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Abstract The Multidimensional Knapsack Problem (MKP) is a well-known NP-hard combinatorial optimization problem
with broad applications in management and engineering, including logistics, finance, and resource allocation. MKP involves
selecting a subset of items to maximize total profit while respecting multiple resource constraints simultaneously. Traditional
and nature-inspired metaheuristic algorithms have been widely used to tackle its computational complexity. This study
proposes the integration of Z-shaped transfer functions into the binary Reptile Search Algorithm (RSA) to enhance its
performance in solving MKP. Empirical evaluations conducted on five widely-used MKP benchmark datasets demonstrate
that RSA with Z-shaped transfer functions competes favorably or surpasses other state-of-the-art transfer function variants in
terms of solution quality and convergence. These results underscore the potential of Z-shaped transfer functions in improving
binary metaheuristic algorithms for solving complex multidimensional combinatorial problems.
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1. Introduction

Combinatorial optimization is the search of an optimal object in the finite set of discrete structures. It is a key
concept in operations research, in computer science, and in applied mathematics, and finds numerous applications
in logistics, in telecommunications, in artificial intelligence and of particular use in chemistry and materials science.
Combinatorial optimization is the solving of a problem in which the variable is discrete and (usually very large)
but the objective is to be optimized. Examples of classical problems include traveling salesman problem, knapsack
problem and graph coloring. The difficulty arises in the fact that there are so many possible solutions and the
combinatorial explosion in the number of possible solutions that makes the total-search impractical on all but the
simplest problems [1, 2].

In combinatory search work, we more typically have to deal with problems which have a finite number of results.
Knapsack problems (KP) occur in most of the sciences and engineering [2, 3, 4]. The decision vectors in KP are
discrete valued [5]. An attempt to take care of this difficulty is to approximate the problems by regular optimization
problems (problems specifying the optimization over continuous-valued decision vectors). The MKP is a standard
NP-hard multi-dimensional knapsack problem to use the discrete valued decision vectors to solve the principal
optimization problem [6, 7, 8]. The MKP is a core version of the knapsack problem that takes into account more
than one resource constraint. MKP have been studied due to their complex computational nature and diverse areas
of applications, such as cargo loading, budget allocation, cutting stock and portfolio selection [9].
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Meta-heuristic algorithms have become a high-level general purpose optimization framework which can be
used to solve a vast number of problems which are complex, where it would be computationally prohibitive or
even infeasible to compute an exact solution. In contrast to the problem-specific heuristics, metaheuristics are
independent of a particular problem and can be adapted with little tuning to different optimization problems. They
are designed to effectively search large and computationally tough solution spaces to find a near-optimal or optimal
solution, by successively enhancing candidate solutions numerously using rules of thumb that are commonly
inspired by natural processes or human intuition [10, 11].

MKP is an extension of the classical problem of the knapsack whereby there are several constraints on resources,
and it is applicable in cargo loading problems, financial portfolio selection, production and other problems that
involve allocation of resources in the real world. Officially, it aims at maximizing the total profit of a subset of items
without breaching any of the several capacity restrictions. Exact branch-and-bound or integer program solver-based
algorithms have run times that are NP-hard, and therefore are only able to solve small to medium sized problems.
Meta-heuristic algorithms offer heuristic schemes that are powerful and balance exploration and exploitation
throughout the large amount of solution space to solve large-scale MKPs. Such algorithms use a mixture of
stochasticity and heuristics based on domain knowledge, and usually have a complex feasibility repair mechanism
to search the multidimensional space of constraints [2, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

In this paper, an improved reptile search algorithm is proposed to improve multidimensional knapsack problem
solving. Our proposed algorithm can efficiently exploit the strong points of reptile search algorithm in finding the
best solution with high performance. The experimental results show the favorable performance of the proposed
hybridization when the number of dimensions is high and the sample size is low.

2. Multidimensional knapsack problem

The MKP is a famous NP-hard combinatorial optimization problem with strong engineering backgrounds [25, 26].
The MKP can be defined as follows:

Maximize f(d1, d2, ..., dn) =

n∑
j=1

cjdj (1)

Subject to

n∑
j=1

rijdj ≤ bi , i = 1, 2, ...,m (2)

with dj ∈ {0, 1} , j = 1, 2, ..., n, cj ≻ 0, rij ≥ 0, bi ≥ 0 (3)

where n is the number of items, mis the number of knapsack constrains, cj is profit of the jth item, biis the capacity
of the ith knapsack and rij denotes the unit cost of the jth item on the ith knapsack. The aim for solving the MKP
is to achieve a subset of items with maximum profit while taking care of constrains.

3. Binary reptile search algorithm

Metaheuristic algorithms based on nature have been widely used to address problems of complex optimization
because of its simplicity and capability of avoiding local optima. Reptile Search Algorithm (RSA), proposed in
2022 [27], is a new swarm intelligence-based algorithm, which is based on hunting behavior patterns of crocodiles
and applies their circling and collective hunting patterns to balance out the phases of exploration and exploitation.

RSA works with four major states related to different paths of performing hunting by dynamically altering the
positions of candidate solutions in every iteration [28]. A number of modified versions have been developed to
improve diversity in a population, speed of convergence, and help prevent premature stagnation.

Classical RSA is applicable on continuous search spaces only, thus directly applicable on discrete problems
only. To overcome this, binary version of RSA has been designed by encoding solutions in a fashion that can
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support combinatorial tasks through transfer functions that take continuous position update streams and make
binary decisions based on them [29]. Transfer functions often used in binary metaheuristics include S-shaped, V-
shaped, or proposed Z-shaped and tent-shaped functions that are used to discrete a continuous update. The above
work has established that the transfer functions play an essential part in determining the capability of the binary
algorithm to traverse the search space extensively [8, 30, 32, 33, 34, 35, 36, 37, 38].

RSA has demonstrated competitive performance compared to widely used metaheuristics like Particle Swarm
Optimization (PSO), Grey Wolf Optimizer (GWO), and Ant Lion Optimizer (ALO). Its adaptability allows it to
solve complex problems across continuous, discrete, and large-scale domains. Real-world applications of RSA
include engineering design optimization, medical image processing (e.g., MRI segmentation), renewable energy
system optimization, and hyperparameter tuning in machine learning.

In RSA, the optimization process starts with a set of candidate solution (X) as shown in eq. (1), which is generated
stochastically and the best- obtained solution is considered as the nearly the optimum in each iteration.

X =



x1,1 · · · x1,j x1,n−1 x1,n

x2,1 · · · x2,j · · · x2,n

· · · . . . xi,j · · · · · ·
...

xN−1,1

xN,1

...
· · ·
· · ·

...
xN−1,j

xN,j

...
...

· · · xN−1,n

xN,n−1 xN,n


(4)

Where X is asset of the candidate solutions that are generated randomly by using Eq.(2), xi,j denotes to the jth
position of the ith solution, N is the number of candidate solutions, and n denotes to the dimension size of the given
problem.

xij = rand× (UB − LB) + LB , j = 1, 2, ..., n (5)

Where rand is a random value, LB and UB denote to the lower and upper bound of the given problem, respectively.
First: Encircling phase

In this section, the exploratory behaviour (encircling) of RSA is introduced. According to the encircling
behaviour, Crocodiles have two movements during the encircling are high walking and belly walk. These
movements refer to different reigns, which commitment to the exploration search (globally). Crocodile movements
(high and belly walking) cannot allow them to approach the target prey due to their disturbance easily, unlike
another search phase (hunting phase). Hence, the exploration search discovers a wide search space; it can find the
density area maybe after several endeavours. In addition, the exploration mechanisms (high and belly walking) are
operated at this stage of optimization to support the other phase (hunting/exploration) in the search process through
extensive and spread research.

The RSA can transfer between encircling (exploration) and hunting (exploitation) search phases, this change
between various behaviors is done based on four conditions; divide the total number of iterations into four parts.
The exploration mechanisms of RSA explore the search regions and approach to find a better solution based on two
main search strategies (high walking strategy and belly walking strategy). This phase of searching is conditioned
on two conditions. The high walking movement strategy is conditioned by t < T

4 , and the belly walking movement
strategy is conditioned by t ≤ 2T

4 and t > T
4 .

This means that this condition will be satisfied for almost the half number of exploration iterations (High
walking) and another half for the Belly walking. These are two exploration search methods. Note, a stochastic
scaling coefficient is examined for the element to generate more diverse-solutions and explore diverse-regions. We
employed the most straightforward rule, which can mimic the encircling behavior of Crocodiles. In this paper, the
position updating equations are proposed for the exploration phase as in Eq.(3).

x(i,j)(t+ 1) =

{
Bestj(t)×−η(i,j)(t)× β −R(i,j)(t)× rand, t ≤ T

4

Bestj(t)× x(r1,j) × ES(t)× rand, t ≤ 2T
4 and t > T

4

(6)

where Bestj(t) is the jth position in the best-obtained solution so far, r denotes to a random number between 0
and 1, t is the number of the current iteration, and T is the maximum number of iterations. η(i, j) denotes to the
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hunting operator for the jth position in the ith solution, which is calculated using Eq.(4). β is a sensitive parameter,
controls the exploration accuracy (i.e., High walking) for encircling phase over the course of iterations, which is
fixed equal to 0.1. Reduce function R(i,j) is a value used to reduce the search area, which is calculated using Eq.(5).
r1 is a random number between [1 N ] and x(r1,j) denotes to a random position of the ith solution. N is the number
of the candidate solutions. Evolutionary Sense (ES (t)) is a probability ratio takes randomly decreasing values
between 2 and −2 throughout the number of iterations, which is calculated using Eq.(6).

η(i,j) = Bestj(t)× P(i,j) (7)

R(i,j) =
Bestj(t)− x(r2,j)

Bestj(t) + ε
(8)

Es(t) = 2× r3 × (1− 1

T
) (9)

where, ε a small value and r2 is a random number between [1 N ]. In Eq.(6), 2 is used as a correlation value to
give values between 2 and 0, r3 denotes to a random integer number between −1 and 1. p(i,j) is the percentage
difference between the jth position of the best obtained solution and the jth position of the current solution, which
is calculated using Eq.(7).

P(i,j) = α+
x(i,j) −M(xi)

Bestj(t)× (UB(j) − LB(j) + ε
(10)

where M (xi), as in Eq.(7), is the average positions of the ith solution, which is calculated using Eq. (8). UB(j) and
LB(j) are the upper and lower boundaries of the jth position, respectively. α is a sensitive parameter, controls also
the exploration accuracy (the difference between candidate solutions) for the hunting cooperation over the course
of iterations, which is fixed equal to 0.1 in this paper.

M(xi) =
1

n

n∑
j=1

x(i,j) (11)

Second: Hunting phase (exploitation) In this section, the exploitative behavior (hunting) of RSA is introduced.
According to the hunting behavior, Crocodiles have two strategies during the hunting are hunting coordination
and cooperation. These strategies refer to different intensify techniques, which commitment to the exploitation
search (locally). Crocodile strategies (hunting coordination and cooperation) allow them to approach the target
prey easily due to their intensification, unlike encircling mechanisms. Hence, the exploitation search discovers
the near-optimal solution, maybe after several endeavors. Besides, the exploitation mechanisms are operated at this
stage of optimization to conduct an intensification search near the optimal solution and emphasized communication
between them.

The exploitation mechanisms of RSA exploit the search space and approach to find the optimal solution based on
using two main search strategies (i.e., (1) hunting coordination and Eq.(2) hunting cooperation), which is modelled
as in Eq.(9). The searching in this phase is conditioned as the hunting coordination strategy is conditioned by
t ≤ 3T

4 andt > 2T
4 , otherwise, the hunting cooperation strategy is performed, when t ≤ T and t > 3T

4 . Note,
stochastic coefficients are considered to generate more dense-solutions and exploit the promising regions (locally).
We employed the most straightforward rule, which can mimic the hunting behavior of Crocodiles. In this paper,
the following position updating equations are proposed for the exploitation phase (Eq. (9)):

x(i,j)(t+ 1) =

{
Bestj(t)× P(i,j)(t)× rand, t ≤ 3T

4 and t > 2T
4

Bestj(t)− η(i,j)(t)× ε−R(i,j)(t)× rand, t ≤ T and t > 3T
4

(12)

where Bestj(t) is the jth position in the best-obtained solution so far, η (i, j) denotes to the hunting operator for
the jth position in the ith solution, which is calculated using Eq.(4). P(i,j) is the percentage difference between
the jth position of the best-obtained solution and the jth position of the current solution, which is calculated using
Eq.(7). η (i, j) denotes to the hunting operator for the jth position in the ith solution, which is calculated using
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Eq.(4). ε a small value. R(i,j) is a value used to reduce the search area, which is calculated using Eq. (5). In this
respect, Figs. 1 and 2 show that when t ≤ T

2 , the encircling phase (exploration) happens, otherwise; when t > T
2 ,

the hunting phase (exploitation) occurs to be close enough to prey when attacking.
Exploitation search mechanisms (hunting coordination and cooperation) are attempting to evade getting trapped

in the local optima. These procedures assist the exploration search in determining the optimal solution and maintain
the diversity over the candidate solutions. We carefully designed two parameters (i.e., β and α) to produce a
stochastic value at each iteration, continue exploration not only during the first iterations but also last iterations.
This part of searching is beneficial in the situation of local optima stagnation, particularly in the last iterations.
Algorithm 1 Pseudo-code of the Reptile Search Algorithm (RSA)
1: Initialization phase
2: Initialize RSA parameters α, β, etc.
3: Initialize the solutions’ positions randomly. X : i = 1, 2, ..., n.
4: while (t < T ) do
5: Calculate the Fitness Function for the candidate solutions (X).
6: Find the Best solution so far.
7: Update the ES using Equations (6).
8: The beginning of the RSA
9: for (i = 1 to N) do
10: for (j = 1 to n)do
11: Update the η, R, P and values using Equations (4), (5) and (7) respectively.
12: if (t ≤ T

4 ) then
13: x(i,j)(t+ 1) = Bestj(t)×−η(i,j)(t)× rand, ▷ {High walking}
14: else if (t ≤ 2T

4 and t > T
4 ) then

15: x(i,j)(t+ 1) = Bestj(t)× x(r1,j) × ES(t)× rand, ▷{Belly walking}
16: else if (t ≤ 3T

4 and t > 2T
4 ) then

17: x(i,j)(t+ 1) = Bestj(t)× P(i,j)(t)× rand, ▷{Hunting coordination}
18: else
19: x(i,j)(t+ 1) = Bestj(t)× η(i,j)(t)× ε−R(i,j)(t)× rand, ▷{Hunting cooperation}
20: end if
21: end for
22: end for

23 : t = t+

24: end while
25: Return the best solution (Best(X)).

4. The proposed algorithm

The binary RSA uses the transfer function (TS) as its key aspect. The most suitable solution to the problem will
involve implementation of a binary representation of 0 or 1. To be able to accomplish this objective. The transfer
function is very simply and precisely calculated to give the likelihood of an element of a position vector varying
between 0 and 1 (or the converse).

In this study, the Z-Shaped transfer functions of Guo, et al. [31] were modified and suggested. The mapping
function that applies to these transfer functions is the asymmetric mapping function. The convergence rate is
described as fast because of the effect of this asymmetric mapping function which is an absolute fulfillment in
mapping the probability of the member position vector fluctuation.

One way to represent the Z-Shaped transfer function (ZTF) is as

T (xk
i (t)) =

√
1− ax

k
i (t) , (13)
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where the number k is positive. By changing the value of k, a set of Z-shaped function families can be obtained.
Table 1 illustrates the four different ZTFs.

Table 1. Z-shaped transfer functions

Name Expression
Z1 TZ1(x) =

√
1− 2x

Z2 TZ2(x) =
√
1− 5x

Z3 TZ3(x) =
√
1− 8x

Z4 TZ4(x) =
√
1− 20x

5. Results and discussion

In this section, the performance of the proposed Z- transfer functions for solving MKP is assessed using several
well-known benchmarks. The performance is compared with S-shaped transfer (STF) and V-shaped transfer (VTF)
functions. The MKP instances are varying from small-scale instances to medium- and large-scale instances which
are listed in Table 2.

Table 2. Characteristics of MKP instances

Instances n m
WEISH01 30 5
WEISH02 30 5
WEISH06 40 5
WEISH12 50 5
WEISH17 60 5
WEISH18 70 5
SENTO1 60 30
PB1 27 4
gk02 100 25
Gk03 150 25

Table 3 displays test results for MKP instances. For each instance, the Table 3 reports the best-known solutions
and the average solutions found by the used transfer functions solutions over 30 runs for each instance. It is clearly
seen that each transfer function attempts to approximate or match the best-known solution. The Z-shaped transfer
functions (Z1–Z4) frequently reach the best-known solutions or come very close, indicating strong solution quality.
While STF and VTF occasionally fall slightly short of the best-known solutions, showing comparatively weaker
performance.

Z-shaped transfer functions regularly matched or closely approximated the best-known solutions for WEISH01
to WEISH18, for example Z1–Z4 all matched 4554 for WEISH01 and 4536 for WEISH02. Similar trends where
Z-shaped variants matched the best-known solutions more consistently than STF and VTF in SENTO1 and PB1.
While on the gk02 and gk03, Z-shaped transfer functions delivered results matching or surpassing STF and VTF,
often exactly achieving the best-known solution.

Related to the effectiveness of transfer functions, Z-shaped transfer functions (Z1–Z4) show high effectiveness
across all instances, yielding top-quality solutions with high consistency. On the other hand, VTF and STF
sometimes close, they generally show less stable performance and slightly lower solution quality on average.

In terms of the implications on search behavior, Z-shaped transfer functions likely improve the binary RSA’s
ability to balance exploration and exploitation effectively in the discrete MKP solution space. This enhanced
balance results in better convergence to near-optimal or optimal solutions.

Table 4 presents the average amount of time required to get the best solution in order to further demonstrate
the efficacy of the method we have designed. In general trend across instances, Table 4 shows that for all MKP
instances listed from WEISH01 through Gk03, the average computational times decrease consistently as we move
from STF to VTF, then to the different Z-shaped transfer function variants. This trend reflects that Z-shaped transfer
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Table 3. The average results for MKP instances for the used transfer functions

Instances Best
known
solutions

STF VTF Z1 Z2 Z3 Z4

WEISH01 4554 4551 4552 4553 4554 4554 4554
WEISH02 4536 4532 4532 4536 4536 4536 4536
WEISH06 5557 5553 5551 5556 5557 5557 5557
WEISH12 6339 6338 6337 6339 6339 6339 6339
WEISH17 8633 8632 8632 8633 8633 8633 8633
WEISH18 9580 9580 9577 9580 9580 9580 9580
SENTO1 7772 7770 7771 7772 7772 7772 7772
PB1 3090 3082 3083 3090 3090 3090 3090
gk02 3958 3946 3948 3955 3958 3958 3958
Gk03 5656 5648 5647 5656 5656 5656 5656

functions generally require less computing time than STF and VTF on these problems. That is meaning STF
generally exhibits the highest running times across most instances. Additionally, VTF shows slightly better (lower)
times than STF but is still slower than the Z-shaped variants. Conversely, Z-shaped Transfer Functions (Z1 to Z4)
consistently produce the lowest computational times, with times steadily decreasing from Z1 through Z4. Z4 often
records the shortest average running time for each instance. For example, For WEISH01, STF takes 125 sec, while
Z4 only takes 112 secroughly a 10% reduction. In gk02 and Gk03 instances, STF takes over 230 seconds, whereas
Z4 performs notably faster at 215 and 221 seconds respectively.

Related to implications of time reduction, the reduced computational time when using Z-shaped transfer
functions suggests they enable the binary RSA to converge more quickly to high-quality or best-known solutions.
Improved convergence efficiency is likely due to these transfer functions better balancing exploration and
exploitation in the binary search space, thus avoiding unnecessary iterations.

Table 4. The average time results in seconds for MKP instances for the used transfer functions

Instances STF VTF Z1 Z2 Z3 Z4
WEISH01 125 122 121 117 114 112
WEISH02 147 140 143 138 136 134
WEISH06 136 141 132 127 125 123
WEISH12 146 139 142 135 135 131
WEISH17 180 183 176 171 169 167
WEISH18 186 188 182 177 175 173
SENTO1 196 201 192 187 185 183
PB1 205 200 201 196 194 192
gk02 232 240 228 224 221 215
Gk03 239 245 235 230 228 221

To be conclude, the results validate that integrating Z-shaped transfer functions within the binary RSA framework
provides superior or at least competitive results compared to traditional STF and VTF. The consistent matching
or improvement over best-known solutions underscores the practical advantage of Z-shaped transfer functions
in MKP. Selecting the appropriate transfer function is crucial for binary metaheuristics solving combinatorial
problems, with Z-shaped functions offering a promising direction for future research and application. In addition,
the results demonstrates that Z-shaped transfer functions outperform STF and VTF in computational efficiency for
binary RSA solving MKP instances. This reduction confirms the suitability of Z-shaped transfer functions as a
computationally efficient and effective means of solving complex combinatorial problems like MKP.

6. Conclusion

The study confirms that the MKP, as a fundamental NP-hard combinatorial optimization problem, remains a
critical challenge with extensive applications across management and engineering domains. The integration of
Z-shaped transfer functions into the binary RSA has shown to significantly enhance the algorithm’s capability
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to efficiently navigate the discrete solution space of MKP. Experimental results on five widely-used benchmark
datasets demonstrate that this improved RSA variant achieves competitive or superior performance in terms of
solution quality and convergence speed compared to existing state-of-the-art transfer functions. These outcomes
validate the practical value of employing Z-shaped transfer functions within RSA, providing a robust and effective
approach for solving complex multidimensional combinatorial problems. This approach not only advances the
solution methods for MKP but also offers a promising direction for future research in binary metaheuristic
algorithm design and discrete optimization.
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