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Abstract This article employs the homotopy perturbation method (HPM) to derive analytical solutions for the nonlinear
vibrations of triple-walled carbon nanotubes (TWCNTs) embedded in an elastic medium. A triple-beam model is used, where
the governing equations for each layer are coupled with those of adjacent layers through van der Waals interlayer forces. The
study examines the amplitude-frequency response of TWCNTSs under large-amplitude vibrations, analysing the effects of
variations in the elastic medium’s material properties as well as changes in the nanotube’s geometric parameters. Using the
homotopy perturbation method (HPM), a nonlinear system of equations can be reformulated into an approximate analytical
expression. The numerical results demonstrate the rapid convergence of the derived series solutions toward the exact solution.
Additionally, the analytical findings are validated against simulation results obtained using a MATLAB program, showing
strong agreement between the two approaches.
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1. Introduction

Carbon nanotubes (CNTs) are among the most transformative breakthroughs in nanotechnology, having been
discovered in 1991. Renowned for their remarkable combination of mechanical robustness, electrical conductivity,
thermal resilience, and nanoscale geometry, these cylindrical nanostructures—formed by rolling graphene sheets
into seamless cylinders—have revolutionised fields ranging from advanced electronics and high-performance
composites to energy storage systems and biomedical technologies [1]. Among these nanostructures, triple-
walled carbon nanotubes (TWCNTSs) occupy a unique position. While single-walled (SWCNTs) and double-
walled (DWCNTs) variants have dominated scientific inquiry, TWCNTs bridge the gap between the well-defined
electronic properties of single-walled systems and the enhanced structural stability of multi-walled architectures.
This intermediate configuration positions TWCNTSs as a compelling subject for fundamental research and practical
applications, offering a synergistic balance of precision and durability unmatched by their counterparts [2].
Carbon nanotubes are systematically classified by their structural configuration, which consists of concentric
graphene layers: single-walled (SWCNTs), double-walled (DWCNTSs), and multi-walled (MWCNTs), with
multiple nested layers. Within the MWCNT category, triple-walled carbon nanotubes (TWCNTs) stand apart
due to their precisely defined tri-layered architecture. The uniform three-walled architecture of TWCNTSs
enables a synergistic integration of outstanding mechanical robustness, high chemical stability, and precisely
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adjustable electronic behaviour. These distinctive properties position TWCNTSs as pivotal materials for ground-
breaking applications, including high-efficiency Nano electronics, precision sensors, next-generation composite
reinforcements, and advanced biomedical technologies [3].

Structurally, TWCNTs exhibit exceptional mechanical robustness that surpasses both SWCNTs and DWCNTs.
The triple-layered architecture enhances resistance to buckling and fracture under compressive or tensile loads,
positioning them as superior candidates for high-strength composites and nanoscale structural applications [4].
Unlike conventional multi-walled carbon nanotubes (MWCNTSs), which typically comprise numerous concentric
layers with intricate interlayer dynamics, TWCNTs strike an optimal balance: their three-wall configuration
simplifies interlayer interactions while retaining the mechanical advantages of multi-walled systems. This structural
predictability, coupled with retained durability, enables precise engineering of TWCNT-based materials without
sacrificing performance—a critical advantage in advanced manufacturing and nanotechnology design.

The electrical behaviour of TWCNTSs offers a unique versatility rooted in their structural design. Unlike
single-walled counterparts, TWCNTSs exhibit a layered electronic profile governed by their three concentric
walls’ distinct chirality and diameter [5]. This configuration enables hybrid electronic properties—where metallic
and semiconducting behaviours coexist across different layers—allowing engineers to fine-tune conductivity for
applications such as flexible Nano electronics or multifunctional Nano devices. A critical advantage lies in their
modular design: the outer wall can be chemically functionalized for integration with polymers, biomolecules, or
sensing interfaces, while the inner walls remain pristine, preserving intrinsic electrical performance and structural
integrity [6].

TWCNTs are primarily synthesised through established techniques such as arc discharge and laser ablation,
with chemical vapour deposition (CVD) emerging as the predominant method for controlled fabrication. CVD
enables superior control over growth parameters, facilitating the production of nanotubes with enhanced structural
uniformity and reduced defect density compared to alternative approaches [7]. Recent breakthroughs in catalyst
engineering and thermal regulation have refined the process, enabling selective synthesis of TWCNTs while
suppressing the formation of irregular multi-walled byproducts. Despite these advancements, persistent obstacles
in maintaining precise structural consistency and purity—particularly in large-scale production scenarios—remain
critical barriers to industrial adoption.

TWCNTs extend their significance beyond fabrication, offering an exemplary platform for probing van der
Waals interactions and quantum confinement effects in quasi-one-dimensional geometries. Their inter-wall spacing
of approximately 0.34 nanometers—akin to the interlayer distance in graphite—enables subtle coupling between
concentric layers, modulating phonon propagation, charge transport dynamics, and mechanical responses [8]. This
weak yet consequential interaction framework is essential for elucidating the behaviour of concentric graphene
cylinders under diverse physical and chemical perturbations, providing foundational insights into nanoscale
material science.

TWCNTs exhibit transformative potential across a spectrum of advanced technologies. Their exceptional
mechanical strength and expansive surface area position them as key enhancers for lithium-ion batteries and
supercapacitors, significantly boosting energy storage capacity and rapid charge-discharge performance [9].
In biotechnology, their unique architecture—featuring a chemically tunable outer shell and an inert, stable
core—enables precise drug delivery mechanisms and high-sensitivity biosensors, ensuring both efficacy and
biocompatibility. Beyond these domains, their remarkable thermal management capabilities and resistance to
corrosive environments have spurred innovations in aerospace materials and electronics for extreme operational
conditions, such as high-temperature circuits and propulsion systems [10].

Despite their potential, widespread adoption of triple-walled carbon nanotubes (TWCNTSs) faces significant
challenges. Key obstacles include achieving uniform synthesis, addressing characterisation complexities arising
from overlapping signals between layers, and gaps in understanding their long-term ecological and biological
impacts. While advanced analytical tools such as high-resolution transmission electron microscopy (HRTEM),
Raman spectroscopy, and scanning tunnelling microscopy (STM) have enhanced structural and functional analysis,
standardised protocols for evaluating TWCNT quality and behaviour remain underdeveloped [11, 12].

This study addresses these challenges through a detailed analytical investigation of TWCNTSs’ nonlinear
vibrational dynamics when embedded in elastic media, employing the homotopy perturbation method (HPM). We
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formulate governing equations incorporating geometric nonlinear effects and van der Waals interactions across all
three concentric layers. By applying HPM, semi-analytical solutions are derived, focusing on amplitude-frequency
relationships and their dependence on material and geometric parameters.

Extensive research has been conducted on the vibration analysis of carbon nanotubes (CNTs) owing to their
exceptional mechanical and electromechanical properties, which are critical in nanoscale systems and materials
design. Early analytical approaches based on classical beam and shell theories, such as the Euler—Bernoulli and
Timoshenko formulations, provided useful insights into fundamental vibration modes of single- and double-walled
CNTs but often neglected nanoscale effects. To capture these phenomena more accurately, nonlocal elasticity
theory and van der Waals interaction models were developed, accounting for long-range interatomic forces and
interlayer coupling. Studies by Wang et al. [13] demonstrated that incorporating these effects leads to size-
dependent stiffness and resonance shifts in CNTs.

Despite these advancements, analytical investigations of triple-walled carbon nanotubes (TWCNTSs) remain
limited. Most existing studies focus on single- or double-walled models, overlooking the distinct tri-layered
coupling and nonlinear interlayer interactions that govern TWCNT dynamics. To address this research gap, the
present study formulates a three-beam coupled nonlinear vibration model that incorporates geometric nonlinearity
and Vander Wall forces among all concentric layers. Using the Homotopy Perturbation Method (HPM), rapidly
convergent analytical expressions are derived for vibration amplitudes and frequency responses. This combined
analytical-numerical framework not only captures essential nonlinear behaviour and energy transfer mechanisms in
TWCNTs but also offers a computationally efficient and physically interpretable approach for modeling nanoscale
vibrations.

This paper is structured to address the nonlinear vibrational dynamics of TWCNTs systematically. Section
2 establishes the theoretical framework, deriving governing equations that account for geometric nonlinearities
and interlayer van der Waals interactions in TWCNTs. Section 3 outlines applying the homotopy perturbation
method (HPM) to solve these equations, emphasising its analytical advantages. Section 4 analyses computational
results, elucidating the influence of key parameters—such as elastic medium stiffness and nanotube geometry—on
amplitude-frequency responses. Finally, Section 5 synthesises critical findings, highlights practical implications for
nanoscale system design, and proposes avenues for future research to address unresolved challenges in TWCNT
dynamics.

2. Mathematical Modeling of TWCNT Vibrational Behaviour

Consider a triple-walled carbon nanotube (TWCNT) of length, Young’s modulus, density, cross-sectional area, and
moment of inertia, embedded in an elastic medium characterised by the foundation stiffness. Each concentric wall
of the TWCNT is modeled as a slender, linearly elastic Euler—Bernoulli beam coupled with adjacent walls through
van der Waals interactions. The nonlinear vibration behaviour of this system is governed by partial differential
equations that incorporate both geometric nonlinearity and interlayer coupling effects.

The governing equation describes the nonlinear transverse vibration of each wall of the TWCNT embedded in an
elastic medium. It is derived from the classical Euler—Bernoulli beam theory, incorporating the effects of mid-plane
stretching and van der Waals interlayer forces. The equation accounts for material elasticity, foundation stiffness,
damping, and interlayer coupling between concentric walls. The nonlinear term arises from geometric nonlinearity
in the von Karman strain relation, representing Duffing-type hardening behaviour. This formulation forms the
theoretical basis for analysing amplitude-dependent vibration responses using the Homotopy Perturbation Method
(HPM).

Under these assumptions, the nonlinear vibration behaviour of the TWCNT is expressed by the following
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coupled governing equations:

d2W1(t) 7T4EI1 C1 7T4E 3 C1
_ o - 1
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Here, Wy, Wy, W3 represent the vibrations of the i** tube along the neutral axis, and ¢; denotes the Van der Waals
force coefficient between ¥ and (i — 1) tubes. The governing equations are normalized through the introduction
of the following dimensionless parameters:
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By applying a suitable transformation, Equations. (1-3) yield the following dimensionless nonlinear system.
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It should be noted that the current model is formulated within the context of classical continuum mechanics. At the
nanoscale, however, size-dependent or nonlocal effects may play a non-negligible role. A potential extension of
this work involves the integration of nonlocal elasticity theory (Eringen 1972 )[14], wherein the stress at a point is a
function of the strain field across the entire domain. This can be characterised by introducing a nonlocal parameter,
defined as ;1 = (ega/l)? where eg a is a material constant and 1 is a characteristic length. The incorporation of
this parameter would introduce higher-order gradients into the governing equations, a modification expected to
manifest as a stiffness-softening effect and a consequent reduction in the system’s natural frequencies.

Initial and boundary conditions for the system are specified as follows:

z(0) = X1,y(0) = X2, 2(0) = X3 ©)
2'(0) = 0,4/(0) = 0,2/(0) = 0 (10)

3. Approximate Analytical solution of String Vibrational Modes Using HPM
Nonlinear phenomena are pervasive across diverse scientific disciplines, particularly in vibration analysis, heat
transfer, fluid dynamics, and Nano mechanics—exemplified by challenges such as modeling carbon nanotube

vibrations. These systems often involve geometric nonlinearities and coupled interactions, such as Van der Waals
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forces in multi-walled nanotubes, where numerical methods frequently obscure physical insights due to their
inherent complexity. For most such problems, deriving exact analytical solutions remains intractable. Consequently,
several approximate analytical methods have been developed, including the Adomian decomposition method [15],
variational iteration method [16], Akbari-Ganji method [17, 18], Taylor’s Method [19], differential transformation
method [20], and the homotopy perturbation method (HPM) [21, 22, 23]. Among these, HPM is the most versatile
and efficient approach, applicable to weak and strong nonlinear equations. Demonstrated through extensive studies,
HPM effectively balances accuracy and simplicity, yielding rapidly convergent approximations that closely align
with exact solutions, even for highly nonlinear systems. Its adaptability to complex interactions and ability to
preserve physical intuition make it indispensable in advancing theoretical and applied research.

The homotopy perturbation method (HPM), pioneered by Ji-Huan He, is a versatile semi-analytical approach
for solving nonlinear differential equations. This technique unites classical perturbation theory with topological
homotopy concepts, systematically transforming complex nonlinear systems into sequences of simpler linear
approximations. Central to HPM is constructing a homotopy equation, which embeds the original nonlinear
problem within a continuum of equations governed by a parameter q € [0, 1]. As q evolves from O to 1, the
homotopy smoothly transitions from an easily solvable linearised form to the complete nonlinear equation, enabling
iterative refinement of solutions.

(OéXi?‘ + Ble - BQXQ)AT2

2(r) = X; — 5 (11)
—X1 — X3)8B2 + aX3 + B3 X3)At?

y(T) =X, — (( 1 3)ﬂ 2 2a 5 3 2) T (12)
_ 3 _ 2

Z(T) _ X3 _ ( OZX3 + 7]82)2(2 B4X3)A7’ (13)

4. Analytical and Numerical Validation of Carbon Nanotube Vibration Models

The dimensionless vibration of TWCNTSs is expressed in Equations (11), (12) and (13), offering a simple analytical
form valid for any parameter value. To validate the effectiveness of the proposed HPM approaches, we perform
a numerical analysis in this section. The MATLAB-based computational results exhibit high accuracy when
compared with the experimental outcomes of this research. The comparative analysis presented in Tables ??,
featuring both numerical and analytical results along with their average relative errors, establishes the homotopy
perturbation method as a precise tool for predicting TWNT vibration amplitudes. The effectiveness of this method
is confirmed by the minimal deviations observed, never exceeding 2%.

Table 1. Comparison of theoretical and numerical results of vibration z(7) (Equ. 11) using the parameters o = 0.5, B; =
1,Bo=1,A=05X,=1

X, =1 X, =12 X, =14
7 | NUM | HPM | ERR | NUM | HPM | ERR | NUM | HPM | ERR
0 1 1 0 1.2 1.2 0 1.4 1.4 0

0.2 10995 | 09952 | 0.02 | 1.1894 | 1.1895 | 0.01 | 1.3823 | 1.3828 | 0.04
04 ] 098 | 09816 | 0.16 | 1.1574 | 1.1575 | 0.01 | 1.3291 | 1.3293 | 0.02
0.6 | 0.955 | 0.9551 | 0.01 | 1.1042 | 1.1044 | 0.02 | 1.2405 | 1.2409 | 0.03
0.8 | 092 | 09204 | 0.04 | 1.0297 | 1.0298 | 0.01 | 1.1165 | 1.1168 | 0.03

1 | 0875 | 0876 | 0.11 | 0.934 | 0.9346 | 0.06 | 0.957 | 0.9571 | 0.01
Avg Err. % 0.06 Avg Err. % 0.02 Avg Err. % 0.02
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Table 2. Thetheoretical and numerical results of vibration y(7) (Equ. 12) are examined using the parameters o = 0.5, 3 =
1,Bi=1,Bs=1,B3=1,X; =1

Xo=1 X9 =1.05 X9 =1.10
7 | NUM | HPM | ERR | NUM | HPM | ERR | NUM | HPM | ERR
0 1 1 0 1.05 1.05 0 1.1 1.1 0

0.2 | 1.005 | 1.0098 | 0.48 | 1.0537 | 1.0538 | 0.01 | 1.103 | 1.1062 | 0.29
04 ] 1.02 | 1.0245 | 0.44 | 1.0649 | 1.0652 | 0.03 | 1.1094 | 1.113 | 0.32
0.6 | 1.045 | 1.0489 | 0.37 | 1.0834 | 1.0838 | 0.04 | 1.1211 | 1.1241 | 0.27
0.8 | 1.08 1.083 | 0.28 | 1.1094 | 1.1096 | 0.02 | 1.1375 | 1.1397 | 0.19
1 | 1.125 | 1.1269 | 0.17 | 1.1428 | 1.143 | 0.02 | 1.1586 | 1.1598 | 0.10

Avg Err. % 0.29 Avg Err. % 0.02 Avg Err. % 0.20

Dimensionless Vibration x

Dimensionless Vibration y

Figure 1. Variation

area:0.5,,8:1,n:0.1,31 :1732:1,B3:1,X1 :1,X2:1,X3:1

04

0.6 0.8

Dimensionless Time T

of

,._.
-

,_.
(=1
T

0.4 0.6

0.8 1

Dimensionless Time T

(@)
N
=]
.2
g
)
=
3
5
[=]
S
o
=]
o
£
a
0
dimensionless

0.2 04 0.6

08

Dimensionless Time T

(©)

vibration x  with

dimensionless
«, B,n, A, B1, B2, B3, X1, X2, X3 as calculated from Equation (11). The geometric parameters used in this analysis

(b)

time T

parameter  values

Stat., Optim. Inf. Comput. Vol. x, Month 202x



6  ANALYTICAL EXPRESSION OF NONLINEAR VIBRATION ANALYSIS OF TRIPLE-WALLED CARBON NANOTUBES

Table 3. Theoretical versus numerical results of vibration z(7) (Equ. 13) using the parameters « = 0.5,3 = 1,7 = 0.1, B; =
1,Bo=1,B3=1,X1=1,Xo=1

X; =1 X; = 1.1 X; =13
7 | NUM | HPM | ERR | NUM | HPM | ERR | NUM | HPM | ERR
0 1 1 0 1.1 1.1 0 13 1.3 0

0.2 | 0.986 | 0.9968 | 1.10 | 1.0833 | 1.0837 | 0.04 | 1.277 | 1.2857 | 0.68
0.4 | 0.944 | 09448 | 0.08 | 1.0334 | 1.0347 | 0.13 | 1.2081 | 1.2158 | 0.64
0.6 | 0.874 | 0.875 | 0.11 | 0.9501 | 0.9521 | 0.21 | 1.0931 | 1.0993 | 0.57
0.8 10776 | 0.78 | 0.52 | 0.8335 | 0.8347 | 0.14 | 0.9322 | 0.9361 | 0.42

1 0.65 | 0.6512 | 0.18 | 0.6836 | 0.6844 | 0.12 | 0.7254 | 0.7264 | 0.14
Avg Err. % 0.33 Avg Err. % 0.11 Avg Err. % 0.41

Dimensionless Vibration x

Dimensionless Vibration x
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Figure 2. Showing the dimensionless vibration amplitude x(7) plotted against dimensionless time tau for various parameter
values «, 8,7, A, B1, B, B3, X1, X2, X3 as calculated from Equation (11). The geometric parameters used in this analysis
area=02,=1,17=0.1,B;=0.1,By=2,B3=1, X1 =1,Xo=1,X3=1

4.1. Findings and Interpretations

Figures 1(a)—(c) illustrate the temporal evolution of the dimensionless displacements of the three concentric
nanotube walls under identical normalised loading.
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Figure 1(a) shows a gradual decay with time. This attenuation arises from two primary effects: (i) the linear
foundation stiffness, which provides a restoring force proportional to displacement, and (ii) the energy-dissipative
contribution associated with the damping coefficient in the non-dimensional formulation. At higher initial
amplitudes, the nonlinear geometric term transiently stiffens the response, producing larger initial oscillations
before the same restoring and dissipative terms govern the decay.

Figure 1(b) increases with time, whereas decay. This seemingly counterintuitive trend originates from nonlinear
interlayer coupling. The middle wall interacts with both the inner and outer walls through van der Waals forces; as
a result, a portion of the energy initially stored in the outer or inner walls is transferred to the middle wall. Two
mechanisms contribute to this behaviour: (i) mode coupling, in which near-resonance between coupled natural
frequencies facilitates energy exchange; and (ii) nonlinear frequency modulation caused by the cubic stiffness
term, which shifts the instantaneous frequencies and promotes transient energy localisation in the middle layer.
Thus, the observed growth is fully consistent with the coupled nonlinear dynamics predicted by the model.

Figure 1(c) reveals that it follows a decay pattern similar to that of, again reflecting the combined influence of
the restoring stiffness and damping terms. The amplitude dependence is governed by the nonlinear stiffness, which
increases the effective stiffness at larger deflections.

Figures 2(a)—(c) illustrate the dynamic behaviour of the dimensionless vibration response over the dimensionless
time, highlighting the sensitivity of the system to variations in the parameters, and the fractional-order parameter,
respectively. These plots serve to validate the numerical model by comparing it (red dot) with the analytical solution
(blue line).

Figure 2(a) illustrates the effect of the stiffness parameter on the dimensionless vibration amplitude of the inner
wall of the triple-walled carbon nanotube as a function of dimensionless time. It is observed that as the amplitude
increases, the amplitude of vibration decreases for a given time, indicating that higher stiffness in the innermost
wall results in greater resistance to radial expansion.

Figure 2(b) shows the influence of the intermediate wall stiffness parameter on the dynamic response of the
inner tube. An increase in leads to a significant rise in the amplitude of vibration, suggesting a strong coupling
effect between the walls. This behaviour underscores the sensitivity of the inner tube’s motion to the mechanical
characteristics of the middle layer in TWCNTs.

Figure 2(c) demonstrates the effect of the van der Waals interaction parameter on the dimensionless vibration
response of the inner wall. As the vibration amplitude increases, the vibration amplitude becomes more
pronounced, signifying that stronger interlayer van der Waals forces amplify the mechanical energy transfer across
the layers, thereby increasing the inner tube’s response.
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Figure 3.Showing the dimensionless vibration response y(7) versus dimensionless time 7 for various parameter
combinations a = 0.25,8 =1,n=1,B; =2,By =1,B3 =1,X; =1, X9 =1, X3 = 1 as calculated as Eq.(13)
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Figure 3a illustrates the influence of the dimensionless parameter on the dimensionless transverse vibration of
triple-walled carbon nanotubes as a function of dimensionless time. The parameter may be associated with the
stiffness or interaction coefficient between the concentric walls of the TWCNT. It is observed that increasing
the value of leads to a significant decrease in the amplitude of vibration. This behaviour can be attributed to the
enhanced mechanical coupling between the nanotube walls, which imposes additional resistance to deformation,
thus attenuating the vibratory response over time.

Figure 3b presents the effect of the external loading parameter on the dimensionless vibration. A rise in results
in a pronounced increase in vibration amplitude, demonstrating the sensitivity of the nanotube’s dynamic response
to external excitations. The curves indicate a nonlinear growth in vibration as the load increases, highlighting the
importance of considering loading intensity in the design and application of TWCNT-based nanoelectromechanical
systems (NEMS). This behaviour emphasises the critical role of external excitation in determining the operational
stability of TWCNTSs under dynamic environments.
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Figure 4. Figure showing the dimensionless vibration response z(7) versus dimensionless time 7 for various parameter
combinationsa« =2,8=1,n=0.5,B1 =2,B, =1,B3 =1,B4 =0.1, X; =1, X5 =1, X3 = 1 as calculated as Eq.(13)

Figure 4(a-b) presents the variation of the dimensionless vibration amplitude as a function of the dimensionless
time, highlighting the influence of both the viscous damping parameter and the fractional derivative order 7.

Figure 4a illustrates the impact of the damping parameter on the system’s dynamic response. Results are depicted
for. It is observed that increasing significantly accelerates the attenuation of vibration amplitudes, indicating
enhanced energy dissipation. This trend aligns with classical damping theory, where higher damping coefficients
lead to faster decay of oscillations. The numerical (red dot) and analytical (blue lines) results show excellent
agreement, thereby confirming the accuracy of the proposed model.

Figure 4b shows the response of the system for different values of the fractional order. The results reveal that
higher values correspond to a slower decay of the vibration amplitude, signifying a weaker damping effect. This
behaviour reflects the inherent memory characteristics of fractional viscoelastic materials: as increases, the system
retains more of its past behaviour, resulting in slower energy dissipation. The use of fractional-order derivatives in
modeling thus enables a more flexible and accurate representation of complex damping behaviour in viscoelastic
media.

5. Conclusion
The present research employed the Homotopy Perturbation Method (HPM) to examine the nonlinear vibration
response of triple-walled carbon nanotubes (TWCNTs) embedded in an elastic medium. The derived first-

order analytical solution exhibits rapid convergence and shows excellent agreement with numerical simulations,
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demonstrating the reliability and efficiency of the proposed formulation. The results indicate that the outer and inner
walls undergo amplitude decay primarily due to restoring and damping effects, whereas the middle wall displays a
transient increase in displacement attributed to nonlinear interlayer energy transfer. The analysis further highlights
that variations in foundation stiffness, damping coefficient, and van der Waals coupling parameters significantly
influence the vibration amplitude, frequency modulation, and dynamic energy redistribution within the TWCNT
system.

Although the present formulation provides clear physical insight and analytical accuracy, it remains subject
to certain limitations. The study assumes linear foundation behaviour, integer-order damping, and neglects
temperature-dependent and viscoelastic effects, which may influence large-amplitude or high-frequency responses.
Future research should extend the present model by incorporating higher-order HPM approximations, fractional
damping and nonlocal elasticity theories, as well as experimental and molecular dynamics validations. Such
advancements would strengthen the predictive capability of the analytical framework and enhance its applicability
to the design and optimisation of nanoscale mechanical systems in engineering and materials science.

Nomenclature
w - Nonlinear free vibration frequency (cm 1)
k - Spring Constant (N/m?)
p - Density (kg/m?)
Ay, Ay, Az - Cross Section Area (nm)?
E - Young Modulus (T'Pa)
I, I, I3 - Crosss sectional inertia moment (7T Pa)
W1, Wy, W3 - Transverse displacement of the i tube on the neutral axis (TPa)
t - Time (s)
1,129,103 - Length oof TWNT (nm)
We, Wi, Wy - Dimensionaless Constant
X - Dimensionless Vibration amplitude
a,B,7v,n,¢ - Dimensionless constant
T - Dimensionless Time
T, 2 - Dimensionless Vibration amplitude
r - Dimensionless variable
Appendix A

The homotopy for the equation (5) to (7) as follows

(1- p)(degj_ Ty p(dili(? + ABya(7) + aA(a(7))? — AByy(r)) =0 (14)
(1= o (T | ABay(r) + 0 A7) - ABBaa(r) — A3Boz(m) =0 (19
(1- p)(di;_(;)) +p(d2de(2T) + AByz(1) + aA(2(1))? — Antz(T)) =0 (16)

The approximate outcomes of (14) to (16) are

T =x9 + px1 +p2x2+... (17)
Y =yo +py1 + p°y2 + ... (18)
z =20+ pz1 +p222+... (19)
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Substituting equation (17) into (14) and comparing the coefficient of like powers of p

d?xo(7) dxo(T)
0. 0 — (. 2*0 — —
: dr2 = O, dr2 = O, o (0) = X1 (20)
2
p! ;(difly) + ABya(r) + aA(x(r))? — AByy(7)) = 0; dx;i” = 0,21(0) =0 Q1)
d*yo(7) dyo(7)
0. — 0 _ —
1L dPy(T) 3 dy: (7)
D :(W + ABoy(7) + aA(y(1))? — ABBax(t) — ABBaz(7)) = 0; e 0,41(0) =0 (23)
d?zo(7) dzo(7)
0.% <0 — . 220 — —
p - dT2 - Oa d’7'2 - 07 ZO(O) - X3 (24)
2
pt (d;%y) + AByz(7) + aA(2(7))? — AnBaz(1)) = 0; dZ(;(_T) =0,21(0)=0 (25)
By resolving equation (20) and (21) the following result can be obtained
.’L'()(T) = X1 (26)
—(aX} 4+ B1 X1 — By X5)AT?
2i(r) = —0Xi+ By — 2) A7 @7)
x =limp_ 12 =20 + 21 (28)
3 _ 2
= Xl B (OéXl + B1X12 BQXQ)AT (29)

Similarly  the  approximate  solution for equation (6) and (7) can be  derived.
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