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Abstract This study develops and examines a comprehensive deep learning framework for the detection of multi-class
healthcare fraud in National Health Insurance Scheme (NHIS) claims. We examined 20,388 NHIS healthcare claims
revealing four specific fraud patterns: Phantom Billing, Wrong Diagnosis, Ghost Enrollee, and legitimate claims. Four
different deep neural network architectures were developed and evaluated: Simple NN, Deep Wide NN, Regularized NN,
and Residual NN, in addition to ensemble methods. The Simple Neural Network achieved the highest overall performance,
with a test accuracy of 79.84% and an F1-macro score of 77.76%. Despite possessing only 100,324 parameters (five times
fewer than the Wide Deep Neural Network), it outperformed more complex designs while achieving the fastest training time
of 40.61 seconds. Multiclass analysis demonstrated exceptional performance in Ghost Enrollee detection (97.84% F1-score)
and moderate performance in Phantom Billing detection (61.15% F1-score).
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1. Introduction

1.1. Background

Healthcare fraud represents an increasing and serious risk to global healthcare systems, resulting in considerable
revenue losses and lowering the integrity of healthcare services and the quality of care provided to patients.
Estimates suggest that 3%-10% of total spending on healthcare is wasted due to fraudulent activities [1]. In the
United States, healthcare insurance fraud, especially Medicare and Medicaid fraud, is the most expensive type
of insurance fraud. Settlements and judgments related to healthcare fraud under the False Claims Act exceed
$1.32 trillion annually, accounting for 30% of total spending on healthcare [2]. The evolution of healthcare fraud
schemes has become more complex, incorporating various fraudulent activities that exploit vulnerabilities within
the healthcare system [3]. Conventional binary classification methods (fraud vs. non-fraud) do not sufficiently
address the complexities of various fraud types, thereby constraining the effectiveness of the prevention strategies.
Multiclass fraud detection allows healthcare organizations to implement specialized measures for specific types of
fraud, optimize resource allocation, and enhance prevention strategies.

1.2. Problem Statement

Healthcare fraud detection presents distinct challenges that set it apart from other fraud detection domains. The
class imbalance problem, defined by a lack of fraudulent cases compared to legitimate claims, results in an
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algorithmic bias that chooses the majority class [4]. The complexity of medical coding systems, high-dimensional
mixed data types, and privacy constraints further complicate detection challenges [5]. Recent studies emphasize
the necessity of separating various types of fraud instead of categorizing fraud as a single entity. Phantom billing
refers to charges for services that are not provided. Ghost Enrollee fraud pertains to the use of fake patient
identities, while Wrong Diagnosis fraud involves planned misclassification to secure higher payments. Different
types of fraud require distinct detection strategies and prevention measures. The utilization of deep learning in
healthcare fraud detection has progressed from fundamental rule-based systems to advanced neural networks that
can identify complex patterns within complex claims datasets [1]. Most existing research primarily addresses binary
classification, which restricts the practical applicability of healthcare administrators requiring detailed insights into
fraud types for effective intervention.

1.3. Research Gap and Objectives

This study makes significant contributions to the field of healthcare fraud detection. This study presents a
comprehensive multi-class deep learning evaluation customized for healthcare fraud categorization, advancing
from binary fraud/no-fraud classification to facilitate targeted intervention strategies. The confidence-based
deployment framework provides a viable approach that combines automation efficiency with the necessity for
human oversight, thereby addressing a significant gap in the implementation of real-world fraud detection systems.
A comprehensive analysis of overfitting and generalization offers important insights into model selection criteria
for fraud detection applications, indicating that simpler architectures may provide greater reliability. This paper
is structured as follows: Literature Review in Section 2 presents a detailed discussion of fraud detection in
healthcare claims and suggested approaches and related work for this problem. The Materials and Methods section
details the dataset characteristics and deep learning approaches employed in this evaluation. The Results and
Discussion section presents the evaluation outcomes, including performance metrics, confusion matrix analysis,
misclassification patterns, model calibration analysis, and feature importance findings. The Conclusion section
synthesizes the essential findings, addresses the limitations, and provides recommendations for future research and
the practical implementation of machine learning-based healthcare fraud detection systems.

2. Related Work

The integration of machine learning and artificial intelligence techniques in fraud detection in healthcare and
insurance systems has received considerable academic focus in the last ten years. This research encompasses
multiple domains, such as credit card fraud detection and healthcare insurance fraud prevention, utilizing various
methodologies and tackling the technical challenges associated with fraud detection systems.

2.1. Machine Learning Approaches

Research on fraud detection primarily emphasizes traditional machine learning algorithms within the financial and
healthcare sectors. Varmedja et al. (2019) established foundational benchmarks through the evaluation of Logistic
Regression, Random Forest, Naive Bayes, and Multilayer Perceptron models in the context of credit card fraud
detection. The findings demonstrated that Random Forest exhibited enhanced performance, achieving a precision
of 96.38% and a recall of 81.63%, especially when supplemented with SMOTE oversampling techniques [1].
This study highlights the significance of addressing class imbalance, a recurring issue in the fraud detection
literature. Several studies have explored traditional machine learning applications within healthcare contexts,
building on these foundational principles. Nabrawi and Alanazi (2023) illustrated the effectiveness of Random
Forest in analyzing healthcare insurance claims, emphasizing demographic insights and the interpretability of
ensemble methods [5]. Severino and Peng (2021) performed comparative analyses of various algorithms, such
as Logistic Regression, Random Forest, Gradient Boosting Machines, XGBoost, and LightGBM, in the context
of property insurance fraud. The study concluded that ensemble methods consistently surpassed single classifiers
when suitable preprocessing techniques were utilized [6]. Prova (2024) developed a comprehensive fraud detection
system addressing healthcare fraud in the United States, utilizing a combination of traditional machine learning
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algorithms, ensemble methods, and deep learning techniques. The study employed a dataset of 558,211 records
with 55 demographic, medical, and financial variables. The Stacking Ensemble achieved the best performance with
an accuracy of 92.79% and an ROC AUC of 96.95%, while XGBoost achieved the highest precision at 97.34%.
The research incorporated SHAP value analysis for interpretability and developed a real-time claims processing
system with automated retraining mechanisms [7]. Bounab et al. (2024) addressed the critical challenge of class
imbalance in Medicare Part B fraud detection by proposing a hybrid resampling approach combining SMOTE with
Edited Nearest Neighbors (SMOTE-ENN). Using a 2020 Medicare Part B dataset of over 9.4 million records, the
method was tested with six machine learning classifiers. Results showed that SMOTE-ENN significantly improved
minority class detection, with Decision Trees achieving near-perfect performance metrics and consistently high
AUC and AUPRC values [8]. Sumalatha and Prabha (2019) advanced this field by investigating the integration of
Logistic Regression with multi-criteria decision analysis for managing mediclaim fraud [9].

2.2. Deep Learning Approaches

Recent studies demonstrate a clear evolution toward more sophisticated methodological approaches by integrating
ensemble learning with deep learning techniques. Gupta et al. (2021) performed a detailed comparative analysis
of machine learning and deep learning models in the context of universal health coverage schemes. Their findings
indicated that neural networks trained on undersampled data attained F1-scores of 0.95, whereas Gradient Boosting
Machines integrated with Tabular GANs exhibited strong performance across various evaluation metrics [10].
Wang et al. (2025) proposed an ensemble framework that integrates XGBoost, Random Forest, and Logistic
Regression, augmented with SHAP (SHapley Additive exPlanations) to enhance interpretability [11]. This
approach meets the essential requirement for explainable fraud detection systems, emphasizing the importance
of transparency and trust in healthcare decision-making processes. Johnson and Khoshgoftaar (2019) offered
complementary insights, showing that neural networks can compete with traditional methods when trained on
balanced datasets. However, they highlighted the persistent challenges associated with real-world imbalanced fraud
data [12]. Matloob et al. (2025) introduced an innovative framework combining machine learning and deep learning
to detect fraud at the level of patients, providers, and services. Their two-stage approach utilizes an association
rule engine for detecting suspicious transactions and an Anomaly Transformer for examining time-series service
patterns. The framework demonstrated effectiveness in categorizing fraud as patient-level (50%), service vs. doctor
(12%), service vs. patient (13%), and physician-level (25%) [13]. Shah et al. (2022) conducted a comprehensive
evaluation of machine and deep learning techniques for financial fraud detection in the healthcare industry, focusing
on credit card fraud. Their study compared Naive Bayes, Logistic Regression, KNN, Random Forest, CNN, and
deep ANN algorithms. Results showed that deep ANN achieved the best performance with 98.53% accuracy,
96.74% precision, 94.52% recall, and 97.10% F1-score, demonstrating the superiority of deep learning in capturing
complex fraud patterns [14]. Shungube et al. (2024) evaluated three deep learning models—Artificial Neural
Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM) networks—on
a real Medicare healthcare claims dataset. The ANN achieved the best overall performance with 94% accuracy,
0.78 precision, and an Fl-score of 0.57, while CNN excelled in reducing false positives and LSTM was better
at capturing temporal patterns. The study enhanced interpretability using LIME analysis to identify important
prediction factors [15]. Anand Kumar and Sountharrajan (2025) proposed a deep 12-layer CNN model optimized
by the Enhanced Hippopotamus Optimization Algorithm (EHOA) for insurance claims estimation and fraud
detection. The EHOA-CNN-12 achieved 92% accuracy and outperformed baseline models including VGG16,
VGG19, and ResNet50 by 3-7% in various metrics. The approach demonstrated faster convergence, reduced
overfitting, and strong potential for real-time fraud detection [16]. Suesserman et al. (2023) addressed procedure
code overutilization detection using unsupervised deep learning methods. Their study employed autoencoders with
a novel feature-weighted binary cross-entropy loss function to handle sparse, imbalanced data. The autoencoder
significantly outperformed baseline DBSCAN clustering, achieving high recall and F1-scores (F1-score 0.97 on
synthetic data; 0.63 on manually annotated claims) [17].
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2.3. Graph-Based and Network Analysis Approaches

An innovative research trajectory involves the use of graph and network analytics for fraud detection. Zhou et al.
(2023) introduced FraudAuditor, a visual analytics system designed to detect collusive fraud involving patients,
medical institutions, and drugstores through co-visit network analysis and community detection algorithms [18].
This study underscores the significance of modeling complex relationships between entities in healthcare fraud
scenarios. Yoo et al. (2023) conducted a comprehensive comparative analysis of traditional machine learning and
Graph Neural Networks (GNNs) for Medicare fraud detection, transforming claims data into heterogeneous graph
structures where nodes represent providers, patients, and medical services [19]. Their findings revealed that while
classical ensemble models, such as CatBoost, achieved AUC-ROC scores of 0.91, GraphSAGE demonstrated
competitive performance at 0.87, highlighting the potential of graph-based modeling for capturing relational
information without extensive feature engineering. Branting et al. (2016) contributed to this domain by developing
graph-analytic approaches for healthcare fraud risk estimation, achieving 82% accuracy in identifying known
fraudulent providers through structural similarity analysis and behavioral pattern recognition [20]. These graph-
based approaches represent a paradigm shift from traditional feature-based models to relationship-aware fraud-
detection systems.

2.4. Domain-Specific Applications

Several studies have explored specialized techniques tailored to specific fraud-detection challenges. Johnson and
Khoshgoftaar (2021) investigated medical provider embeddings using dense vector representations learned from
historical claims data, though they noted limitations requiring larger datasets and more sophisticated embedding
techniques [21]. Nugraha et al. (2022) proposed GAN-based oversampling techniques as superior alternatives to
conventional methods like SMOTE for addressing severe class imbalance in healthcare fraud detection [22]. Sadiq
and Shyu (2019) introduced a cascaded propensity matching framework that leverages propensity score matching
and concept drift learning to handle evolving fraud patterns in Medicare programs, demonstrating improved
sensitivity and recall in detecting new fraud practices [23]. This work addresses the dynamic nature of fraud
schemes and the need for adaptive detection systems.

2.5. Data-Centric and Systematic Approaches

Recent research has investigated the importance of data-centric methodologies and systematic evaluation
techniques. Johnson and Khoshgoftaar (2023) concentrated on advancing fraud detection through data-centric Al,
introducing six novel labeled datasets enriched with provider-level, claims-level, and beneficiary-level statistics,
which demonstrated significant performance enhancements when utilizing aggregated-enriched datasets [24].
Hancock and Khoshgoftaar (2021) explored Gradient Boosted Decision Trees, systematically evaluating classifier
selection and sampling strategies, and confirmed the statistical significance of these factors on model performance
[25]. Du Preez et al. (2024) conducted a comprehensive systematic review of machine learning techniques
for healthcare fraud detection, identifying a lack of standardization in data preprocessing, feature engineering,
and evaluation protocols across studies [4]. This review highlights the necessity for unified frameworks and
standardized evaluation methodologies to facilitate fair comparisons and enhance reproducibility.

2.6. Feature Engineering and Explainability

The importance of explainable artificial intelligence (AI) in fraud detection has been consistently emphasized
in numerous studies. Hancock et al. (2023) developed ensemble-based supervised feature selection methods that
improved model interpretability while maintaining high performance, with XGBoost achieving AUPRC scores of
0.9408 for Medicare fraud detection [2]. Zhang et al. (2020) proposed hybrid frameworks that integrate rule-based
and machine learning approaches, incorporating domain-specific fraud indicators, thereby demonstrating the value
of combining automated detection with interpretable business rules [26].
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2.7. Domain-Specific Applications and Case Studies

Numerous studies have focused on specific healthcare systems and their unique challenges. Kittoe and Asiedu-
Addo (2017) employed data mining techniques on Ghana’s National Health Insurance Scheme, identifying specific
fraud patterns such as excessive prescription of drugs (35% of cases), duplicate registrations (32%), and overbilling
(14%) [3]. Alhassan et al. (2016) conducted a comprehensive review of Ghana’s NHIS, highlighting persistent
challenges, including provider payment delays, fraud and abuse, and governance inefficiencies [27]. Sun et
al. (2024) examined fraudulent reimbursement patterns using ARMA modeling for trend forecasting and risk
governance [28]. Mailloux et al. (2010) developed decision support tools for identifying controlled substance
abuse among Medicaid members using CHAID decision trees, demonstrating the potential of statistical modeling
in automating abuse detection while aligning with manual pharmacist reviews [29].

2.8. Emerging Technologies and Future Directions

Recent research has explored the integration of emerging technologies in fraud detection. Kapadiya et al. (2022)
proposed a hybrid architecture combining Al and blockchain technology, utilizing machine learning for pattern
recognition and blockchain for secure, transparent, and tamper-proof data management [30]. This approach
addresses the traditional limitations of reactive, siloed fraud detection methods and provides a foundation for
proactive, intelligent fraud prevention systems. Jillo (2024) conducted a comprehensive review of advances and
challenges in medical insurance fraud detection, examining both traditional approaches and advanced methods
including machine learning, Al, and data mining. The study highlighted the effectiveness of integrating advanced
analytics, blockchain, and Al in improving detection accuracy and reducing fraudulent payouts, while identifying
persistent challenges including data privacy concerns, high false-positive rates, and complex regulatory compliance
[31]. A critical aspect highlighted in multiple studies is the challenge of evaluating fraud detection models under
extreme class imbalance. Herland et al. (2019) systematically examined how varying levels of class rarity impact
model evaluation, advocating for cost-sensitive metrics and proper cross-validation strategies [32]. This study
emphasizes that commonly used metrics, such as AUC, can be misleading under extreme class imbalances,
necessitating careful consideration of evaluation methodologies in fraud detection research. Despite the significant
progress, several research gaps remain evident. The lack of standardized evaluation protocols, limited availability
of labeled datasets, and insufficient attention to evolving fraud patterns represent ongoing challenges. Additionally,
while explainability has gained attention, there remains a need for more sophisticated interpretability techniques
that can provide actionable insights for fraud investigators. The integration of real-time detection capabilities,
adaptive learning mechanisms, and cross-domain knowledge transfer also presents promising research directions
for future work in healthcare fraud detection systems.

Table | provides a comprehensive summary of the various approaches to fraud detection in insurance and
healthcare systems.

Table 1. Summary of Machine Learning Approaches for Fraud Detection in Insurance and Healthcare Systems

Study Domain Methods Dataset Key Main
Performance Contributions
Varmedja et al. Credit Card LR, RF, NB, Kaggle Credit RF: 96.38% Demonstrated RF
(2019)[1] Fraud MLP + Card Dataset precision, superiority in credit
SMOTE (284,807 81.63% recall, card fraud; effective
transactions, 99.96% accuracy SMOTE application

0.173% fraud)

Continued on next page
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Table 1 — continued from previous page

Study Domain Methods Dataset Key Main
Performance Contributions
Nabrawi & Healthcare Random Healthcare Not specified Identified
Alanazi Insurance Forest insurance claims demographic
(2023)[5] patterns (42% fraud
in ages 23-45); RF
effectiveness in
healthcare
Sumalatha & Mediclaim Logistic Mediclaim data Reasonable Integration of
Prabha (2019) Regression + accuracy predictive analytics
[9] MCDA with multi-criteria
decision analysis
Severino & Peng  Property LR, RF, Motor vehicle Ensemble Comparative
(2021) [6] Insurance GBM, and home methods analysis showing
XGBoost, insurance achieved higher ensemble method
LightGBM + AUPRC superiority in
SMOTE/Undersampling property insurance
Hancock et al. Medicare LR, RF, CMS Part B& D XGBoost: Explainable ML for
(2023) [2] Fraud XGBoost, data 0.9408 AUPRC Medicare; feature
LightGBM, selection improving
CatBoost, ET interpretability
Kittoe & Health Data Mining 720 malaria 35% excessive Identified specific
Asiedu-Addo Insurance Techniques cases (2013) prescription, fraud patterns in
(2017) [3] (NHIS 32% duplicate developing country
Ghana) registrations context
Zhang et al. Medical Hybrid Medical records ~ High precision Integration of
(2020) [26] Fraud Rule-based + for specific fraud domain knowledge
ML types with automated
detection
du Preez et al. Healthcare Various ML Multiple F1-scores up to Comprehensive
(2024) [4] Claims methods healthcare 0.97, AUPRC review identifying
(Systematic reviewed datasets ~0.94 trends and
Review) standardization gaps
Wang et al. Healthcare Ensemble Healthcare High AUPRC Robust ensemble
(2025) [11] Insurance (XGBoost, insurance claims  and F1-scores with explainability
RF, LR) + through SHAP
SHAP integration
Zhou et al. Health Visual Health insurance ~ Successfully Novel visual
(2023) [18] Insurance Analytics, claims identified fraud analytics approach
(Collusive Network rings for detecting
Fraud) Analysis, coordinated fraud
Community
Detection
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Table 1 — continued from previous page

Study Domain Methods Dataset Key Main
Performance Contributions
Yoo et al. (2023)  Medicare Traditional CMS Medicare CatBoost: 0.91 Comparative study
[19] Fraud ML vs GNNs PartB & D AUC-ROC, of traditional ML vs
(Graph- GraphSAGE: graph-based
SAGE, 0.87 AUC-ROC  approaches
GGNN,
GAT)
Kapadiya et al. Healthcare Al + Conceptual Improved Novel integration of
(2022) [30] Insurance Blockchain framework accuracy, AlI and blockchain
Architecture reduced delays for fraud detection
Sun et al. (2024)  Healthcare ARMA 2018-2021 Trend Proactive risk
[28] Reimburse- Model health insurance  forecasting governance through
ment data capability temporal modeling
Alhassan et al. Health Policy NHIS Ghana Identified Comprehensive
(2016) [27] Insurance Review/Analysisoperational data  systemic issues policy analysis
(NHIS identifying fraud
Ghana) vulnerabilities

3. Materials and Methods

3.1. Dataset Description

This study employed a comprehensive healthcare fraud detection dataset collected from the National Health
Insurance Scheme (NHIS) [29], comprising 20,388 medical claim records that included eight essential features
that encapsulate essential data regarding patient interactions, billing processes, and fraud patterns. The dataset
demonstrates the complexity of real-world healthcare claims, covering various data types, temporal patterns, and
multiple fraud categories. Table 2 presents the feature names associated with their data types and descriptions with
value ranges or examples of feature values.

As shown in Table 3, The NHIS dataset suggests that 57.41% of cases are legitimate (No Fraud), suggesting
a relatively balanced distribution compared to standard fraud detection scenarios, in which fraudulent cases are
frequently rare (typically < 1%). This indicates that the dataset may have been intentionally curated or balanced
to achieve the research objectives. Two primary types of fraudulent activities were identified: Phantom Billing
(20.76%), which entails billing for services that were never provided or for patients that do not exist, and Ghost
Enrollee (20.10%), which pertains to the fraudulent enrolment of individuals who are either non-existent or not
eligible for services. Wrong Diagnosis fraud constitutes only 1.73% of cases, making it the least prevalent category
within this dataset. This may suggest that wrong diagnosis fraud is either infrequent or challenging to detect and
document.

3.2. Proposed Framework Architecture

As illustrated in Figure 1, the framework for multi-class healthcare fraud detection offers a systematic strategy
that progresses through four interrelated stages, each of which aims to address particular healthcare fraud
detection challenges while guaranteeing computational effectiveness and predictive accuracy. By shifting away
from traditional binary classification techniques, this integrated methodology enables the thorough identification
of fraud categories that enable focused intervention strategies in healthcare systems. The NHIS dataset, which
consists of 20,388 medical claims classified by eight unique attributes that form the foundation for additional

Stat., Optim. Inf. Comput. Vol. 14, December 2025



3572 ENHANCING FRAUD DETECTION IN HEALTH INSURANCE

Table 2. National Health Insurance Scheme (NHIS) Dataset Feature Descriptions

Feature Name Data Type  Description Value
Range/Examples

Patient ID Integer Unique patient identifier 1-20,388

AGE Float Patient age in years 0.0-120.0

Amount Billed Total claimed amount $0.00-$50,000+

DATE OF Date Patient-provider interaction YYYY-MM-DD format

ENCOUNTER timestamp

DATE OF Service completion timestamp

DISCHARGE

GENDER String Patient gender M, F

DIAGNOSIS Medical diagnosis codes ICD codes, medical
terms

FRAUD_TYPE Multi-class target variable No Fraud, Phantom

Billing, Wrong
Diagnosis, Ghost
Enrollee

Table 3. Healthcare Fraud Classification Distribution

Class ID Class Name Ratio (%)

1 No Fraud 57.41
2 Phantom Billing 20.76
3 Ghost Enrollee 20.10
4 Wrong Diagnosis 1.73

analytical processes, is where the framework starts. Essential transformations that handle the diverse nature of
healthcare data, like temporal feature conversion and thorough approaches for assigning missing values, are part
of the data preprocessing phase. The preprocessing operations maintain data consistency and compatibility with
subsequent neural network architectures while preserving the underlying patterns of the original feature space.
After preprocessing, the feature engineering phase employs advanced encoding techniques and normalization
methods to convert categorical variables into numerical formats that are appropriate for neural network analysis.
This phase preserves the semantic integrity of healthcare-specific variables and optimizes their mathematical
properties for gradient-based optimization algorithms. The normalization procedures guarantee that features
across various scales contribute fairly to the learning process, thereby preventing any individual feature from
dominating the model training dynamics. To identify the most informative features while reducing dimensionality
and preventing overfitting, we employed an ensemble-based voting feature selection approach combining four
complementary feature selection methods:

1. Variance Threshold (threshold = 0.01): Eliminates features with near-zero variance, removing constants or
quasi-constants that provide no discriminative information.

2. Mutual Information (SelectKBest, k=15): Measures dependency between each feature and the target
variable, capturing both linear and nonlinear relationships:

MI(X;Y) =" > pla,y)log pp(m—y) (1)

55 (z)p(x)
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3. Tree-Based Importance (Random Forest, n_estimators=100): Computes Gini importance scores reflecting
the total reduction in node impurity weighted by the probability of reaching each node.

4. Recursive Feature Elimination (RFE with Random Forest estimator): Iteratively removes least important
features, reassessing importance at each step to capture feature interaction effects.

Ensemble Voting Procedure: Each method ranks features by importance. A feature is retained if it appears in
the top 50% for at least 3 out of 5 methods. This consensus approach balances multiple criteria and reduces the risk
of overfitting to any single selection heuristic.

Table 4. Top 8 Feature Importance Scores from ensemble-based voting feature selection

Feature Variance MI Score RF Importance Ensemble Votes
Amount Billed 1.00 0.339 0.228 4
NEGATIVE_STAY 1.00 0.143 0.075 4
DISCHARGE_DAY _OF_WEEK 1.00 0.109 0.058 4
AGE_GROUP_FREQ.0.37 0.233 0.060 0.051 4
ENCOUNTER_DAY _OF_WEEK 1.00 0.106 0.045 4
AGE 1.00 0.160 0.042 4
ENCOUNTER_MONTH 1.00 0.127 0.028 4
AGE_GROUP_46-65 0.233 0.060 0.029 4

The ensemble approach identified Amount Billed, NEGATIVE_STAY, and DISCHARGE_DAY _OF_WEEK as
the most discriminative features, consistent with domain expertise in healthcare fraud investigation where billing
anomalies and demographic risk factors are primary indicator. The architectural core of the framework comprises
four distinct deep neural network models, each designed to capture complementary aspects of healthcare fraud
patterns using various representational strategies. The Simple Neural Network functions as an efficient baseline,
utilizing a streamlined architecture that balances predictive performance and deployment practicality. The Deep
Wide Neural Network enhances the representational capacity by increasing both the depth and width, facilitating
the identification of complex nonlinear relationships in high-dimensional fraud patterns. The Regularized Neural
Network effectively mitigates overfitting by employing a combination of L1 and L2 penalty mechanisms, along
with strategic dropout placement, thereby promoting robust generalization in various healthcare settings. The
Residual Neural Network employs skip connections to enhance representation learning and reduce gradient
degradation problems typically found in conventional feedforward architectures. The framework results in a
multi-class prediction system that categorizes healthcare claims into four distinct fraud typologies: No Fraud for
legitimate claims, Phantom Billing for charges related to non-provided services, Wrong Diagnosis for intentional
diagnostic misclassification aimed at increased reimbursement, and Ghost Enrollee for fraudulent use of fictitious
patient identities.

3.3. Deep Neural Network Architectures

This study presents four unique deep neural network designs, each carefully designed to tackle the complexity
of multi-class healthcare fraud detection while identifying varied patterns in healthcare claims data. Architectural
diversity facilitates the extensive evaluation of several neural network architectures and their relevance to fraud
detection in the healthcare sector.

3.3.1. Simple Neural Network The Simple Neural Network acts as the baseline model, employing a feedforward
architecture that successfully balances computational efficiency and prediction accuracy. This architecture
systematically reduces the neuronal density across three hidden layers, starting with 64 neurons in the first layer,
32 in the second, and ending with 16 neurons in the third layer. Each hidden layer employs batch normalization to
stabilize the training behavior and reduce the internal covariate shift, whereas dropout regularization at a rate of 0.3
is utilized to prevent overfitting. The model accepts pre-processed input features, with dimensionality established
via systematic feature selection methods. The architectural design adheres to the principle of progressive
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Figure 1. Pipeline Architecture for the proposed Multi-Class Healthcare Fraud

dimensionality reduction, which enables the network to acquire hierarchical representations of fraud patterns.
The final layer utilizes softmax activation to generate probability distributions among the four fraud categories:
No Fraud, Phantom Billing, Wrong Diagnosis, and Ghost Enrollee. The Simple Neural Network aims to learn
a mapping function f : X — ) that minimizes the categorical cross-entropy loss between the true labels y and
predictions y:

N K
slmple Z Z Yij IOg yzj (2)

where:

e N is the number of samples

* K is the number of classes (KX = 4 in our multi-class problem)
* y;; is the true label (one-hot encoded) for sample 7 and class j
* §;; = softmax(f(x;;6)); is the predicted probability for class j
* f represents all trainable parameters (weights and biases)

The network employs the Adam optimizer to minimize this objective through stochastic gradient descent with
momentum and adaptive learning rates. The learning process iteratively updates parameters via:

my
0 =0; - —— 3
i1 = 0y T te 3

where m; and 0, are bias-corrected first and second moment estimates, o = 0.001 is the learning rate, and
¢ = 10~% is a small constant for numerical stability.
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The model utilizes the Adam optimizer with a learning rate of 0.001 and employs categorical crossentropy as the
loss function to address the multi-class classification objective. The architecture comprises approximately 100,324
trainable parameters, indicating the most efficient design among the proposed models.

3.3.2. Deep Wide Neural Network The Deep Wide Neural Network significantly increases both depth and width
relative to the baseline model, aiming to capture complex nonlinear relationships and intricate patterns in healthcare
fraud data through improved representational capacity. This architecture utilizes six hidden layers characterized by
a unique expansion-contraction pattern: the network begins with 128 neurons in the first layer, expands to 256
neurons in the second layer, and subsequently contracts through 128, 64, 32, and 16 neurons in the following
layers. The expanded architecture requires advanced regularization strategies to preserve its generalization ability.
The Deep Wide Neural Network optimizes the same categorical cross-entropy objective as the Simple NN but with
enhanced representational capacity through increased depth and width:

N K
Lyige(8) = — Z Z Yij log(9i;) “)

i=1 j=1
The increased architectural complexity enables the learning of hierarchical representations through compositional
mappings:

f(x;0) = frofr_10---0fao fi(x) %)

where each layer [ € {1,2,..., L} applies the transformation:

h; = Dropout(ReLU(BatchNorm(W;h;_; + b;)); p;) (6)

Here, W, and b, denote the weight matrix and bias vector for layer [/, and p; represents the layer-specific dropout
probability. The progressive dropout strategy (Pearty = 0.4 — prae = 0.2) provides implicit regularization without
explicit penalty terms, allowing the expanded architecture to maintain generalization while capturing intricate fraud
patterns across multiple levels of abstraction. The model employs progressive dropout rates, starting with 40% in
the initial layers, where the risk of overfitting is greatest, and gradually decreasing to 20% in the subsequent layers.
This graduated regularization method recognizes the different complexities of representations acquired at various
depths within the network. The optimizer utilizes a learning rate of 0.0005 to manage the expanded parameter space
and promote stable convergence throughout the training process. The model comprises approximately 500,000
trainable parameters, indicating a five-fold increase in complexity relative to the baseline architecture.

3.3.3. Regularized Neural Network The Regularized Neural Network uses explicit regularization techniques to
mitigate the issues of overfitting and inadequate generalization frequently observed in healthcare fraud detection,
which arise from class imbalance and high-dimensional feature spaces. This architecture employs combined L1
and L2 regularization, utilizing coefficients \; = 0.01 and Ay = 0.01, uniformly across all hidden layers. The
network topology comprises five hidden layers with dimensions [64, 128, 64, 32, 16], establishing a symmetric
expansion-contraction pattern that enhances feature extraction and dimensionality reduction. The regularization
strategy encompasses not only weight penalties but also significant dropout rates, transitioning from 50% in the
initial layers to 30% in the final hidden layers. This dual regularization method guarantees strong generalization
while preserving the adequate model capacity to capture intricate fraud patterns.

The Regularized Neural Network explicitly incorporates sparsity-inducing and weight magnitude constraints
into its objective function to combat overfitting in high-dimensional healthcare fraud data. The model optimizes a
composite loss function that balances predictive accuracy with parameter complexity:

Lot = Lee + M1 Y |wi + Ao Y w? (7

where:

* L denotes the categorical cross-entropy loss
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e )\; = 0.01 is the L1 regularization coefficient, promoting sparsity
e )\g = 0.01 is the L2 regularization coefficient, controlling weight magnitude
* w; indicates individual network weights across all layers

The L1 penalty encourages sparse solutions by driving less important weights toward zero:

0
8wi

while the L2 penalty prevents any single weight from dominating the model output:

(Ar|wi|) = A1 - sign(w;) (®)

0
3wi

This dual regularization approach, combined with aggressive dropout rates (0.5 in early layers, 0.3 in later
layers), ensures robust generalization by constraining the hypothesis space while preserving adequate model
capacity to capture complex fraud patterns. The symmetric expansion-contraction architecture [64, 128, 64, 32, 16]
further facilitates feature extraction and dimensionality reduction in a principled manner.

The total loss function integrates the classification loss with regularization penaltieFs as follows:

(/\211122) = 2/\2wi (9)

Liot = Lee + M1 Y |wil + X2 > w} (10)
Where:

* L. denotes the categorical cross-entropy loss
e )\ and Ao signify the L1 and L2 regularization coefficients respectively
* w; indicates individual network weights

This formulation enhances sparsity via L1 regularization and controls the weight magnitude through L2
regularization, leading to a model that preserves predictive accuracy and demonstrates improved generalization
capabilities.

3.3.4. Residual Neural Network The Residual Neural Network applies the creative idea of skip connections,
initially created for deep convolutional networks in computer vision, to the field of tabular healthcare data.
This adaptation mitigates the vanishing gradient problem, which often limits the training of deeper feedforward
networks, facilitating the improved learning of complicated fraud patterns via enhanced information flow.

The Residual Neural Network optimizes the standard categorical cross-entropy loss while employing skip
connections to facilitate gradient flow and enable the training of deeper architectures:

N K
Leesiaun(0) = = Y Y yij1og(§i5) (1

i=1 j=1

Unlike conventional feedforward networks, each residual block learns a residual mapping rather than a direct
transformation. For a residual block with input x and output y, the relationship is defined as:

y =F(xAWi}) +x 12)

where F(x, {W,}) represents the residual function to be learned (typically comprising two or more weighted
layers with nonlinear activations), and the identity mapping x is added via the skip connection. This formulation
allows the network to learn incremental transformations, with the optimization focusing on residual adjustments
F(x) rather than complete transformations y = H(x).

The skip connections fundamentally alter the gradient propagation dynamics. During backpropagation, the
gradient with respect to the input includes a direct path through the identity connection:
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— +1
8x+

oL — or <8]: ) (13)
ox Oy

where I is the identity matrix. This ensures stable gradient propagation even in deeper architectures, mitigating
the vanishing gradient problem that often limits conventional feedforward networks. The additive nature of skip
connections guarantees that gradients can flow directly through the network without being attenuated by multiple
sequential nonlinearities, enabling effective training of representations at varying levels of abstraction.

The architecture incorporates two separate residual blocks with aligned dimensional constraints to enable
element-wise addition. The initial residual block operates at 64 dimensions, whereas the subsequent block functions
at 128 dimensions. Each residual block adheres to the essential formulation y = F(x) + x, where x denotes the
block input, F(x) the learned transformation, and y the block output. This formulation facilitates the direct flow
of gradient information through skip connections, thereby reducing the gradient degradation in deeper networks.
The architecture consists of eight layers, incorporating strategically placed residual connections that maintain the
information flow and facilitate the learning of incremental transformations. Skip connections enhance the training
of deeper representations, reducing the optimization challenges commonly associated with greater network depth.
Batch normalization and dropout regularization were consistently implemented across the architecture to ensure
training stability and minimize overfitting.

3.3.5. Hyperparameter Selection and Justification Hyperparameter selection significantly impacts neural network
performance, particularly for fraud detection where suboptimal configurations can lead to either underfitting
(missing fraud patterns) or overfitting (poor generalization). We employed systematic grid search with 5-fold
stratified cross-validation to identify optimal hyperparameters for each architecture.

Table 5. Hyperparameter Search Space and Final Selected Values

Architecture Hyperparameter Search Space Final Value
5*Simple NN Learning Rate [0.0001, 0.0005, 0.001, 0.005] 0.001
Batch Size [32, 64, 128] 64
Dropout Rate [0.2,0.3,0.4, 0.5] 0.3
Hidden Layers [(32,16), (64,32), (64,32,16)] (64,32,16)
Activation [relu, tanh, elu] relu
4*Deep Wide NN Learning Rate [0.0001, 0.0005, 0.001] 0.0005
Dropout (Early) [0.3,0.4,0.5] 0.4
Dropout (Late) [0.2,0.3,0.4] 0.2
Layer Sizes Various configurations [128,256,128,64,32,16]
4*Regularized NN L1 Penalty (A1) [0.001, 0.01, 0.1] 0.01
L2 Penalty (\2) [0.001, 0.01, 0.1] 0.01
Dropout Rate [0.3,0.4,0.5] 0.5 (early), 0.3 (late)
Learning Rate [0.0005, 0.001, 0.002] 0.001

Rationale for Key Choices:

1. Learning Rate (0.0005-0.001): Selected based on loss convergence curves. Higher rates (> 0.005) caused
training instability, while lower rates (< 0.0001) required prohibitively long training times without performance
gains.

2. Batch Size (64): Balances computational efficiency with gradient estimate quality. Smaller batches (32)
increased training time by 40% with minimal accuracy gain, while larger batches (128) degraded generalization by
1-2%.

3. Dropout Rates (0.2-0.5): Progressive dropout reflects layer-specific overfitting risk. Early layers capture
general patterns requiring stronger regularization, while later layers learn class-specific features benefiting from
lower dropout.
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4. Regularization Coefficients (A = 0.01): Grid search revealed that A\ < 0.001 provided insufficient
regularization (train-test gap > 5%), while A\ > 0.1 caused underfitting (validation accuracy < 75%). A = 0.01
achieved optimal bias-variance balance.

This systematic exploration required training 148 model configurations, using early stopping with patience=20
epochs to prevent overfitting during hyperparameter search.

Table 6 summarizes the four proposed deep neural network architectures, highlighting their distinctive features
and design principles.

Table 6. Comparative Analysis of Proposed Deep Neural Network Architectures

Simple NN Deep Wide NN Regularized NN Residual NN
Architecture Type Feedforward Deep Wide Explicit Skip Connection
Network Regularization Network
Hidden Layers 3 6 5 8 (with residual
blocks)
Layer Dimensions [64, 32, 16] [128, 256, 128, [64, 128, 64, 32, [64, 64, 128, 128,
64,32, 16] 16] 64, 32, 16]
Trainable Parameters ~100,324 ~500,000+ ~200,000 ~300,000
Regularization Strategy  Dropout (0.3) Progressive L1+L2 + Dropout  Standard Dropout
Dropout (0.5—0.3) (0.3—0.2)
(0.4—0.2)
L1 Regularization None None A1 =0.01 None
L2 Regularization None None Ay = 0.01 None
Skip Connections None None None 2 Residual Blocks
Batch Normalization All Hidden Layers ~ All Hidden Layers  All Hidden Layers  All Hidden Layers
Learning Rate 0.001 0.0005 0.001 0.001
Optimizer Adam Adam Adam Adam

The architectural analysis demonstrates design principles that address various facets of healthcare fraud
detection. The Simple Neural Network emphasizes computational efficiency and interpretability, rendering it
suitable for resource-constrained environments and real-time deployment scenarios. The Deep Wide Neural
Network enhances representational capacity to identify complex fraud patterns, although increased computational
demands and a risk of overfitting. The Regularized Neural Network effectively tackles generalization issues
by employing robust regularization techniques, making it especially appropriate for situations characterized by
constrained training data or higher noise levels. The Residual Neural Network facilitates enhanced representation
learning by preserving gradient flow, providing an advanced method for complicated pattern recognition.

4. Results and Discussion

4.1. Training Configuration and Evaluation Metrics

The evaluation of the proposed healthcare fraud detection system used a comprehensive experimental framework
that include four distinct deep learning architectures: Simple NN, Deep Wide NN, Regularized NN, and Residual
NN. The dataset of 20,388 healthcare claims was partitioned into training, validation, and test sets, dividing
2,039 samples for final testing to four fraud categories: Ghost Enrollee (410 samples), No Fraud (1,171 samples),
Phantom Billing (423 samples), and Wrong Diagnosis (35 samples). The assessment of model performance utilized
various evaluation metrics, including accuracy, precision, recall, and Fl-scores, that includes both macro and
weighted averages, equations (1 to 10). Training durations varied from 40.6 seconds for the Simple Neural Network
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to 156.8 seconds for the Regularized Neural Network, indicating computational efficiency across all models. The
models exhibited considerable variation in complexity, with parameter counts ranging from 100,324 for the Simple
NN to 489,188 for the Deep Wide NN.

k
. TP,
Accuracy = iz TR (14)
N
TP;
Precision; — ———* 1
recision; = PP (15)
TP
Recall, = ———* 1
= Th Y FN, (16)

Precision; x Recall;
Fl;, =2 — 17
x Precision; + Recall; a7

k
1
Precisionmacro = Z X Zl Precision; (18)
1 k
Recallmero = 7 % ; Recall; 19)
1 k
F]-macro = E X Zl F]-z (20)
k ..
) ; X Precision;
Precisionyeighted = D1 M 1s10n; 21
N
k
Recallyeighted = D™ eca (22)
N
Zf—l n; X Fli
Flweighted = — (23)

N
where:

e TP, = True Positives for class i

e ['P; = False Positives for class i

* F'N; = False Negatives for class ¢

* n; = Number of samples in class ¢ (support)
¢ N = Total number of samples

e C={1,2,...,k}

4.2. Overall Model Performance Analysis and benchmarking

Figure 2 presents a comprehensive three-dimensional comparison of all evaluated models across test accuracy,
test AUC, and training time, providing essential insights for model selection in healthcare fraud detection systems.
The test accuracy scores ranging from approximately 77.02% to 78.3%. Simple NN emerges as the top performer
at approximately 78.02% test accuracy and Test AUC 0.9194. The relatively tight clustering of accuracy scores
suggests that all models have successfully learned meaningful fraud detection patterns from the dataset, with the
modest performance differences indicating that algorithmic choice may be less critical than other factors such as
feature engineering quality. The AUC comparison presents a striking finding in the middle panel, where all six
models demonstrate exceptionally strong and nearly identical discriminative ability, with scores clustering tightly

Stat., Optim. Inf. Comput. Vol. 14, December 2025



3580 ENHANCING FRAUD DETECTION IN HEALTH INSURANCE

around the mean of 0.917. Every model achieves AUC greater than or equal to 0.91, indicating excellent class
separation capability regardless of algorithmic approach or architectural complexity. The training time comparison
in the right panel reveals dramatic efficiency differences with profound practical implications, exhibiting a striking
thirty-fold range in training duration across models. Random Forest completes training in under five seconds, barely
visible on the chart scale, representing extraordinary computational efficiency. XGBoost requires approximately
three to four seconds, maintaining minimal computational overhead despite its sophisticated boosting mechanisms.
In contrast, Simple NN demands approximately 37 seconds for training, representing an eight to ten-fold
increase over baseline models. The computationally intensive deep learning architectures demonstrate even greater
overhead, with Deep Wide NN requiring approximately 62 seconds, Residual NN demanding 57 seconds, and
Regularized NN exhibiting the longest training time at approximately 135 seconds. These efficiency disparities
translate directly to operational constraints in production environments requiring frequent model updates in
response to evolving fraud schemes. The visualization provides empirical evidence challenging the assumption
that complex deep learning architectures are necessary for healthcare fraud detection at this scale and feature
complexity.
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Figure 2. Accuracy Comparison Across Training, Validation, and Test Sets for Multi-Class Models

4.3. Multi-Class Performance Analysis

The analysis of per-class performance indicates considerable variability among fraud types, highlighting the
differing complexities involved in detecting various fraudulent behaviors. The confusion matrices shown by figure
3 and per-class performance metrics in figure 4 indicate that Ghost Enrollee fraud exhibits high detectability, with
precision at 96.45%, recall at 99.27%, and an Fl-score of 97.84%. These results suggest clear and identifiable
patterns within this category of fraud.

The No Fraud classification demonstrated strong performance, achieving 88.32% precision and 76.17% recall
(F1: 81.80%), which reflects effective identification of legitimate claims alongside acceptable sensitivity levels.
The model exhibits a propensity for false positives in fraud detection, as indicated by the precision-recall trade-off
illustrated in figure 5.

Phantom Billing displayed the highest difficulty in detection compared to other important fraud categories,
achieving a precision of 53.35% and a recall of 71.63% (F1 score: 61.15%). The pattern indicates that the model
effectively detects a majority of phantom billing cases; however, it also produces a significant number of false
positives. This may suggest the presence of overlapping characteristics with legitimate billing practices or other
types of fraud, as evidenced by the confusion matrices shown in Figure 3.

The Wrong Diagnosis fraud, although based on a limited sample size of 35 cases, demonstrated impressive
results with a precision of 66.67%, recall of 74.29%, and an F1 score of 70.27%. The limited sample size raises
concerns regarding the statistical reliability of these metrics and the model’s capacity to generalize to previously
unobserved cases in this category.
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Figure 3. Confusion Matrices for Individual Deep Learning Models (Simple NN, Deep Wide NN, Regularized NN, Residual
NN)
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Figure 4. Per-Class Performance Metrics (Precision, Recall, F1-Score) for Simple NN
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Precision and Recall Comparison - Multi-class Deep Learning Models (Test Set)

0.8

0.7 1

0.6

0.5 1

O

0.3+

024

0.1

0.0+

Modoels

Figure 5. Precision and Recall Performance Comparison for Multi-Class Deep Learning Models

4.4. Overfitting and Generalization Analysis

The overfitting analysis illustrated by Figure 6 demonstrates differing levels of generalization ability among the
examined architectures. The Simple NN demonstrates moderate overfitting, evidenced by a train-test accuracy gap
of 3.38% (training: 83.22%, test: 79.84%). This suggests a degree of memorization of training patterns while still
achieving acceptable generalization.

Overfitting Analysis - Accuracy Gaps
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Figure 6. Overfitting Analysis: Train-Validation and Train-Test Accuracy Gaps

The Regularized Neural Network exhibits enhanced generalization, evidenced by a negative train-test gap of
-1.68%. This indicates that regularization methods successfully reduced overfitting and may have enhanced test
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performance relative to training performance. This unexpected outcome suggests that regularization assisted the
model’s ability to concentrate on more generalizable patterns. The Deep Wide Neural Network and Residual Neural
Network demonstrated strong generalization capabilities, exhibiting minimal discrepancies between training and
testing performance (0.36% and 0.17%, respectively). This indicates a natural resistance to overfitting within this
domain. The learning curves (Figures 7 and 8) corroborate these findings, indicating stable validation performance
across training epochs for the majority of models, while the Simple NN exhibits consistent convergence behavior.
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Figure 7. Learning Curves for Multi-Class Deep Learning Models (Loss, Accuracy, and Top-k Accuracy)
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The confidence analysis shown by Figure 12 indicates that 57.77% of predictions are classified within the ”Very
High” confidence range (0.9-1.0), resulting in an accuracy of 97.20%. The robust correlation between confidence
and accuracy offers a practical framework for automated decision-making, enabling the automatic processing of
high-confidence predictions while identifying low-confidence cases for manual review.
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Figure 9. Prediction Confidence Distribution and Accuracy by Confidence Level
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The overfitting analysis illustrated by Figure 9 demonstrates differing levels of generalization ability among the
examined architectures. The Simple NN demonstrates moderate overfitting, evidenced by a train-test accuracy gap
of 3.38% (training: 83.22%, test: 79.84%). This suggests a degree of memorization of training patterns while still
achieving acceptable generalization.

4.5. Feature Importance SHAP Analysis

The feature importance analysis using SHAP (SHapley Additive exPlanations) values, as illustrated in Figure 10,
reveals critical insights into the Deep Neural Network’s decision-making process for healthcare fraud detection.
SHAP values quantify the marginal contribution of each feature to model predictions, providing interpretable
explanations for the model’s classification behavior across the four fraud categories.
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Figure 10. Top 20 Feature Importance Analysis for Deep Neural Network using SHAP Values

The analysis identifies diagnosis category features as the dominant predictors of fraudulent behavior, with
DIAGNOSIS_CATEGORY_AMAROSIS emerging as the most influential feature with a mean absolute SHAP
value of approximately 0.125. This substantial importance suggests that specific diagnosis codes serve as
strong discriminative indicators for fraud detection, potentially reflecting patterns of medical necessity fraud or
systematic misuse of particular diagnostic categories. The presence of multiple diagnosis-related features among
the top contributors (DIAGNOSIS_CATEGORY_AMALGAM at 0.105, DIAGNOSIS_CATEGORY _ALOPECIA
at 0.105, and DIAGNOSIS_CATEGORY_ADULT at 0.032) underscores the central role of diagnostic information
in distinguishing fraudulent from legitimate healthcare claims.

Temporal features demonstrate remarkable predictive power, with ENCOUNTER_MONTH (0.115) and
ENCOUNTER_HOUR (0.105) ranking as the second and third most important features, respectively. The high
importance of ENCOUNTER_MONTH may indicate seasonal patterns in fraudulent activities or systematic billing
irregularities that manifest during specific time periods. Similarly, ENCOUNTER_HOUR’s prominence suggests
that the timing of medical encounters carries significant fraud signals, potentially reflecting unusual consultation
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patterns such as excessive after-hours billing or systematic temporal clustering inconsistent with legitimate medical
practice. The additional temporal feature ENCOUNTER_DAY _OF_WEEK (0.10) further reinforces the critical role
of temporal patterns in fraud detection, indicating that fraudsters may exhibit predictable behavioral patterns across
different time dimensions.

Financial features occupy a middle-tier position in the importance hierarchy, with Amount Billed (0.024) and
AMOUNT_PER_DAY (0.019) demonstrating moderate but meaningful contributions to fraud prediction. While
these features are less influential than diagnosis and temporal indicators, their presence among the top 20 features
validates the intuitive expectation that billing amounts serve as fraud indicators. The relatively lower importance
of financial features compared to diagnostic and temporal variables suggests that sophisticated fraud schemes may
increasingly focus on manipulating diagnostic codes and encounter patterns rather than simply inflating billing
amounts, which may be subject to more straightforward automated detection thresholds.

Demographic features, particularly AGE (0.024), show modest but statistically meaningful importance. The
age variable’s contribution to fraud detection likely reflects age-specific fraud vulnerability patterns or systematic
targeting of particular age groups by fraudulent providers. This finding aligns with domain knowledge indicating
that certain fraud schemes disproportionately affect specific demographic segments, such as elderly populations
being targeted for unnecessary services.

The presence of multiple specific diagnosis categories in the lower tiers of importance (ranging from 0.015
to 0.019) indicates that the model leverages a diverse set of diagnostic indicators beyond the top contributors.
Features such as DIAGNOSIS_CATEGORY _THYROIDISM, DIAGNOSIS_CATEGORY _AUB, and various other
condition codes collectively contribute to the model’s discriminative capability. This distributed importance across
multiple diagnosis features suggests that fraudulent patterns manifest across various medical specialties and
diagnostic domains, necessitating comprehensive feature coverage rather than reliance on a narrow set of high-
importance predictors.

The HIGH_AMOUNT indicator (0.022) appears as a distinct binary flag for elevated billing values, serving as a
complementary signal to the continuous Amount Billed feature. Its independent importance suggests that threshold-
based billing anomalies provide additional fraud detection value beyond the raw billing amounts themselves.

The feature importance distribution reveals a clear hierarchical structure with three distinct tiers: high-importance
features dominated by specific diagnosis categories and temporal variables (SHAP values above 0.10), moderate-
importance features including financial and demographic indicators (SHAP values between 0.02 and 0.04), and
lower-importance features comprising additional diagnosis categories (SHAP values between 0.015 and 0.02).
This hierarchical pattern provides actionable insights for feature engineering priorities in future model iterations
and suggests that fraud detection systems should prioritize data quality and completeness for diagnosis codes and
temporal information.

The SHAP analysis provides compelling evidence that healthcare fraud detection benefits from a multi-
dimensional approach incorporating diagnostic, temporal, financial, and demographic information. The dominance
of diagnosis and temporal features challenges traditional fraud detection paradigms that primarily focus on financial
anomalies, suggesting that modern deep learning approaches successfully leverage complex behavioral and clinical
patterns that may be imperceptible to rule-based systems or simpler statistical methods.

5. Conclusion and Future Directions

This study examines deep learning architectures for multi-class healthcare fraud detection, highlighting the
effectiveness of automated classification systems in identifying various fraud patterns. The Simple Neural
Network attained optimal performance, achieving 79.84% accuracy and a macro F1-score of 77.76%. It surpassed
more complex architectures while maintaining the lowest parameter count of 100,324, suggesting that model
parsimony is beneficial for fraud detection tasks. The multi-class framework demonstrated notable performance
variability among fraud categories, with Ghost Enrollee detection attaining an outstanding F1-score of 97.84%,
whereas Phantom Billing exhibited considerable classification difficulties, reflected in an F1-score of 61.15%. The
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confidence analysis revealed that 57.77% of predictions attain very high confidence levels (;0.9) with an accuracy
of 97.20%, facilitating practical implementation in confidence-based automated decision-making.
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