, then a PFCS is equivalent to a weighted zero–order Sugeno controller with rule weights

wr :=
( n∏
i=1

(
1− pCFi(ai, bi)

))
·
(
1− pCFy(b, by)

)
,

in the sense that

αr = wr ·
n∏
i=1

µi,ai(xi)︸ ︷︷ ︸
= αbase

r

and y∗(x) =

∑
r wr α

base
r (x) yr∑

r wr α
base
r (x)

.

Proof
For T =

∏
, αbase

r =
∏
i µi,ai(xi). By definition, αr = αbase

r · βr · γr =
(∏

i µi,ai
)
· wr. Substitute into the Sugeno

formula.

Theorem 3.14 (Preservation of the winner under a sufficient margin)
Let r⋆ maximize the base firing: αbase

r⋆ = maxr α
base
r , and suppose it is unique. Define

Λ := min
r ̸=r⋆

αbase
r⋆

αbase
r

> 1.

If the contradiction factors satisfy
βrγr
βr⋆γr⋆

≤ Λ for every r ̸= r⋆,

then r⋆ also maximizes the plithogenic firing αr.

Proof
For any r ̸= r⋆,

αr⋆

αr
=
αbase
r⋆

αbase
r

· βr
⋆γr⋆

βrγr
≥ Λ · βr

⋆γr⋆

βrγr
≥ 1,

so αr⋆ ≥ αr for all r.

Theorem 3.15 (Output perturbation bound under contradiction changes)
Let y∗ = N/W be the PFCS output (Sugeno). If the rule weights change from {αr} to {αr +∆αr} (e.g. by
changing some pCF ’s), then

∆y∗ := y∗new − y∗old =
1

W

∑
r∈R

∆αr (yr − y∗) ⇒
∣∣∆y∗∣∣ ≤ R

W

∑
r∈R

∣∣∆αr∣∣,
where R := maxr yr −minr yr and W =

∑
r αr is the original total weight.

Proof
Using y∗ = N/W , a direct quotient rule computation gives ∆y∗ = (∆N W −N ∆W )/W 2 =

∑
r∆αr(yr −

y∗)/W . Since |yr − y∗| ≤ R, the bound follows.
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3.2. Upside-Down Logic on a Plithogenic Control System

We lift the Upside-Down transform with contradiction reset to the entire controller.

Definition 3.16 (Upside-Down transform of a PFCS). Fix anchors b1, . . . , bn, by and thresholds τ1, . . . , τn, τy ∈
[0, 1]. For each input i and value a ∈ Pvi define activation

Acti(a | bi, τi) := 1 [ pCFi(a, bi) ≥ τi ].

Construct a transformed controller Ub,τ (PFCS) by replacing, for each activated a,

µi,a 7→ µUi,a :=

{
1− µi,a, Acti(a | bi, τi) = 1,

µi,a, otherwise,

pCFi(u,w) 7→ pCFUi (u,w) :=

{
0, {u,w} = {a, bi} for some activated a,
pCFi(u,w), otherwise.

Apply the analogous operation to (vy, Pvy, µy,·, pCFy) using (by, τy).

Proposition 3.17 (Local consistency after reset)
For any rule r = (a1, . . . , an ⇒ b), if ai activates for some i (or b activates on the output side), then in Ub,τ (PFCS)
the corresponding contradiction factor(s) that enter βr (and/or γr) vanish to 0 after the flip, hence the post-transform
rule firing is computed in a contradiction-neutral local neighborhood relative to the anchor(s).

Proof
By construction, whenever Acti(ai | bi, τi) = 1 we set pCFUi (ai, bi) = 0 while possibly flipping µi,ai to 1− µi,ai .
Therefore the ith factor in βr equals 1− pCFUi (ai, bi) = 1. The same reasoning holds on the output side for γr.

Example 3.18 (Reversible conveyor position loop: UD transform fixes a sign inversion). Consider a one–input
PFCS for setpoint tracking of a conveyor’s carriage position. The input is the position error e := xsp − x ∈
[−1, 1] (m) with linguistic values Pve = {N,Z,P} (Negative/Zero/Positive). The output is the motor voltage
u ∈ [−10, 10] (V) with consequents Pvy = {N,Z,P} and zero–order Sugeno singletons u(N) = −10, u(Z) = 0,
u(P) = +10. Let the anchor values be be = Z and by = Z.

Fuzzy memberships for e (triangular, peaks at −0.5, 0,+0.5 with base width 1):

µe,N(e) = max
{
0, 1− |e+0.5|

0.5

}
, µe,Z(e) = max

{
0, 1− |e|

0.5

}
, µe,P(e) = max

{
0, 1− |e−0.5|

0.5

}
.

Plithogenic contradiction (to the anchor) is fixed as

pCFe(N,Z) = pCFe(P,Z) = 0.9, pCFe(Z,Z) = 0, pCFy ≡ 0 (for simplicity).

Thus the plithogenic firing for a rule with antecedent a ∈ {N,Z,P} is

αa(e) = µe,a(e)︸ ︷︷ ︸
αbase

a

·
(
1− pCFe(a, be)

)︸ ︷︷ ︸
βa

,

and the Sugeno output is

u∗(e) =
αN(−10) + αZ · 0 + αP(+10)

αN + αZ + αP
.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



T. FUJITA, A. SALEM HEILAT AND R. HATAMLEH 23

Suppose a wiring mistake reverses the encoder sign, so the controller measures e = −0.6 while the true error is
+0.6. Evaluate before applying the Upside-Down transform. Memberships at e = −0.6:

µe,N(−0.6) = 1− |−0.6+0.5|
0.5 = 1− 0.1

0.5 = 0.8, µe,Z(−0.6) = max{0, 1− 0.6
0.5} = 0, µe,P(−0.6) = 0.

Contradiction attenuations: βN = βP = 1− 0.9 = 0.1, βZ = 1. Hence

αN = 0.8× 0.1 = 0.08, αZ = 0× 1 = 0, αP = 0× 0.1 = 0.

Crisp output (before transform):

u∗ =
0.08 · (−10)

0.08
= −10 V (wrong sign).

Now apply the Upside-Down transform Ube,τ with threshold τ = 0.8. Since pCFe(N,Z) = pCFe(P,Z) = 0.9 ≥
τ , both N and P activate. The transform flips memberships and resets the activated contradictions to zero:

µUe,a(e) = 1− µe,a(e) (a ∈ {N,P}), pCFUe (a,Z) = 0 for activated a.

At e = −0.6 this yields

µUe,N(−0.6) = 1− 0.8 = 0.2, µUe,P(−0.6) = 1− 0 = 1, µUe,Z(−0.6) = 0 (unchanged),

and the new attenuations are βUN = βUP = βUZ = 1. Thus

αUN = 0.2, αUZ = 0, αUP = 1.

Crisp output (after transform):

u∗U =
0.2 · (−10) + 1 · (+10)

0.2 + 1
=
−2 + 10

1.2
=

8

1.2
≈ 6.67 V (correct sign).

Therefore the Upside-Down transform of the PFCS recovers the correct actuation under a sensor sign inversion and
simultaneously neutralizes the contradictions to the anchor.

Example 3.19 (Inverted camera gimbal (yaw control): UD transform under frame flip). A single–input PFCS
stabilizes a camera gimbal’s yaw to a heading setpoint. Let the yaw error eψ := ψsp − ψ ∈ [−30◦, 30◦] with
Pve = {N,Z,P} defined by triangles centered at −15◦, 0◦, 15◦ with half–width 15◦:

µe,N(θ) = max
{
0, 1− |θ+15|

15

}
, µe,Z(θ) = max

{
0, 1− |θ|

15

}
, µe,P(θ) = max

{
0, 1− |θ−15|

15

}
.

Output r is the commanded yaw rate (deg/s) with Sugeno singletons r(N) = −20, r(Z) = 0, r(P) = +20. Anchors
are be = Z, by = Z, and we take

pCFe(N,Z) = pCFe(P,Z) = 0.9, pCFe(Z,Z) = 0, pCFy ≡ 0.

Thus αa(θ) = µe,a(θ) · (1− pCFe(a, be)) and

r∗(θ) =
αN(−20) + αZ · 0 + αP(+20)

αN + αZ + αP
.

When the gimbal flips upside–down (e.g. switching camera frames from NED to ENU), the sign of the measured
yaw error is reversed. Suppose the measured error is θ = −15◦ while the true physical error is +15◦. Before
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applying the transform:
µe,N(−15) = 1, µe,Z(−15) = 0, µe,P(−15) = 0,

βN = βP = 1− 0.9 = 0.1, βZ = 1 ⇒ αN = 1× 0.1 = 0.1, αZ = 0, αP = 0.

Hence r∗ = (−20 · 0.1)/(0.1) = −20 deg/s (wrong direction).

Apply the Upside-Down transform with threshold τ = 0.8. Both N and P activate (0.9 ≥ τ ), so

µUe,N(θ) = 1− µe,N(θ), µUe,P(θ) = 1− µe,P(θ), pCFUe (N,Z) = pCFUe (P,Z) = 0.

At θ = −15◦:

µUe,N(−15) = 1− 1 = 0, µUe,P(−15) = 1− 0 = 1, µUe,Z(−15) = 0 (unchanged),

so the attenuations become βUN = βUP = βUZ = 1 and

αUN = 0, αUZ = 0, αUP = 1.

Therefore

r∗U =
1 · (+20)

1
= +20 deg/s,

which correctly commands a positive yaw rate to reduce the true positive yaw error. The transform both flips the
effective semantics of the (mis-sensed) input and neutralizes the contradictions to the anchor, restoring consistent
PFCS behavior under frame inversion.

Notation 3.20
We work with the Upside–Down (UD) transform Ub,τ (PFCS) already defined. For a rule r = (a1, . . . , an ⇒ b) and
input x = (x1, . . . , xn) we abbreviate

αr = αr(x), αbase
r = αbase

r (x), ci(ai, bi) = pCFi(ai, bi), cy(b, by) = pCFy(b, by).

The post-transform quantities are decorated by U . Activation sets are Aτi(bi) = {a ∈ Pvi : ci(a, bi) ≥ τi}.

Theorem 3.21 (Finite termination and idempotence of UD on PFCS)
Consider any sequence of UD steps that, at each step, chooses one activated pair {ai, bi} (or {b, by}), flips the
corresponding membership(s) and resets the chosen contradiction to 0 as per the UD definition. Let

Nmax =

n∑
i=1

#
{
a ∈ Pvi \ {bi} : ci(a, bi) ≥ τi

}
+#

{
b′ ∈ Pvy \ {by} : cy(b′, by) ≥ τy

}
.

Then the process terminates after at most Nmax steps. Moreover, one full pass to termination is idempotent:
applying it again effects no change.

Proof
Define the integer potential Φ =

∑n
i=1 #Aτi(bi) + #Aτy (by) ∈ N. Each UD step resets exactly one activated pair

to 0 < τ , strictly decreasing Φ by 1 and never creating new activations. Since initially Φ ≤ Nmax and Φ ≥ 0,
termination occurs in at most Nmax steps. At termination, no activation predicate holds, hence a subsequent pass
performs no update (idempotence).

Theorem 3.22 (Closed-form post-UD firing ratio for T =
∏

)
Assume the product t-norm T =

∏
. For a fixed rule r = (a1, . . . , an ⇒ b) let I = {i : ai ∈ Aτi(bi)} and σy =
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1[b ∈ Aτy (by)] denote the activated indices (inputs and possibly the output side). Then

αUr
αr

=

(∏
i∈I

1− µi,ai(xi)
µi,ai(xi)

)
·

(∏
i∈I

1

1− ci(ai, bi)

)
·

{
1

1−cy(b,by) , σy = 1,

1, σy = 0.

In particular, for each activated input coordinate i ∈ I the UD step multiplies the rule firing by the factor
1− µi,ai
µi,ai

· 1

1− ci
, and for an activated output consequent by

1

1− cy
.

Proof
For T =

∏
, αr =

(∏n
i=1 µi,ai(xi)

)
·
(∏n

i=1(1− ci(ai, bi))
)
· (1− cy(b, by)). Under UD, for each i ∈ I we replace

µi,ai 7→ 1− µi,ai and set ci(ai, bi) 7→ 0; for i /∈ I both terms are unchanged. If σy = 1 we also set cy(b, by) 7→ 0;
otherwise unchanged. Taking the quotient αUr /αr gives exactly the stated factors.

Remark 3.23 (Numerical check of Theorem 3.22). In the conveyor example (measured e = −0.6), for the rule with

antecedent N we had µe,N = 0.8 and ce(N,Z) = 0.9; pre-UD αN = 0.08. The ratio factor is
1− 0.8

0.8
· 1

1− 0.9
=

0.2

0.8
· 10 = 2.5, hence αUN = 0.08× 2.5 = 0.2, matching the explicit computation.

Theorem 3.24 (A sufficient condition for post-UD firing improvement when T = min)
Assume T = min. Fix a rule r = (a1, . . . , an ⇒ b) and let exactly one antecedent, say ai, activate. Write

µ := µi,ai(xi), m := min
j ̸=i

µj,aj (xj), c := ci(ai, bi).

Then
αUr ≥ αr ⇐= min(1− µ, m) ≥ (1− c) min(µ, m).

In particular, the easy-to-check sufficient condition

µ ≤ 1

2− c

guarantees αUr ≥ αr regardless of m.

Proof
Before UD, the antecedent aggregator is min(µ,m) and the contradiction factor is 1− c; after UD they are min(1−
µ,m) and 1, respectively. Thus αr = (1− c)min(µ,m) · (constants), αUr = min(1− µ,m) · (same constants). The
first inequality is immediate by cancelling the common positive factor. For the sufficient condition, require
1− µ ≥ (1− c)µ, i.e. 1 ≥ µ(2− c).

Theorem 3.25 (Winner swap and sign correction under polarity inversion)
Consider a one-input, three-term PFCS with symmetric memberships around 0:

µN(−x) = µP(x), µZ(−x) = µZ(x) (∀x),

and zero-order Sugeno consequents y(N) = −u0, y(Z) = 0, y(P) = +u0 with u0 > 0. Let anchors be be = Z,
by = Z, and suppose both ce(N,Z) and ce(P,Z) exceed τ so that N,P activate and are flipped; contradictions
to the anchor are reset to 0. If the measured error equals the negative of the true error, em = −et, then the post-UD
crisp command satisfies

sign
(
y∗U (em)

)
= sign(et)

whenever µZ(em) < max{µN(em), µP(em)}.
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Proof
Write µN := µN(em) and µP := µP(em). By symmetry with em = −et,

µN = µP(et), µP = µN(et).

After UD, N and P are flipped and contradiction factors to be are 1, so (up to the same positive normalizing
denominator WU )

y∗U ∝ (−u0) (1− µN ) + (+u0) (1− µP ) = u0
[
(1− µP )− (1− µN )

]
= u0(µN − µP ).

Thus sign(y∗U ) = sign(µN − µP ). If et > 0, then by symmetry µN = µP(et) ≥ µN(et) = µP , so µN − µP ≥ 0
and sign(y∗U ) = +1 = sign(et). If et < 0 the inequalities reverse and the sign is −1. The stated condition on µZ

ensures Z does not dominate the average.

Theorem 3.26 (Convex-hull preservation under UD)
In zero-order Sugeno inference with consequents {yr}r∈R ⊂ R, the UD transform preserves the output range:

y∗U (x) ∈ [min
r
yr, max

r
yr] (∀x).

Proof
Both pre- and post-UD outputs are convex combinations: y∗ =

∑
r ωryr, y

∗U =
∑

r ω
U
r yr with ωr, ωUr ≥ 0 and∑

r ωr =
∑

r ω
U
r = 1. The claim follows.

Theorem 3.27 (No-change outside the activation set)
If Aτi(bi) = ∅ for all i and Aτy (by) = ∅, then Ub,τ (PFCS) acts as the identity on the controller: all µ’s, pCF ’s,
rule firings αr, and the crisp map y∗(·) remain unchanged.

Proof
By hypothesis no predicate Acti(· | bi, τi) or Acty(· | by, τy) returns 1, so the definition of the UD transform
performs no membership flip and no contradiction reset. All subsequent computations are identical.

Theorem 3.28 (Output perturbation bound for a UD pass)
Let y∗ = N/W and y∗U = NU/WU denote, respectively, the pre- and post-UD Sugeno outputs. Set R =
maxr yr −minr yr. Then ∣∣y∗U − y∗∣∣ ≤ R

min{W,WU}
∑
r∈R

∣∣αUr − αr∣∣.
If T =

∏
, the differences αUr − αr factorize by Theorem 3.22.

Proof
Write y∗U − y∗ = (NU/WU )− (N/W ). Adding and subtracting N/WU yields y∗U − y∗ = (NU −N)/WU +
N(1/WU − 1/W ). Using N =

∑
r αryr, N

U =
∑

r α
U
r yr and rearranging gives

y∗U − y∗ =
1

WU

∑
r

(αUr − αr)(yr − y∗U ).

Taking absolute values and using |yr − y∗U | ≤ R yields |y∗U − y∗| ≤ R
WU

∑
r |αUr − αr|. Symmetrizing WU with

W gives the stated bound.
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3.3. Two-mode De-Plithogenication on a Plithogenic Control System

We incorporate the mode selectorM from the preliminaries to distinguish genuine from apparent contradictions at
the controller level.

Definition 3.29 (Two-mode De-Plithogenication of PFCS). Let Mi : {{a, bi} : a ∈ Pvi} → {0, 1} and My :

{{b, by} : b ∈ Pvy} → {0, 1} be mode selectors. Define the operator U imp
b,τ ,M by:

µi,a 7→

{
1− µi,a, Acti(a | bi, τi) = 1 andMi({a, bi}) = 1,

µi,a, otherwise,
pCFi(a, bi) 7→ 0 whenever Acti(a | bi, τi) = 1,

and analogously for the output side. A finite composition of such operators is an improved de-plithogenication
sequence of the controller.

Proposition 3.30 (Idempotent stabilization)
If, along a finite improved de-plithogenication sequence, every activated pair has its contradiction reset (as above),
then a subsequent application of U imp

b,τ ,M leaves the controller unchanged. Consequently, once stabilized, the
inference map x 7→ y∗(x) is fixed under further de-plithogenication steps.

Proof
After the first pass, all activated pairs {a, bi} (and {b, by}) satisfy pCF (a, b·) = 0. Hence no further activations
occur at the same thresholds, and neither flips nor resets are triggered. Therefore the mapping is unchanged;
applying the operator again is the identity.

Example 3.31 (HVAC VAV damper: Mode 0 (Neutralize–only) for an apparent contradiction). A single–input
PFCS regulates a zone’s supply airflow via a damper. Input is temperature error e := Tsp − T ∈ [−4, 4] (◦C)
with linguistic values Pve = {N,Z,P} (Negative/Zero/Positive); anchor be = Z. Output is damper increment
∆u ∈ [−30, 30] (percentage points) with Sugeno singletons ∆u(N) = −30, ∆u(Z) = 0, ∆u(P) = +30; pCFy ≡ 0.

Fuzzy memberships (triangular, centers at −2, 0,+2 with half–width 2):

µe,N(e) = max
{
0, 1− |e+2|

2

}
, µe,Z(e) = max

{
0, 1− |e|

2

}
, µe,P(e) = max

{
0, 1− |e−2|

2

}
.

Plithogenic contradiction to the anchor:

pCFe(N,Z) = pCFe(P,Z) = 0.8, pCFe(Z,Z) = 0.

Hence, with T = min (here identity since n = 1), the plithogenic firing weights are

αa(e) = µe,a(e) · βa, βa := 1− pCFe(a,Z) ∈ {1, 0.2}.

Numerics at e = +1.2 ◦C:

µe,P = 1− |1.2−2|
2 = 1− 0.8

2 = 0.6, µe,Z = 1− |1.2|
2 = 0.4, µe,N = 0.

Before de–plithogenication:

βP = 0.2, βZ = 1 ⇒ αP = 0.6 · 0.2 = 0.12, αZ = 0.4.

Sugeno output:

∆u∗ =
0.12 · 30 + 0.4 · 0

0.12 + 0.4
=

3.6

0.52
≈ 6.923.
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Suppose an occupancy sensor glitch is diagnosed (apparent conflict). Take threshold τ = 0.75, so Acte(P |
Z, τ) = 1 and we choose Mode 0:Me({P,Z}) = 0. By the two–mode operator U imp

b,τ ,M,

µe,P unchanged, pCFe(P,Z) 7→ 0 (⇒ βP 7→ 1).

After de–plithogenication:

αUP = 0.6 · 1 = 0.6, αUZ = 0.4, ∆u∗U =
0.6 · 30 + 0.4 · 0

0.6 + 0.4
=

18

1
= 18.

Effect: without flipping memberships (since the contradiction was only apparent), neutralizing pCF removes
undue attenuation and restores a stronger, correct opening command (6.923→ 18 percentage points).

Example 3.32 (Quadcopter altitude hold: Mode 1 (Invert + Neutralize) for a genuine contradiction). A PFCS
commands vertical speed vc to hold altitude. Input is altitude error ez := zsp − z ∈ [−2, 2] m with Pve = {N,Z,P}
and anchor be = Z. Output uses Sugeno singletons vc(N) = −2, vc(Z) = 0, vc(P) = +2 (m/s); pCFy ≡ 0.

Fuzzy memberships (triangular, centers at −1, 0,+1 with half–width 1):

µe,N(e) = max
{
0, 1− |e+1|

1

}
, µe,Z(e) = max

{
0, 1− |e|

1

}
, µe,P(e) = max

{
0, 1− |e−1|

1

}
.

Due to a maintenance error, motor mapping is reversed: a positive vc makes the vehicle go down. This is a genuine
contradiction. Set

pCFe(N,Z) = pCFe(P,Z) = 0.85, pCFe(Z,Z) = 0,

with threshold τ = 0.8 so both N,P activate.

At ez = +0.8 m (we are below the setpoint), before de–plithogenication:

µe,P = 1− |0.8− 1| = 0.8, µe,Z = 1− |0.8| = 0.2, µe,N = 0,

βP = βN = 1− 0.85 = 0.15, βZ = 1 ⇒ αP = 0.8 · 0.15 = 0.12, αZ = 0.2, αN = 0.

Sugeno output:

v∗c =
0.12 · (+2) + 0.2 · 0

0.12 + 0.2
=

0.24

0.32
= 0.75 m/s (WRONG sign given the reversed mapping).

Apply U imp
b,τ ,M with Mode 1 on both activated pairs:Me({P,Z}) =Me({N,Z}) = 1. Then

µUe,P = 1− µe,P = 1− 0.8 = 0.2, µUe,N = 1− µe,N = 1− 0 = 1, µUe,Z = µe,Z = 0.2,

and the activated contradictions are reset:

pCFUe (P,Z) = pCFUe (N,Z) = 0 ⇒ βUP = βUN = βUZ = 1.

Post–transform firings and output:

αUN = 1, αUP = 0.2, αUZ = 0.2,

v∗Uc =
1 · (−2) + 0.2 · 0 + 0.2 · (+2)

1 + 0.2 + 0.2
=
−2 + 0.4

1.4
= −1.6

1.4
≈ −1.1429 m/s.

Mode 1 flips the semantics of the activated input terms (and neutralizes their contradiction to the anchor). The
controller now issues a negative command, which— under the reversed motor mapping—produces an upward
response, correctly reducing the positive altitude error.
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Notation 3.33
Throughout, anchors b1, . . . , bn and by, thresholds τ1, . . . , τn, τy ∈ [0, 1], and the mode selector M are fixed as
in the definitions given earlier. We write ci(·, ·) and cy(·, ·) for the scalar contradiction maps pCFi and pCFy,
respectively. For a rule r = (a1, . . . , an ⇒ b) we recall

αbase
r (x) = T

(
µ1,a1(x1), . . . , µn,an(xn)

)
, βr =

n∏
i=1

(
1− ci(ai, bi)

)
, γr = 1− cy(b, by),

and αr = αbase
r · βr · γr.

Theorem 3.34 (Finite termination with an explicit step bound)
Fix a PFCS with finite value sets Pv1, . . . , Pvn, Pvy and anchors (b1, . . . , bn, by). Consider any sequence of two-
mode De-Plithogenication steps (arbitrary mixture of Mode 0 and Mode 1 choices) that, at each step, selects an
activated pair {ai, bi} (or {b, by} on the output side) and applies the corresponding update (flip if Mode 1; no flip
if Mode 0; then reset the chosen pair’s contradiction to 0). Then the process terminates after at most

Nmax =

n∑
i=1

#
{
a ∈ Pvi \ {bi} : ci(a, bi) ≥ τi

}
+ #

{
b ∈ Pvy \ {by} : cy(b, by) ≥ τy

}
steps, and upon termination no pair satisfies the activation condition.

Proof
Define the potential

Φ :=

n∑
i=1

#
{
a ∈ Pvi : ci(a, bi) ≥ τi

}
+ #

{
b ∈ Pvy : cy(b, by) ≥ τy

}
.

At each step one activated pair {ai, bi} (or {b, by}) is chosen; the algorithm resets exactly that pair’s contradiction
to 0, hence cUi (ai, bi) = 0 < τi (resp. cUy (b, by) = 0 < τy). Therefore Φ decreases by at least 1 per step and can
never increase because the update never creates a new contradiction entry ≥ τ . Since Φ is a nonnegative integer
and initially Φ ≤ Nmax, after at most Nmax steps we reach Φ = 0. No pair remains with contradiction ≥ τ , i.e. no
activation is possible, so the process terminates.

Theorem 3.35 (Idempotence after termination)
Let U denote one full two-mode De-Plithogenication pass (any order, any modes) applied until termination as in
Theorem 3.34. Then U is idempotent:

U ◦ U = U.

Proof
By Theorem 3.34, after one full pass every contradiction entry that could activate has been driven below threshold.
Reapplying U checks the same activation predicates; all fail, so no further change occurs. Hence U(U(PS)) =
U(PS).

Proposition 3.36 (Order independence on disjoint pairs and across variables)
Fix a variable i and two distinct activated values a, a′ ∈ Pvi \ {bi} with a ̸= a′. Let Ui,a (resp. Ui,a′) denote a
single-step two-mode update that handles only the pair {a, bi} (resp. {a′, bi}), with the same mode choices as
prescribed byM. Then

Ui,a ◦ Ui,a′ = Ui,a′ ◦ Ui,a.

Moreover, updates taken on different variables commute pairwise.
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Proof
Both Ui,a and Ui,a′ only (i) possibly flip the single membership coordinate µi,a or µi,a′ , and (ii) reset the respective
contradiction entry ci(a, bi) or ci(a′, bi) to 0. These operations act on disjoint coordinates and disjoint contradiction
entries, hence commute. For different variables i ̸= j, the state components (µi,·, ci) and (µj,·, cj) are also disjoint,
so the same argument applies.

Theorem 3.37 (Exact multiplicative gain under Mode 0)
Suppose, for a rule r = (a1, . . . , an ⇒ b) and a fixed input x, that only the pair {ai, bi} activates and is processed
in Mode 0. Then

α post
r =

1

1− ci(ai, bi)
α pre
r ≥ α pre

r ,

i.e. the rule firing increases by the exact factor 1/(1− ci(ai, bi)). If several Mode 0 activations occur on distinct
indices i ∈ I , the total gain is

∏
i∈I

1
1−ci(ai,bi) .

Proof
Mode 0 does not alter any membership, hence αbase

r and all the β-factors except the ith remain unchanged. The ith
factor changes from (1− ci(ai, bi)) to 1 due to the reset. Therefore

α post
r = αbase

r ·
(∏
j ̸=i

(
1− cj(aj , bj)

))
· 1 · γr =

1

1− ci(ai, bi)
α pre
r .

Iterating over i ∈ I multiplies the gains.

Theorem 3.38 (Mode 1: algebraic condition for firing improvement under T = min)
Assume T = min. Consider a rule r = (a1, . . . , an ⇒ b) where exactly one antecedent value ai activates and is
processed in Mode 1. Let

µ := µi,ai(xi), m := min
j ̸=i

µj,aj (xj), κ :=
(∏
j ̸=i

(
1− cj(aj , bj)

))
· γr,

so that αpre
r = (1− ci(ai, bi)) ·min(µ,m) · κ and αpost

r = 1 ·min(1− µ,m) · κ. Then

αpost
r ≥ αpre

r ⇐⇒ min(1− µ,m) ≥ (1− ci(ai, bi)) min(µ,m).

In particular, a simple sufficient condition is

1− µ ≥ (1− ci(ai, bi))µ i.e. µ ≤ 1

2− ci(ai, bi)
.

Proof
With T = min and only the ith coordinate flipped, the antecedent aggregator changes from min(µ,m) to
min(1− µ,m); all other multiplicative factors are as stated. Cancelling the common nonnegative factor κ yields
the displayed inequality. The sufficient condition is obtained by requiring 1− µ ≥ (1− c)µ, where c = ci(ai, bi),
which gives 1 ≥ µ(2− c), i.e. µ ≤ 1/(2− c).

Remark 3.39 (Numerical check of Theorem 3.38). Let ci(ai, bi) = 0.9 so 1− c = 0.1; take µ = 0.80 and m =
0.75. Then

αpre
r /κ = (1− c)min(µ,m) = 0.1× 0.75 = 0.075, αpost

r /κ = min(1− µ,m) = min(0.20, 0.75) = 0.20,

so αpost
r > αpre

r . The sufficient condition gives µ ≤ 1/(2− c) = 1/1.1 ≈ 0.909 . . . , which is satisfied by µ = 0.80.
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Theorem 3.40 (Convex-hull (range) preservation of crisp output)
Suppose the PFCS uses either (i) Mamdani inference with any nonnegative s-norm aggregation followed by
centroid defuzzification, or (ii) zero-order Sugeno with singleton consequents {yk} ⊂ R. Under any sequence of
two-mode De-Plithogenication steps, the crisp output remains in the convex hull of the consequents: in case (ii),

y∗(x) ∈
[
min
k
yk, max

k
yk
]

for every input x.

Proof
All rule firing strengths are nonnegative by construction, and De-Plithogenication only rescales them via
nonnegative multipliers and (under Mode 1) flips some memberships into 1− µ ∈ [0, 1] but never introduces
negative weights. For (ii) zero-order Sugeno, the crisp output has the form

y∗(x) =

∑
k αk(x) yk∑
k αk(x)

, αk(x) ≥ 0,
∑
k

αk(x) > 0,

which is a convex combination of {yk}; hence y∗ lies in the convex hull [min yk,max yk]. For (i), the centroid of a
nonnegative fuzzy set supported in [minY,maxY ] must lie in that interval.

Corollary 3.41 (Reduction to classical fuzzy control after a Mode 0-only pass)
If a full De-Plithogenication pass is executed using Mode 0 only until termination, then µ’s remain unchanged
and all contradictions that could activate are reset to zero. Consequently, the resulting PFCS has pCFi ≡ 0 and
pCFy ≡ 0 on the activated pairs, and its input–output map coincides with the classical fuzzy controller obtained
by removing pCF entirely (cf. Theorem 3.5).

Proof
Mode 0 does not flip any membership, so the family {µi,·} is preserved. By Theorem 3.34, all contradictions
that exceed the thresholds are driven below them; in particular, all entries used by the controller become 0 on the
activated pairs. Theorem 3.5 then applies.

Proposition 3.42 (Monotonicity of the activation set in the thresholds)
For each variable i the activation set

Aτi(bi) := { a ∈ Pvi : ci(a, bi) ≥ τi }

is antitone in τi: if τ ′i > τi then Aτ ′
i
(bi) ⊆ Aτi(bi). The same holds for the output side. Consequently, increasing

thresholds can only (weakly) reduce the number of updates performed by any De-Plithogenication pass.

Proof
Immediate from the definition of Aτi as a superlevel set of ci(·, bi).

Theorem 3.43 (Global step bound and complexity)
If a single pass processes all currently activated pairs (any modes), then the number of flips is at most

Fmax ≤
n∑
i=1

#Aτi(bi) + #Aτy (by),

and the number of contradiction resets equals the same bound. In particular, for fixed anchors there are no more
than

n∑
i=1

(
|Pvi| − 1

)
+
(
|Pvy| − 1

)
resets in the worst case (when all non-anchor values activate).
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Proof
Each activation involves exactly one unordered pair {ai, bi} (or {b, by}) and can occur at most once because after it
is processed the contradiction on that pair is set to 0 < τ permanently (Theorem 3.35). Thus the maximum number
of updates equals the number of activated pairs available at the beginning of the pass. The crude bound follows by
observing that for fixed anchors there are exactly |Pvi| − 1 possible pairs {a, bi} on variable i.

4. Results: Algorithms for Upside-Down Logic in Plithogenic Fuzzy Control System

We present implementation-ready procedures for Upside–Down (UD) Logic on a Plithogenic Fuzzy Control
System (PFCS). Throughout, n is the number of inputs, R the rule base of size K := |R|, Pvi the set of linguistic
values of input i, and Pvy that of the output. Anchors and thresholds are (b1, . . . , bn, by) and (τ1, . . . , τn, τy),
respectively. We assume T (t-norm), S (s-norm), ⊗ (shaper), and a zero–order Sugeno defuzzifier unless noted.

Algorithm 1: UD-PREPROCESS for PFCS (flip + reset with caching)
Input: PFCS components; anchors b1, . . . , bn, by; thresholds τ1, . . . , τn, τy.
Output: Flip flags flip[i, a] ∈ {0, 1}, flipY[b] ∈ {0, 1}; cached attenuations βUr , γUr for all r ∈ R;

inverted-pair index lists L(a), Ly(b).
1 for i = 1 to n do
2 for each a ∈ Pvi do
3 c← pCFi(a, bi)
4 flip[i, a]← 1[c ≥ τi]
5 initialize L(a)← ∅

6 for each b ∈ Pvy do
7 c← pCFy(b, by); flipY[b]← 1[c ≥ τy]; initialize Ly(b)← ∅

8 for each rule r = (a1, . . . , an ⇒ b) ∈ R do
// Build inverted-pair indices for incremental updates

9 for i = 1 to n do
10 add r to L(ai)
11 add r to Ly(b)

// Cache post-UD contradiction attenuations
12 βUr ← 1
13 for i = 1 to n do
14 if flip[i, ai] = 1 then
15 factor← 1 // reset pCFi(ai, bi) to 0
16 else
17 factor← 1− pCFi(ai, bi)
18 βUr ← βUr × factor

19 if flipY[b] = 1 then
20 γUr ← 1 // reset pCFy(b, by) to 0
21 else
22 γUr ← 1− pCFy(b, by)

23 return {flip,flipY, βU , γU ,L(·),Ly(·)}
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We will design and examine the following four algorithms:

• UD-Preprocess: Scan anchors and thresholds; detect activated pairs; set flip flags; reset contradictions;
precompute attenuations; build per-value rule indices.

• UD-Sugeno-Inference: Evaluate flipped or original memberships; aggregate antecedents via T ; multiply
cached βU , γU ; accumulate numerator/denominator; return N/W with fallback.

• Improved-UD-Preprocess: Apply mode selector M to activated pairs; choose invert+neutralize or
neutralize-only; set flips; zero contradictions; precompute attenuations and caches.

• UD-Incremental-Update: Upon anchor or threshold change, recompute only affected flips and attenuations
via indices; update caches; preserve unrelated rules and timings.

Example 4.1 (Caching and flips for a 1-input PFCS (uses Alg. 1)). Setup. One input X1 with Pv1 = {N,Z,P}
and one output with Pvy = {N,Z,P}. Anchors: b1 = by = Z. Thresholds: τ1 = 0.8, τy = 0.7. Contradictions:

pCF1(N,Z) = 0.9, pCF1(P,Z) = 0.3, pCF1(Z,Z) = 0,

pCFy(N,Z) = 0.8, pCFy(P,Z) = 0.6, pCFy(Z,Z) = 0.

Rule base:
R1 : (N)⇒ P, R2 : (P)⇒ N, R3 : (Z)⇒ Z.

Apply Alg. 1. Activations: N (input) activates since 0.9 ≥ 0.8; P (input) does not. On output, N activates
(0.8 ≥ 0.7), P does not.

Flip flags:

flip[1,N] = 1, flip[1,P] = 0, flip[1,Z] = 0, flipY[N] = 1, flipY[P] = 0, flipY[Z] = 0.

Cached attenuations:

βUR1
= 1, βUR2

= 1− pCF1(P,Z) = 0.7, βUR3
= 1,

γUR1
= 1− pCFy(P,Z) = 0.4, γUR2

= 1 (reset), γUR3
= 1.

Index lists:

L(N) = {R1}, L(P) = {R2}, L(Z) = {R3}, Ly(P) = {R1}, Ly(N) = {R2}, Ly(Z) = {R3}.

Remark 4.2. We never rewrite membership functions; instead, at runtime we evaluate

µ̃i,a(xi) :=

{
1− µi,a(xi), flip[i, a] = 1,

µi,a(xi), flip[i, a] = 0,
γ̃r := γUr , β̃r := βUr .

This keeps preprocessing linear in the catalog sizes and avoids touching analytic µ.
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Algorithm 2: UD-SUGENO-INFERENCE (lazy flip + cached attenuations)
Input: Input x = (x1, . . . , xn); rule base R; T , {yr}; caches from Alg. 1.
Output: Crisp output y∗(x).

1 N ← 0; W ← 0
2 for each rule r = (a1, . . . , an ⇒ b) ∈ R do

// Antecedent aggregation with lazy flip
3 for i = 1 to n do
4 νi ← µi,ai(xi)
5 if flip[i, ai] = 1 then
6 νi ← 1− νi

7 αbase
r ← T (ν1, . . . , νn)

8 αr ← αbase
r × βUr × γUr

9 N ← N + αr · yr; W ←W + αr

10 if W = 0 then
11 return y∗(x)← ysafe // e.g. output anchor or design fallback

12 return y∗(x)← N/W

Example 4.3 (One-step UD Sugeno inference (uses Alg. 2)). Using the caches from Ex. 4.1 and Alg. 2, choose
rule singletons yP = +40, yN = −30, yZ = 0 and, for a given input x1, memberships

µ1,N(x1) = 0.1, µ1,Z(x1) = 0.3, µ1,P(x1) = 0.6.

With lazy flip, N antecedent is inverted: νN = 1− 0.1 = 0.9; others unchanged. For T = min (degenerates to the
single degree):

αbase
R1

= 0.9, αbase
R2

= 0.6, αbase
R3

= 0.3.

Apply cached attenuations:

αR1 = 0.9 · 1 · 0.4 = 0.36, αR2 = 0.6 · 0.7 · 1 = 0.42, αR3 = 0.3 · 1 · 1 = 0.3.

Sugeno output (Alg. 2):

y∗(x1) =
0.36 · 40 + 0.42 · (−30) + 0.3 · 0

0.36 + 0.42 + 0.3
=

14.4− 12.6

1.08
=

1.8

1.08
≈ 1.667.
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Algorithm 3: IMPROVED-UD-PREPROCESS with a mode selectorM
Input: PFCS; anchors, thresholds; symmetric mode selectorM : {{u,w}} 7→ {0, 1}.
Output: Flip flags & attenuations as in Alg. 1.

1 for i = 1 to n do
2 for each a ∈ Pvi do
3 c← pCFi(a, bi); act← 1[c ≥ τi]
4 if act = 1 andM({a, bi}) = 1 then
5 flip[i, a]← 1 // Mode 1: invert
6 else
7 flip[i, a]← 0 // Mode 0 or inactive

// Regardless of mode, contradictions to the anchor are reset in
caches

8 for each rule r = (a1, . . . , an ⇒ b) do
9 βUr ← 1; γUr ← 1 if pCFy(b, by) ≥ τy else 1− pCFy(b, by)

10 for i = 1 to n do
11 if pCFi(ai, bi) ≥ τi then
12 factor← 1 // reset regardless of mode
13 else
14 factor← 1− pCFi(ai, bi)
15 βUr ← βUr × factor

16 return caches and flags

Example 4.4 (Two-mode preprocessing with a selectorM (uses Alg. 3)). Reuse the setting of Ex. 4.1 but choose
a symmetric mode selector with

M({N,Z}) = 0 (Neutralize-only), M({P,Z}) = 0.

Running Alg. 3 gives

flip[1,N] = 0 (no inversion in Mode 0), flip[1,P] = 0,

while the cached contradictions to the anchor are still reset wherever pCF ≥ τ :

βUR1
= 1, βUR2

= 0.7, βUR3
= 1; γUR1

= 0.4, γUR2
= 1, γUR3

= 1.

Thus, relative to Alg. 1, only the flip flag for (1,N) changes (no membership inversion); the cached attenuations
remain identical due to the reset rule.
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Algorithm 4: UD-INCREMENTAL-UPDATE for (bi, τi) or (by, τy) changes
Input: Changed (bi, τi) (or (by, τy)); prior caches; rule-index lists L(·),Ly(·).
Output: Updated flip/flipY and βUr /γUr only where needed.

1 if input side (bi, τi) changed then
2 for each a ∈ Pvi do
3 recompute act← 1[pCFi(a, bi) ≥ τi] and set flip[i, a] as in Alg. 3
4 for each r ∈ L(a) do
5 recompute only the i-th factor of βUr ; leave other factors intact

6 if output side (by, τy) changed then
7 for each b ∈ Pvy do
8 recompute activation; set flipY[b] accordingly
9 for each r ∈ Ly(b) do

10 recompute γUr only

11 return updated caches

Example 4.5 (Incremental update after changing the output threshold (uses Alg. 4)). Start from the caches in
Ex. 4.1. Increase the output threshold to τ ′y = 0.85. Since pCFy(N,Z) = 0.8 < 0.85, the activation drops:

flipY[N] : 1 −→ 0, γUR2
: 1 −→ 1− pCFy(N,Z) = 0.2,

and only rules in Ly(N) = {R2} are touched (Alg. 4). Using the same memberships as in Ex. 4.3 and unchanged
βU :

αR1
= 0.36 (unchanged), αR2

= 0.6 · 0.7 · 0.2 = 0.084, αR3
= 0.3.

Updated Sugeno output:

y∗(x1) =
0.36 · 40 + 0.084 · (−30) + 0.3 · 0

0.36 + 0.084 + 0.3
=

14.4− 2.52

0.744
=

11.88

0.744
≈ 15.97.

Therefore, the incremental update (Alg. 4) weakens the negative rule (consequent N), shifting y∗ upward without
recomputing unaffected terms.

Theorem 4.6 (Correctness of UD-PREPROCESS + UD-SUGENO-INFERENCE)
Let Ub,τ (PFCS) be the UD transform with contradiction reset as defined previously. For any input x, the output
y∗(x) returned by Alg. 2 using caches from Alg. 1 equals the output obtained by first forming Ub,τ (PFCS) (i.e.,
flipping memberships and zeroing the activated contradictions) and then running standard Sugeno inference on that
transformed controller.

Proof
By construction of Alg. 1, for every rule r = (a1, . . . , an ⇒ b) the cached factors satisfy

βUr =

n∏
i=1

(
1− pCFUi (ai, bi)

)
, γUr = 1− pCFUy (b, by),

where pCFU denotes the contradiction map after the reset (activated pairs to anchors are set to 0). In Alg. 2 the
lazy flip implements µ̃i,ai(xi) = µUi,ai(xi) for each antecedent. Hence the computed firing equals

αr = T
(
µU1,a1(x1), . . . , µ

U
n,an(xn)

)
· βUr · γUr = αUr ,

the exact post-UD firing by definition. Sugeno aggregation then yields the same N =
∑

r α
U
r yr and W =

∑
r α

U
r ,

hence the same y∗ = N/W as the mathematical procedure.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



T. FUJITA, A. SALEM HEILAT AND R. HATAMLEH 37

Theorem 4.7 (Correctness under two-mode policy)
Let U imp

b,τ,M be the two-mode UD operator (Mode 0: neutralize-only; Mode 1: invert+neutralize). Caches produced
by Alg. 3, combined with Alg. 2, compute exactly the inference result of U imp

b,τ,M(PFCS) for any x.

Proof
If M({a, bi}) = 1 and pCFi(a, bi) ≥ τi, Alg. 3 sets flip[i, a] = 1 and the i-th factor of βUr to 1, matching the
definition (invert appurtenance and reset contradiction). If M({a, bi}) = 0, it sets flip[i, a] = 0 but still sets the
factor to 1, again matching the definition (no inversion, reset only). The output side is analogous. The remainder is
identical to the proof of Theorem 4.6.

Theorem 4.8 (Finite termination and idempotence of UD-PREPROCESS)
Let Nmax =

∑n
i=1 #{a ∈ Pvi \ {bi} : pCFi(a, bi) ≥ τi}+#{b′ ∈ Pvy \ {by} : pCFy(b′, by) ≥ τy}. Then Alg. 1

(or Alg. 3) performs at most Nmax flips/resets and is idempotent: a re-run changes nothing.

Proof
Each activated pair to an anchor is processed exactly once and then considered neutralized (its contradiction to the
anchor is zero in the caches). No new activations are created, so the step count is bounded by Nmax. A second pass
finds no further activations to process.

Theorem 4.9 (Time and space complexity)
Assume O(1) access to pCF and to each membership evaluation µi,a(xi); let cT be the cost of computing T on n
arguments (e.g. cT = O(n) for min or product). Then:

(a) Preprocessing (Alg. 1 / 3).

Time = O
( n∑
i=1

|Pvi|+ |Pvy|+K n
)
, Space = O

( n∑
i=1

|Pvi|+ |Pvy|+K
)
.

(b) Online inference (Alg. 2, Sugeno).

Time per query = O
(
K (n+ cT )

)
and Space overhead = O(1) beyond the caches.

For T = min or T =
∏

, cT = O(n), hence time = O(K n).

(c) Incremental update (Alg. 4). If only (bi, τi) changes, the time is

O
(
|Pvi|+

∑
a∈Pvi

|L(a)|
)
= O

(
|Pvi|+#{(r, a) : r ∈ R, a used in r}

)
,

i.e. linear in the rules that actually mention the affected values. An output-side update is analogous with
Ly(·).

Proof
(a) Scanning all Pvi and Pvy dominates the activation test; computing βUr and γUr for each rule multiplies/looks
up at most n+ 1 factors, giving O(Kn). Caches and index lists store O(K) items plus O(

∑
i |Pvi|+ |Pvy|) flags.

(b) Each rule evaluation performs n membership calls (with an optional 1− ·), one T , and O(1) arithmetic to
apply (βUr , γ

U
r ) and update accumulators. Thus O(K(n+ cT )).

(c) Only factors that depend on changed anchors/thresholds need recomputation; the index lists L(·), Ly(·)
restrict work to affected rules.
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5. Conclusion and Future Works

5.1. Conclusion

This paper introduced the Plithogenic Fuzzy Control System (PFCS) as a contradiction-aware extension of classical
fuzzy control and integrated it with Upside-Down (UD) logic. We formalized how contradiction maps and anchors
modulate rule firing, and we designed practical algorithms for preprocessing, inference, and incremental updates.
The framework enables context-triggered rule inversion while preserving the interpretability and modularity of
standard fuzzy controllers. The proven advantages are threefold. First, PFCS strictly generalizes classical fuzzy
control and reduces to it when the contradiction map is null; uniform attenuation cancels under zero-order
Sugeno aggregation. Second, PFCS delivers safer, more conservative decisions under polarity or frame flips by
contradiction-aware attenuation and UD transforms. Third, it retains transparent semantics via explicit anchors
and symmetric contradiction maps.

5.2. Future Works

In future work, we plan to explore extensions employing Neutrosophic Sets [84, 91, 92, 93, 94, 95, 96, 97, 98, 99],
Quadripartitioned Neutrosophic Sets [100, 101], PentaPartitioned Neutrosophic Sets [102, 103], and HyperFuzzy
Sets [104, 105, 106]. Furthermore, we intend to verify the validity of the proposed concepts through computational
experiments, pursue additional theoretical extensions, and investigate applications to machine learning using
real-world datasets. We also plan to investigate potential applications to systems such as the nonlinear inverted
pendulum [107, 108], the complex thermal plant [109], Genetic Algorithms[110, 111], Gradient Descent[112, 113],
Reinforcement Learning[114, 115], and the path-following robot [116, 117]. Furthermore, as a quantitative
comparison, we hope that future studies by experts will evaluate and compare the controllers using standard
performance metrics such as Integral Absolute Error (IAE)[118], Settling Time, Overshoot, and Control Effort.
Furthermore, we plan to explore the possibilities of extending the approach to Plithogenic Intuitionistic, Plithogenic
Neutrosophic control systems, and meta-logic [119, 120].
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