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Abstract In this paper, we introduce a novel approximation for the standard normal distribution function, significantly
improving its accuracy. Using the maximum absolute error (Max-AE) and mean absolute error (MAE) as metrics, our
approximation achieves a Max-AE of 2.95 x 1075, outperforming most existing methods. Additionally, we present an
approximation for the inverse normal distribution, showing its superiority over many current models. Numerical comparisons
validate the efficiency of our methods, making them applicable in fields like statistical analysis, machine learning, and
financial modeling.
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1. Introduction

The normal distribution, also known as the Gaussian distribution, is a key concept in statistics. It is a continuous
probability distribution that is symmetric around its mean, creating a bell-shaped curve. Most data points tend
to cluster around the mean, with frequencies decreasing as values move further away from it. This distribution is
widely applicable in real-world scenarios, such as measurements in science, intelligence testing, and error analysis.
The normal distribution is crucial because of its role in the Central Limit Theorem, which states that the sum
of many independent random variables will approximate a normal distribution. It is also essential in statistical
analyses, including hypothesis testing and confidence intervals. With its well-defined properties, such as mean and
standard deviation, the normal distribution is foundational in understanding data patterns and is used across various
fields like economics, psychology, and medicine.

The cumulative distribution function (cdf) of the normal distribution is widely used in many scientific fields,
particularly in probability and statistics. For the standard normal distribution, which has a mean (¢ = 0) and
standard deviation (o = 1), the cdf provides the probability that a random variable will take a value less than
or equal to a specific value z. This standard normal distribution is denoted as Z ~ N(0, 1), and its probability
density function (pdf), ¢(z), is given by:
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2 ENHANCING THE ACCURACY OF STANDARD NORMAL DISTRIBUTION APPROXIMATIONS

The cdf, ®(z), is the integral of the pdf from —oo to z, representing the cumulative probability up to that point:

o(z) = /; o(t)dt = \/12?/00 e~ % dt.

While the cdf does not have a simple closed-form solution, it can be approximated numerically or referenced from
statistical tables. This function is essential for determining the likelihood of certain outcomes in standardized data,
making it crucial for fields like finance, engineering, and social sciences.

Dealing with the integral in the formula for ®(z) is not straightforward because no closed-form expression
exists for it. Since the exact value of this integral cannot be determined algebraically, various methods have
been developed to approximate or bound it. Some researchers approach this by finding bounds for the integral
(as discussed in [8, 7] and [1], while others focus on deriving approximations for ®(z) (as suggested by [10]).
Numerous approximations for ®(z) have been proposed over the years, such as those by [30, 13, 15, 21] and [11]).
[10] compiled 45 different approximations and introduced nine new ones. These approximations have become
essential tools for practical computations involving the standard normal distribution.

In addition to the various approximations for ®(z), two important functions that have been extensively studied
in the literature are the error function (erf(z)) and the Q-function (Q(z)), both of which are closely related to the
standard normal cdf. The error function, denoted as erf(z), is defined by the equation

erf(z) = % /0 exp(—t?)dt = 28(V/2z2) — 1,

and it provides a way to express the cumulative probability for a normal distribution in a more manageable
form. The error function is often used in various scientific and engineering disciplines, particularly when dealing
with problems that involve Gaussian-like distributions. It allows for the transformation of the standard normal
distribution into a more directly computable form, offering a significant advantage when calculating probabilities
over ranges of values or solving differential equations.

The Q-function, defined as

ae) - [ T o(t)dt =1 3 (),

is another crucial function related to the standard normal distribution, particularly useful in fields like
communications, signal processing, and reliability engineering. The Q-function represents the tail probability of
the normal distribution, providing the probability that a normally distributed random variable exceeds a given value
z. This is particularly important in error rate analysis, where it quantifies the likelihood of a signal falling outside
a certain threshold, such as in Gaussian noise environments.

Both the error function and the Q-function provide essential tools for approximating and understanding the
behavior of the normal distribution, especially when dealing with tail probabilities and cumulative values. Their
widespread use across diverse fields like engineering, finance, and physics underscores their importance in the
precise calculation and prediction of outcomes based on the normal distribution. The results related to the three
functions ®(z), erf(z) and Q(z) are widely used and have applications in various fields such as communication
systems (see, [27]), statistical computations, mathematical models in biology, mathematical physics and diffusion
theory (see, [2, 19]). R

The most popular criteria to measure the accuracy of an approximation ®(z) of ®(z) at a specific value of z are
the maximum absolute error (Max-AE) and the mean absolute error (MAE). They are defined as follows ([17]),

Maz — AE(D(z)) = max D(2) — ®(2),

XL [8() - 2(2)
# of z ’
For any number of particular selection of values of z the value of M AFE (i(z)) can be figured out. For illustration,

if z takes the values between 0 and 5 with step 0.001, then we use 5001 values to calculate M AE(®(z)). These
values are 0, 0.001, ..., 4.999, 5.

MAE(®(z))
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This paper aims to introduce more accurate approximations of ®(z), evaluated through robust error
metrics—Max-AE and MAE—to ensure computational efficiency without compromising accuracy. The rest of the
paper is as follows: Section 2 reviews existing approximations for ®(z), setting the stage for the improvements
made in later sections. In Section 3, we introduce a new approximation for ®(z), denoted ®;(z), which
significantly reduces the Max-AE from 1.79 x 10~% to 2.95 x 10~°. Section 4 proposes a new approximation
for the inverse of ®(z), Z3, which outperforms previous methods. Section 5 compares the accuracy of the proposed
methods with existing approximations, demonstrating their superiority in terms of both Max-AE and MAE. Section
6 discusses applications of these new approximations in fields such as financial engineering, machine learning,
and statistical quality control, showing how they enhance computational efficiency and precision. Finally, Section
7 concludes the paper, summarizing the key contributions and suggesting directions for future work to further
improve the accuracy and applicability of these approximations.

2. Some existing approximations for ®(z)

Many approximations for ®(z) have been suggested in the literature. Here, we listed some of these approximations
as follows (for more approximation formulas, see [10]):

 [22] presented the approximation

®,(2) = 0.5

Ver

9z (1 4+ 0:089430 2
1+tanh<z( 2 Z) , z€R.

The Max-AE of ®;(z) is 1.79 x 107%.
* [18] suggested another approximation to improve the accuracy of Page’s approximation [22]. Their formula

is,
39z 111 35z
®5(2) =0.5 |1+ tanh { —— — — arctan | ——— , z€R,
2(2) [ (2./277 2 <111\/27r>)]

with Max-AE 6.13 x 1075,
* Another approximation of ®(z) that used the function tanh is suggested by [30], which is,

)

B(:) = 0.5 — 1.136H; + 2.47H, — 3.013H;, 0< 2 < 3.36
T, 2> 3.36

where Hy = tanh(—0.26952), Hy = tanh(0.54162) and H3 = tanh(0.4134z). The Max-AE of ®3(z) equals
1.25 x 1073.
* [6] proposed the following approximation to improve the Tocher’s approximation [26], which is given by,

where y = 1.5262(1 + 0.1034z). The Max-AE of ®4(z) is 2.09 x 10~3. We notice here that the Tocher’s

. . . 1 . —2
approximation of ®(z) is v with Max-AE 1.77 x 107~.

* [28] approximated ®(z) by,
1
Clte v’

(1)5(2)

where y = /8/mz + /2/m(4 — 7)23 /37. The Max-AE of ®5(z) is 3.1 x 10~%, which is more accurate than
(I>4(Z)
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4 ENHANCING THE ACCURACY OF STANDARD NORMAL DISTRIBUTION APPROXIMATIONS

¢ [29] also derived another approximation, which is more accurate than Tocher’s one and ®s5(z). Their

approximation is,
1
d = —
6(2) 1+ €7y7

where y = /7(0.92 + 0.041819823 — 0.00044062°). The Max-AE of ®¢(z) is 4.4 x 107, which is more
accurate than ®5(2).
* Some corrections are introduced by [5] to improve the approximation of [28]. They suggested the following

approximation.
1
®7(2) = 1 + ¢ 1.59762—0.0705623 °

which is the same as ®5(z) with some corrections on the coefficients of z and z3. The Max-AE of ®;(z) is
1.42 x 10~ Iess than that of ®5(z).

* [4] employed the approximation,
1

T lqev’

where Yy = %(—0.506445 + 10.4467 tanh(1.3448 + 0.3264z) + 9.8475 tanh(—1.3519 4 0.33762) +
1.59762z + 0.07056599223). The Max-AE of ®g(2) is 2.40 x 1075 less than that of ().
¢ [15] derived the following approximation for ®(z),

By(2) = 0.5 (1 V1 e‘%z2)

q)g(Z)

The Max-AE is 1.6 x 1074,
¢ [12] suggested the following approximation for ®(z),

1

e 70

(I)lo(Z)

where @ = 1.59635 + 0.07215422 — 0.0001752°. Its Max-AE is 4.95 x 1075.

The main objective of this paper is to propose a new approximation for ®(z) and thus approximate erf(z)
and Q(z). In particular, the proposed approximation improves the approximation ®;(z). The Max-AE of &4 (z)
reduces from 1.79 x 1074 to 2.95 x 10~° for the proposed approximation. Moreover, another new approximation
is proposed for the inverse of ®(z).

3. Proposed approximation of ®(z)

To evaluate the accuracy of our proposed approximations, we benchmark against reference values computed using
established scientific libraries set to high precision with about 16 digits as outlined in [20]. While this practice
is standard in the literature and typically serves as a reliable proxy for the “exact” value of the normal cdf or its
quantile, it should be noted that such high-precision reference values may not always be readily available and can
be computationally intensive to obtain.

To improve the accuracy of ®;(z) that derived by [22], we propose modifying the formulation as follows,

®11(2) = 0.5(1 + tanh(az)), =z >0,

Now, we find the values of a for some specific values of z > 0 that minimize the absolute difference between
®11(2) and the exact ®(z). The best regression of the form a = ag + a1z + azz® + ... + a52° is then obtained by
using the specific values of z and the resulting values of a, which gives,

a = 0.7977 4+ 0.03692% — 0.0004z* + 0.00003z°
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To justify the polynomial structure of the parameter a, consider the exact relationship required for the
approximation to be an equality. If we set ®(z) = 0.5(1 + tanh(a(z) - z)), we can solve for the exact function
a*(z) as:

a*(z) = %arctanh(2<1>(z) -1)

The function a*(z) represents the ideal parameter variation required to yield zero error. However, a*(z) involves
the evaluation of ®(z) itself, which is computationally expensive. The goal of our approximation is to replace
this complex transcendental function a*(z) with a computationally efficient polynomial P, (z) of degree n. Our
objective is to find the set of coefficients for P, (z) that minimizes the maximum absolute error (Max-AE) over the
domain z > 0. This corresponds to minimizing the Chebyshev norm (L., norm):

nlljin||<1>11(z‘Pn) = ®(2)]|o0

This framework aligns with the Minimax Approximation Theory. By performing the regression analysis described
in the previous paragraph, we numerically approximate the optimal Minimax polynomial. The theoretical validity
of this approach is supported by the error behavior shown in Figure 1. The error function v (z) exhibits the
”equioscillation property,” where the error alternates signs and reaches comparable maximum magnitudes at several
points in the domain (approximately 0.33, 1.06, 1.86,2.91). This behavior is a hallmark of near-optimal Minimax
approximations, indicating that the derived polynomial efficiently utilizes its degrees of freedom to distribute the
error uniformly across the range of interest.
Therefore, our proposed approximation of ®(z) is,

®11(z) = 0.5(1 + tanh(az)), =z>0.

To determine the Max-AE of @14 (z), set ¥(z) = ®11(z) — ®(z) then the first derivative of ¢(z) with respect to z
is,
—22/2-

¥(2) = @3(2) = (2) = 5 Sech®(az) — —=e

1
vors
Using Mathematica, Version 11, we found four roots for ¢)’(z), which are (approximately) 0.333137, 1.06219,
1.85916 and 2.91009. Calculating the values of (z) at these roots, we obtain /(0.333137) = 0.0000196,
1 (1.06219) = —0.0000264, 1(1.85916) = 0.0000191 and (2.91009) = —0.0000295. It is clear that the Max-AE
of ®11(2) is equal to 2.95 x 1075, which occurs at z = 2.91.

Figure 1 below displays the difference between ®11(z) and ®(z). That is, it displays the graphs of a function
P(z) = P11(2) — P(2) for 0 < z < 8.

4. Approximation for inverse of ®(z)

The inverse of the cdf of standard normal, p = ®(z), 2z > 0is z = ®~!(p). We are concerned in approximating
the value of z, such that p(Z < z) = p given the value of p(0.5 < p < 1). A simple approximation for z is derived

by [23], it is given by, 0.135 0.135

p
0.1975 ’
Another approximation is derived by [24] for given p > 0.5,

1_ 0.1193
2, = —5.531 <<p> - 1) .
p

In this paper, we have suggested the following approximation for z,

p > 0.5.

) {;tanhl (& —1), 05<p<0.99

Za =
T ttanh 7t (& —1), 099<p<1
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2e-05+4

1e-051

0e+00

w(2)

—-1e-05+

—-2e-05+4

—-3e-054

Figure 1. The difference between ®11(z) and @(2), i.e. ¥(z) = ®11(2) — P(2).

where, b =0.609 + 1.38p% — 4.237p* +3.24p  and ¢ = —86733.11 + 292895.15p — 445002.947p* +
238932.108p°.
Figure 2 displays the plot of the difference between 23 and z = ®~1(p).
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0.02 1
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0.00 4______—————————-——-—-—____—-§§-\~‘

~_

05 06 07 08 0.9 10
p

Figure 2. The difference between 23 and the invertible function z = ®~1(p), i.e. t(p) = 23 — z.
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5. Comparisons

The M AFE value for all approximations of ®(z) is calculated based on the values of z from 0 to 5 with step 0.001
(i.e. z = 0(0.001)5) to ensure the precision of these approximations. Table | include the results of M AE and the
Max — AFE to simplify the comparison between the approximations.

Table 1.The Max-AE and the MAE for the different existing approximations ®(z) to ®10(z) and the proposed

approximation ®11(z).

Approximation MAE Max — AE
Dy (2) 7.65x 1075 | 1.79 x 10~4
y(2) 1.61 x 107° | 6.13 x 107°
D3(z) 5.68 x 1074 | 1.25 x 1073
Dy(2) 9.78 x 1074 | 2.09 x 1073
5(2) 9.99 x 107° | 3.10 x 1074
Dg(2) 1.69 x 107° | 4.40 x 107°
Pr(2) 6.88 x 1075 | 1.42 x 1074
Pg(2) 7.26 x 107° | 2.40 x 107°
Dg(2) 1.6 x 107* | 6.66 x 1074
P10(2) 1.59 x 1075 | 4.95 x 107°
D11(2) 1.29 x 1075 | 2.95 x 10~°

The proposed approximation ®11(z) is quite accurate compared to the other approximations based on the two
criteria: Max — AFE and M AE. However, there is still room for improvement by adopting the same technique used
in this paper and increasing the number of polynomial terms that arose in the quantity a of ®11(z2).

To explore the accuracy of the proposed approximation z3 of the inverse of normal distribution function, a
number of values for z are selected from 0 to 4.4 with step 0.4 (i.e. = 0 (0.4) 4.4). For each value of z the
corresponding value of p = ®(z) is computed. Then Z5 is computed at each value of p. For the sake of comparison,
the results of the three approximations 21, Z; and 23 are included in Table 2. We can also compare the values of the
different approximations with the exact values of z (first column).

Table 2. The exact values of z from 0 to 4.4 (first column) and the corresponding exact values of ®(z) (second column). The
other columns give the values of different approximations of z.

z P = (I)(Z) 21 2’2 23
0.0 | 0.5000 0.000 | 0.000 | 0.000
04 | 0.6554 | 0.3976 | 0.4084 | 0.3960
0.8 | 0.7881 0.7969 | 0.8024 | 0.8044
1.2 | 0.8849 1.1989 | 1.1948 | 1.2005
1.6 | 0.9452 1.6038 | 1.5932 | 1.5744
2.0 | 09773 | 2.0093 | 1.9993 | 1.9783
24| 09918 | 2.4105 | 2.4097 | 2.3874
2.8 | 09974 | 2.7999 | 2.8168 | 2.8015
32| 09993 | 3.1686 | 3.2109 | 3.1608
3.6 | 09998 | 3.5084 | 3.5826 | 3.6787
4.0 | 099997 | 3.8130 | 3.9239 | 4.3221
4.4 | 0.99999 | 4.0783 | 4.2293 | 5.0504

The differences between the three approximations of z, 2;,4 = 1,2, 3, and the exact value of z are included in
Table 3 to make the comparison easier.

Tables 2 and 3 show that the proposed approximation is a good competitor to Z; and 2, in particular for small
values of ®(z). All results and graphs are obtained by using Mathematica, Version 12.
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8 ENHANCING THE ACCURACY OF STANDARD NORMAL DISTRIBUTION APPROXIMATIONS

Table 3. The exact values of z from 0 to 4.4 (first column) and the corresponding exact values of ®(z) (second column). The
third column up to fifth column give the values of the differences between 2;,7 = 1,2, 3 and exact z.

z p= P (Z) 21 22 23
0.0 | 0.5000 0. 0. 0.
04 | 0.6554 | -0.00238 | 0.00839 | -0.00399
0.8 | 0.7881 -0.00313 | 0.00237 | 0.00435
1.2 | 0.8849 | -0.00107 | -0.00521 | 0.00049
1.6 | 0.9452 0.00380 | -0.00685 | -0.02564
20| 09773 0.00932 | -0.00070 | -0.02174
24 | 09918 0.01051 | 0.00972 | -0.01525
2.8 | 09974 | -0.00015 | 0.01681 | 0.00145
32| 09993 | -0.03141 | 0.01094 | -0.03925
3.6 | 09998 | -0.09157 | -0.01738 | 0.07866
4.0 | 099997 | -0.18706 | -0.07607 | 0.32207
44 1 099999 | -0.32173 | -0.17066 | 0.65041

6. Application

The application of the newly proposed approximations for the cdf of the standard normal distribution and its inverse
extends across multiple domains where precision and computational efficiency are crucial. These approximations,
distinguished by their high accuracy coupled with relative simplicity, enhance both theoretical and practical
implementations requiring normal probabilistic calculations.

6.1. Numerical Experiment: Option Pricing Sensitivity

To illustrate the practical impact of the proposed approximation, we consider the Black-Scholes model for pricing
European call options [3]. The price C' of a call option is given by:

C = SP(dy) — Ke "'®(ds)

where S is the spot price, K is the strike price, and ®(-) is the standard normal cumulative distribution function.
The accuracy of the calculated price C is directly proportional to the accuracy of the approximation used for
®(d;) and ®(dz). Consider a scenario where the input parameters result in d; = 2.91. As shown in Section 3, this
value corresponds to the region where approximation errors are typically maximized for this class of functions.
* Asset Value: Let us assume a notional portfolio value of .S = $1, 000, 000. ¢ Standard Method Error: Using the
approximation by [22] (®;), the maximum absolute error is approximately 1.79 x 10~*. This results in a pricing
error of roughly:
Errorg, ~ $1,000,000 x 1.79 x 10~* = $179.00

Using the proposed approximation (®;;), the maximum absolute error is reduced to 2.95 x 107°. The
corresponding pricing error is:

Errore,, ~ $1,000,000 x 2.95 x 1075 = $29.50

In high-frequency trading or large-scale risk management contexts, where millions of options are re-
valued continuously, this reduction in systematic bias—from 179 down to 29.50 per million dollars of
exposure—represents a significant improvement in valuation integrity without incurring the computational
overhead of algorithmic high-precision libraries.

6.2. Applications in Financial Engineering

The standard normal distribution underlies many cornerstone models in financial engineering, notably the Black-
Scholes option pricing formula, where both the normal cdf and inverse cdf (“probit” function) are essential.
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Efficient and accurate approximations significantly reduce computational burden in real-time pricing environments
such as high-frequency trading, where latency is critical. Moreover, risk metrics such as Value at Risk (VaR) and
Conditional Value at Risk (CVaR) fundamentally depend on tail probabilities of financial return distributions.
Improved approximations of the normal cdf enable more precise tail quantile estimation, thereby enhancing
portfolio risk evaluation and regulatory compliance in risk management frameworks [14]. Given the numerical
challenges often faced in such applications, the accuracy levels of the proposed approximations, reaching Max-
AEs on the order of 1075, substantially improve computational efficiency without sacrificing precision.

6.3. Applications in Machine Learning and Data Science

Probabilistic models in machine learning extensively utilize the Gaussian distribution. Algorithms such as Gaussian
Naive Bayes classifiers and Gaussian Processes frequently compute ®(x), the standard normal cdf, in likelihood
evaluations or kernel computations. Employing the new approximations accelerates inference especially in large-
scale datasets or resource-constrained environments (e.g., embedded systems). Furthermore, approximate inference
techniques like Expectation Propagation or Variational Inference, which often require repeated evaluation of normal
cdfs and their inverses, benefit from the reduced computational expense and faster convergence made possible by
these approximations [25]. Importantly, inverse cdf approximations are critical in inverse transform sampling to
generate Gaussian random variables efficiently within simulation-based models, including reinforcement learning
and probabilistic generative frameworks.

6.4. Applications in Statistical Quality Control

Statistical quality control (SQC) utilizes the normal distribution extensively to design control charts and compute
process capability indices (Cp, Cpk). These indices require evaluation of cumulative probabilities to measure how
a process distribution fits within specification limits. The use of fast and accurate normal cdf approximations
facilitates real-time process monitoring and anomaly detection in manufacturing lines by enabling swift calculation
of control limits and capability indices. This is especially relevant in contexts involving truncated normal
distributions where approximations have also been developed [16]. The proposed approximations, by virtue of
their ease of implementation and high fidelity, enable robust deployment in automated quality control systems,
enhancing responsiveness and decision-making.

7. Conclusions and Further direction

In this paper, we have proposed novel approximations for the cumulative distribution function ®(z), the error
function erf(z), and the Q-function @Q(z). Our proposed approximation for ®(z) significantly improves upon
the existing approximation ®;(z), reducing the Max-AE from 1.79 x 10~ to 2.95 x 1075, thus enhancing
the precision of normal distribution calculations. Furthermore, we introduced an accurate approximation for
the inverse of ®(z), which demonstrates superior performance in evaluating standard normal quantiles. The
proposed approximations were benchmarked using Max-AE and MAE metrics, and results show that the new
approximations are highly accurate across a wide range of values, outperforming many established methods. These
improvements are particularly beneficial in fields requiring computational efficiency and high accuracy, such as
financial engineering, machine learning, and SQC. The proposed methods provide a significant advancement in
the accuracy and efficiency of normal distribution function approximations, offering a solid foundation for further
developments in statistical computations and applications requiring normal distribution evaluations. Future work
could focus on extending these approximations for broader applications and exploring potential optimizations for
even better accuracy at extreme values of z.
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