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Abstract The notion of a soft expert set, which allows a user to access the opinions of all experts in a single model and
apply it to decision-making situations, was established by Alkhazaleh and Salleh in 2011. In addition, they presented the
idea of the fuzzy soft expert set, which combines the concepts of the fuzzy and soft expert sets. By merging the interval-
valued fuzzy set and soft set models, Yang et al. introduced the idea of an interval-valued fuzzy soft set in 2009. This study
aims to integrate the research of Alkhazaleh and Salleh (2011) and Yang et al. (2009), resulting in the development of a
novel idea: the parametrized interval-valued fuzzy soft expert set (PIVFSES). Furthermore, we analyze the features of its
operations complement, union intersection, AND, and OR and introduce them. A decision-making problem is analyzed
using the parametrized interval-valued fuzzy soft expert set. Additionally, our approach will be more effective and valuable
as it allows the user to know the opinions of all the specialists in one place. We provide a final application of this idea to
decision-making situations.
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1. Introduction

Uncertainty is a common feature in problems spanning engineering, medical research, economics, and
environmental studies. The mathematical foundation for handling such uncertainty was laid by Molodtsov [30]
through soft set theory. Building upon this, Maji et al. [24] conducted studies on diverse soft set operations and
their applications. The fusion of fuzzy set concepts with soft sets led to the development of fuzzy soft sets by
Maji et al. [25], who also analyzed their key features. Later, the authors in [35] gave an advanced of the field by
introducing interval-valued fuzzy soft sets and by establishing the basic properties, as well as they presented an
algorithm to solve decision making problems based on interval-valued fuzzy soft sets. Feng et al. [9] were from the
first who provided deeper insight into decision-making problems based on interval-valued fuzzy soft sets, which
frame a hybrid structure combining soft set theory with interval-valued fuzzy sets.

Later, Alkhazaleh and his collaborators [3, 4] introduced the notions of soft expert sets and fuzzy soft expert
sets. These models present a unified framework for incorporating the opinions of multiple experts into a single
decision-making structure, while avoiding the need for complicated aggregation procedures.

Recent research has expanded this area by adding time-related features, parameterized frameworks, algebraic
structures, and ways to handle linguistic information. Key developments include time-shadow soft sets [13], time
effective fuzzy soft sets [14], time fuzzy soft sets [15], and studies on how time affects fuzzy soft expert sets [16].
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Another important advancement is the introduction of Linguistic SuperHypersoft Sets [11], which improve how
soft set models handle linguistic data. At the same time, new aggregation methods for multiple attribute decision-
making, such as Possibility Single-Valued Neutrosophic Dombi-weighted operators [32], provide powerful tools
for combining information from different sources.

Further extensions, like Q-neutrosophic soft sets in interval matrix frameworks [31], show ongoing efforts to
better represent uncertainty using matrices. Parameterized models—such as time fuzzy parameterized fuzzy soft
expert sets [6], parameterized time neutrosophic soft sets [20], and time fuzzy soft expert sets with weighted expert
factors [7]—highlight the value of including weights and temporal aspects in decision-making models. Alkouri et
al. [1] explored complex hesitant fuzzy graphs, introducing structural concepts that help support decisions under
uncertainty and incomplete information

The theory of soft sets along with its extensions provides useful tools for handling uncertainty in decision-making
problems. Important generalizations, including fuzzy soft sets, fuzzy soft expert sets, and their parameterized
versions have made these models more flexible were discussed in [17, 18, 19]. More recently, refined neutrosophic
soft sets have been introduced to deal with degrees of truth, indeterminacy, and falsity, which improves their
usefulness in complex situations such as medical diagnosis [5].

Meanwhile, Alsharo et al. [2] developed complex shadowed set theory and showed how it can be applied
effectively in decision-making situations. Fallatah et al. [8] investigated homomorphisms in tripolar fuzzy soft γ-
semirings. More recent studies have focused on modeling uncertainty using neutrosophic MR-metric and statistical
frameworks.

Fixed point theorems play a key role in fuzzy soft set theory. Some contributions as Malkawi [26], who used
fuzzy embeddings and contraction principles to create a unified framework for representing uncertainty. Malkawi
and Rabaiah [27, 28] introduced neutrosophic statistical manifolds, offering an information-geometric approach
that incorporates uncertainty measures. Building on these ideas, Qawasmeh and Malkawi [29] applied fixed
point techniques in MR-metric spaces to study integral equations and neutron transport problems under uncertain
conditions. In this context, Malkawi et al. [23] laid out the foundational theory of neutrosophic MR-metric spaces,
opening the way for applications in homotopy theory, fixed point analysis, and complex networks operating under
uncertain conditions.

Building on these developments, the idea of parameterized interval-valued fuzzy soft expert sets, a hybrid of the
Parameyerized fuzzy soft set and interval-valued fuzzy set and the soft expert set, is presented in this study. It will
be more practical and effective. Additionally, we examine the features of its fundamental operations intersection,
union, and complement—and define them. We also provide an application of this idea to situations involving
decision-making.

Furthermore, we define fundamental operations such as union, intersection, complement, AND, and OR, and
investigate their algebraic properties. To demonstrate the practical utility of PIVFSES, we present a decision-
making algorithm and apply it to a real-world problem involving hospital expansion planning. while also
incorporating parameter weights to reflect the relative importance of different criteria, addressing complex decision
scenarios similar to those encountered in agricultural technology adoption [33] and the aggregation methodology
benefits from insights gained through neutrosophic weighted operators [32] and similarity measures in interval-
valued settings [10].

1.1. Research Gap and Novelty Contribution

Interval-valued fuzzy soft sets [35] and fuzzy soft expert sets [4] have been widely used to represent uncertainty
and incorporate expert knowledge in decision-making. Yet, their effectiveness is limited in more complex situations
where uncertainty, expert opinions, and the relative importance of decision parameters must all be considered
together.

The traditional interval-valued fuzzy soft sets focus mainly on modeling uncertainty using interval-valued
membership functions, but they do not explicitly take expert judgments into account. Consequently, they cannot
differentiate between experts with varying levels of confidence or reflect the differing importance of decision
parameters. On the other hand, the concept of fuzzy soft expert sets allow for the aggregation of multiple expert
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opinions, however, they generally depend on accurate membership degrees. This restricts their ability to capture
interval-based uncertainty, which is crucial when dealing with incomplete or ambiguous information.

While various hybrid extensions have been suggested, the parameter weights in these models are typically
utilized externally during the processes of aggregation or decision-making. Consequently, the parameterization
becomes detached from the foundational set structure, thereby restricting its impact on fundamental operations like
union and intersection [15, 10].

In order to overcome these constraints, this study presents the Parameterized Interval- Valued Fuzzy Soft
Expert Set (PIVFSES). The suggested framework amalgamates interval-valued uncertainty, expert assessments,
and parameter weights into a cohesive model. In contrast to earlier methodologies, parameter weights are integrated
directly within the set, thereby impacting interval-valued mappings and affecting operations such as union,
intersection, AND, and OR.

Consequently, PIVFSES provides a more nuanced and equitable depiction of decision-making processes,
effectively reflecting both consensus and dissent among specialists. This comprehensive methodology improves
the model’s interpretability and adaptability, rendering it especially appropriate for intricate decision issues where
the significance of parameters is crucial.

2. Preliminaries

This section outlines foundational elements of soft set theory. Following Molodtsov’s formulation [30], let W be
the universe of discourse and P a set of parameters, with J ⊆ P . Given that P (W ) represents the power set of W ,
a soft set is defined in the following manner:

Definition 2.1. [30] Think about this mapping

J : M → P (W ) .

We define a soft set over W as a pair (J,M). Conceptually, this represents a parameterized grouping of subsets
from the universe W . For every parameter δ ∈ J , the function J(δ) specifies which elements of W are considered
δ-approximate members of the soft set.

Definition 2.2. [25] Let W be the initial universal set, and P be the set of parameters. Let IW be the power set of
all fuzzy subsets of W . Let J ⊆ P , and F be the mapping

F : A → IW .

A pair (J, P ) is known as a fuzzy soft set over W.

Definition 2.3. [25] Regarding two fuzzy soft sets (J,M) and (K,N) over W , (J,M) is known as a fuzzy soft
subset of. (K,N) if

1. M ⊂ N and
2. ∀δ ∈ J, J (δ) is fuzzy subset of K (δ).

The association is represented by (F, A) ⊂̃ (K,N). In this situation, (K,N) is known as a fuzzy soft superset of.
(J,M).

Definition 2.4. [25] (J,M)
c represents the complement of a fuzzy soft set (J,M), which has been described by

(J,M)
c = (Jc, ⌉A) where Jc :⌉A → P (W ) is a mapping provided by

Jc (Γ) = c (J (⌉Γ)) ,∀Γ ∈⌉M.

c describes any fuzzy complement.

Definition 2.5. [25] If (J,M) and (K,N) are two fuzzy soft sets then (J,M) AND (K,N) denoted by
(J, M) ∧ (K,N) is defined by
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(J,M) ∧ (K,N) = (C,M ×N)

such that C (Γ, λ) = t (J (Γ) ,K (λ)) ,∀ (Γ, λ) ∈ J ×N , where t is any t-norm.

Definition 2.6. [25] If (J,M) and (K,N) are two fuzzy soft sets then (J,M) OR (K,N) denoted by (J,M) ∨
(K,N) is defined by

(J,M) ∨ (K,N) = (O,M ×N)

such that O (Γ, λ) = s (J (Γ) , G (λ)) , ∀ (Γ, λ) ∈ M ×N , where s is any s-norm.

Definition 2.7. [25] The union of two fuzzy soft sets (J,M) and (K,N) over a common universe W is the fuzzy
soft set (H,C)

WIV where C = M ∪N, and ∀δ ∈ C,

H (δ) =


J (δ) , if δ ∈ M −N,

G (δ) , if δ ∈ N −M,

s (J (δ) , G (δ)) , if δ ∈ M ∪N.

Where s is any s-norm.

Definition 2.8. [25](J,M) and (K,N) are fuzzy soft sets that intersect over common universe. (H,C)
WIV is the

fuzzy soft set W . Where C = M ∪N, and ∀δ ∈ R,

H (δ) =


J (δ) , if δ ∈ M −N,

G (δ) , if δ ∈ N −M,

s (J (δ) , G (δ)) , if δ ∈ M ∩N.

Definition 2.9. [3]. Let W be a set of universes, P a set of parameters, X a set of experts (agents). Let
O = {o1, o2, ..., on} be a set of opinions, Z = E ×X ×O and M ⊆ Z. A pair (F, M) is called a soft expert
set over W, where F is a mapping given by

F : A → P (W )

where P (W ) denoted the power set of W.

Definition 2.10. [4] A fuzzy soft expert set over a universe W is defined as the pair (F,A) where A ⊆ P ×X ×O
consists of parameter-expert-opinion tuples (P = parameters, X = experts, O = {0, 1} for opinions), and F : A →
[0, 1]W is a mapping assigning to each tuple (p, x, o) ∈ A a corresponding fuzzy subset of W represented by its
membership function in [0, 1]W .

Definition 2.11. Let (W,P, T ) define a time-fuzzy soft set (TFSS) framework where W is the universal set, P
is the parameter set, and T = {t1, ..., tn} represents discrete time points, with the TFSS given by the temporal
mapping {(Ft, J)}t∈T where J ⊆ P is the active parameter subset at each time instance and Ft : J → [0, 1]W

assigns time-dependent fuzzy memberships over W .

Definition 2.12. [36] An interval-valued fuzzy set X̃ on a universe W is a mapping X̃ : W → Int([0, 1]) that
assigns to each element x ∈ W a closed subinterval µX̃(x) = [µ−(x), µ+(x)] of [0, 1], where Int([0, 1]) denotes
the set of all such closed intervals, P̃(W ) represents the collection of all interval-valued fuzzy sets on W , and the
membership bounds satisfy 0 ≤ µ−(x) ≤ µ+(x) ≤ 1 for all x ∈ W .

For an interval-valued fuzzy set X̃ ∈ P̃(W ), the membership degree of an element x ∈ W is given by the interval:

µX̃(x) =
[
µ−(x), µ+(x)

]
⊆ [0, 1]

where:
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• µ−(x) is the lower membership degree
• µ+(x) is the upper membership degree

satisfying the inequality 0 ≤ µ−(x) ≤ µ+(x) ≤ 1 for all x ∈ W .

Definition 2.13. [12]. Let X̃, Ỹ ∈ P̃ (W ) then the complement, intersection, union and the subset of the interval-
valued fuzzy sets are defined as follows:

• The complement of X̃ denoted by X̃c

µX̃c (x) = 1− µX̃ (x) =
[
1− µ+

X̃
(x) , 1− µ−

X̃
(x)

]
;

• The intersection of X̃ and Ỹ denoted by X̃ ∩ Ỹ
µX̃∩ Ỹ (x) = inf [µX̃ (x) , µỸ (x)]

=
[
inf

(
µ−
X̃
(x) , µ−

Ỹ
(x)

)
, inf

(
µ+

X̃
(x) , µ+

Ỹ
(x)

)]
;

• The union of X̃ and Ỹ denoted by X̃ ∪ Ỹ
µX̃∪ Ỹ (x) = sup [µX̃ (x) , µỸ (x)]

=
[
sup

(
µ−
X̃
(x) , µ−

Ỹ
(x)

)
, sup

(
µ+

X̃
(x) , µ+

Ỹ
(x)

)]
.

• If µ−
X (x) ≤ µ−

Y (x) and µ+
X (x) ≤ µ+

Y (x) then X is a subset of Y which is denoted by X ⊆ Y

3. Interval-valued Fuzzy soft expert set

This section explains the Parameterized interval-valued fuzzy soft expert set idea and examines some of its
characteristics.
The universe set W , the weighted parameters E, the experts (agents) X , W ′ the set of of of experts, and the opinions
O = {1 = agree, 0 = disagree} are all considered. A ⊆ Z and Z = E ×X ×O are assumed.

Definition 3.1. A pair (F,A)
WIV is called an Parameterized interval-valued fuzzy soft expert set (PIVFSES in

short) over W, where F is a mapping given by

FWIV : A → Int (W )

where Int (W ) denotes all interval-valued subsets of W .

Example 3.2. Suppose a certain country decided that they wanted to send graduate students to another country to
further their education. Let W = {wi, wii, wiii, wiv} be a set of alternatives for the countries chosen. The Ministry
of Education from that country decided that the following criteria should be taken into account when deciding on the
country that best suits their needs, let E = {e1, e2, e3} is a set of decision parameters where ei (i = 1, 2, 3) denotes
the parameters combined course and living expenses, the availability of the subjects taught to suit their graduates
needs and the social and political stability of the country in question so that the graduates can be best assimilated
into the society and X = {m,n, r} is a set of experts, and WE = {0.8, 0.7, 0.6} the weights for parameters. From
those findings we can obtain the most suitable country for the student to further their education.Now, Suppose that

F
(

e1
0.8 ,m, 1

)
=

{
wi

[0.20, 0.30]
,

wii

[0.10, 0.20]
,

wiii

[0.20, 0.40]
,

wiv

[0.20, 0.50]

}
,

F
(

e1
0.8 , n , 1

)
=

{
wi

[0.0, 0.30]
,

wii

[0.60, 0.90]
,

wiii

[0.40, 0.70]
,

wiv

[0.20, 0.50]

}
,
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F
(

e1
0.8 , r , 1

)
=

{
wi

[0.40, 0.60]
,

wii

[0.10, 0.30]
,

wiii

[0.10, 0.20]
,

wiv

[0.70, 0.80]

}
,

F
(

e2
0.7 ,m, 1

)
=

{
wi

[0.40, 0.70]
,

wii

[0.80, 0.90]
,

wiii

[0.60, 0.90]
,

wiv

[0.30, 0.60]

}
,

F
(

e2
0.7 , n , 1

)
=

{
wi

[0.0, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.50]

}
,

F
(

e2
0.7 , r, 1

)
=

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.30]

}
,

F
(

e3
0.6 ,m, 1

)
=

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.30]
,

wiii

[0.30, 0.40]
,

wiv

[0.20, 0.30]

}
,

F
(

e3
0.6 , n, 1

)
=

{
wi

[0.10, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.30, 0.60]
,

wiv

[0.40, 0.50]

}
,

F
(

e3
0.6 , r, 1

)
=

{
wi

[0.50, 0.80]
,

wii

[0.10, 0.30]
,

wiii

[0.0, 0.30]
,

wiv

[0.80, 0.90]

}
,

F
(

e1
0.8 ,m, 0

)
=

{
wi

[0.40, 0.70]
,

wii

[0.20, 0.30]
,

wiii

[0.20, 0.50]
,

wiv

[0.50, 0.80]

}
,

F
(

e1
0.8 , n, 0

)
=

{
wi

[0.30, 0.60]
,

wii

[0.30, 0.60]
,

wiii

[0.20, 0.50]
,

wiv

[0.50, 0.70]

}
,

F
(

e1
0.8 , r, 0

)
=

{
wi

[0.20, 0.70]
,

wii

[0.30, 0.80]
,

wiii

[0.40, 0.70]
,

wiv

[0.50, 0.80]

}
,

F
(

e2
0.7 ,m, 0

)
=

{
wi

[0.40, 0.70]
,

wii

[0.50, 0.80]
,

wiii

[0.50, 0.80]
,

wiv

[0.70, 0.90]

}
,

F
(

e2
0.7 , n, 0

)
=

{
wi

[0.60, 0.90]
,

wii

[0.50, 0.70]
,

wiii

[0.50, 0.80]
,

wiv

[0.70, 0.90]

}
,

F
(

e2
0.7 , r, 0

)
=

{
wi

[0.60, 0.80]
,

wii

[0.50, 0.70]
,

wiii

[0.50, 0.70]
,

wiv

[0.60, 0.80]

}
,

F
(

e3
0.6 ,m, 0

)
=

{
wi

[0.30, 0.40]
,

wii

[0.40, 0.70]
,

wiii

[0.30, 0.50]
,

wiv

[0.30, 0.60]

}
,

F
(

e3
0.6 , n, 0

)
=

{
wi

[0.20, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.60, 0.70]
,

wiv

[0.30, 0.50]

}
,

F
(

e3
0.6 , r, 0

)
=

{
wi

[0.10, 0.20]
,

wii

[0.10, 0.30]
,

wiii

[0.20, 0.50]
,

wiv

[0.30, 0.50]

}
,
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Then we can find the Interval-valued Fuzzy soft expert set (F,Z)
WIV as consisting of the following collection of

approximations:

(F,Z)
WIV

=

{((
e1
0.8 ,m, 1

)
,

{
wi

[0.20, 0.30]
,

wii

[0.10, 0.20]
,

wiii

[0.20, 0.40]
,

wiv

[0.20, 0.50]

})
,

((
e1
0.8 , n, 1

)
,

{
wi

[0.0, 0.30]
,

wii

[0.60, 0.90]
,

wiii

[0.40, 0.70]
,

wiv

[0.20, 0.50]

})
,

((
e1
0.8 , r, 1

)
,

{
wi

[0.40, 0.60]
,

wii

[0.10, 0.30]
,

wiii

[0.10, 0.20]
,

wiv

[0.70, 0.80]

})
,

((
e2
0.7 ,m, 1

)
,

{
wi

[0.40, 0.70]
,

wii

[0.80, 0.90]
,

wiii

[0.60, 0.90]
,

wiv

[0.30, 0.60]

})
,

((
e2
0.7 , n, 1

)
,

{
wi

[0.0, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.50]

})
,

((
e2
0.7 , r, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.30]

})
,

((
e3
0.6 ,m, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.30]
,

wiii

[0.30, 0.40]
,

wiv

[0.20, 0.30]

})
,

((
e3
0.6 , n, 1

)
,

{
wi

[0.10, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.30, 0.60]
,

wiv

[0.40, 0.50]

})
,

((
e3
0.6 , r, 1

)
,

{
wi

[0.50, 0.80]
,

wii

[0.10, 0.30]
,

wiii

[0, 0.30]
,

wiv

[0.80, 0.90]

})
,

((
e1
0.8 ,m, 0

)
,

{
wi

[0.40, 0.70]
,

wii

[0.20, 0.30]
,

wiii

[0.20, 0.50]
,

wiv

[0.50, 0.80]

})
,

((
e1
0.8 , n, 0

)
,

{
wi

[0.30, 0.60]
,

wii

[0.30, 0.60]
,

wiii

[0.20, 0.50]
,

wiv

[0.50, 0.70]

})
,

((
e1
0.8 , r, 0

)
,

{
wi

[0.20, 0.70]
,

wii

[0.30, 0.80]
,

wiii

[0.40, 0.70]
,

wiv

[0.50, 0.80]

})
,

((
e2
0.7 ,m, 0

)
,

{
wi

[0.40, 0.70]
,

wii

[0.50, 0.80]
,

wiii

[0.50, 0.80]
,

wiv

[0.70, 0.90]

})
,

((
e2
0.7 , n, 0

)
,

{
wi

[0.60, 0.90]
,

wii

[0.50, 0.70]
,

wiii

[0.50, 0.80]
,

wiv

[0.70, 0.90]

})
,

((
e2
0.7 , r, 0

)
,

{
wi

[0.60, 0.80]
,

wii

[0.50, 0.70]
,

wiii

[0.50, 0.70]
,

wiv

[0.60, 0.80]

})
,

((
e3
0.6 ,m, 0

)
,

{
wi

[0.30, 0.40]
,

wii

[0.40, 0.70]
,

wiii

[0.30, 0.50]
,

wiv

[0.30, 0.60]

})
,
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((
e3
0.6 , n, 0

)
,

{
wi

[0.20, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.60, 0.70]
,

wiv

[0.30, 0.50]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.10, 0.20]
,

wii

[0.10, 0.30]
,

wiii

[0.20, 0.50]
,

wiv

[0.30, 0.50]

})}
.

Definition 3.3. For two PIVFSESs (F,A)
WIV and (G,B)

WIV over W , (F,A)
WIV is called an Interval-valued

Fuzzy soft expert set subset of (G,B)
WIV if

1. B ⊆ A,
2. ∀ε ∈ B,G(ε) is interval-valued fuzzy subset of F (ε).

Example 3.4. Consider the previous example 3.2. Suppose that the management of ministry takes the opinion of
the experts once again. Let where is the rest of the statement etc

A =
{(

e1
0.8 ,m, 1

)
,
(

e3
0.6 ,m, 1

)
,
(

e3
0.6 ,m, 0

)
,
(

e1
0.8 , n, 1

)
,
(

e2
0.7 , n, 1

) (
e2
0.7 , r, 0

)
,(

e3
0.6 , n, 0

)
,
(

e2
0.7 , r, 1

)
,
(

e3
0.6 , r, 1

)
,
(

e3
0.6 , r, 0

)}
,

B =
{(

e1
0.8 ,m, 1

)
,
(

e3
0.6 ,m, 0

)
,
(

e1
0.8 , n, 1

)
,
(

e2
0.7 , n, 1

)
,
(

e2
0.7 , r, 0

)
,(

e3
0.6 , r, 1

)
,
(

e3
0.6 , r, 0

)}
Since B is a fuzzy subset of A, clearly B ⊂ A. Let (G,B) and (F,A)

WIV be defined as follows:

(F,A)
WIV

=

{((
e1
0.8 ,m, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.10, 0.30]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.40]

})
,

((
e1
0.8 , n, 1

)
,

{
wi

[0.0, 0.20]
,

wii

[0.20, 0.30]
,

wiii

[0.40, 0.60]
,

wiv

[0.30, 0.40]

})
,

((
e2
0.7 , n, 1

)
,

{
wi

[0.40, 0.60]
,

wii

[0.40, 0.50]
,

wiii

[0.70, 0.80]
,

wiv

[0.50, 0.60]

})
,

((
e2
0.7 , r, 1

)
,

{
wi

[0.10, 0.30]
,

wii

[0.30, 0.50]
,

wiii

[0.60, 0.80]
,

wiv

[0.50, 0.70]

})
,

((
e2
0.7 , r, 0

)
,

{
wi

[0.0, 0.10]
,

wii

[0.0, 0.20]
,

wiii

[0.40, 0.60]
,

wiv

[0.40, 0.50]

})
,

((
e3
0.6 ,m, 1

)
,

{
wi

[0.20, 0.50]
,

wii

[0.30, 0.50]
,

wiii

[0.50, 0.80]
,

wiv

[0.60, 0.70]

})
,

((
e3
0.6 , r, 1

)
,

{
wi

[0.20, 0.40]
,

wii

[0.30, 0.40]
,

wiii

[0.50, 0.80]
,

wiv

[0.60, 0.80]

})
,

((
e3
0.6 ,m, 0

)
,

{
wi

[0.30, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.40, 0.70]
,

wiv

[0.50, 0.60]

})
,
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((
e3
0.6 , n, 0

)
,

{
wi

[0.10, 0.20]
,

wii

[0.10, 0.30]
,

wiii

[0.50, 0.70]
,

wiv

[0.50, 0.60]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.20, 0.30]
,

wii

[0.20, 0.30]
,

wiii

[0.40, 0.60]
,

wiv

[0.30, 0.50]

})}
,

(G,B)
WIV

=

{((
e1
0.8 ,m, 1

)
,

{
wi

[0.0, 0.10]
,

wii

[0.10, 0.20]
,

wiii

[0.10, 0.30]
,

wiv

[0.20, 0.40]

})
,

((
e1
0.8 , n, 1

)
,

{
wi

[0.0, 0.10]
,

wii

[0.20, 0.30]
,

wiii

[0.30, 0.40]
,

wiv

[0.30, 0.40]

})
,

((
e2
0.7 , n, 1

)
,

{
wi

[0.40, 0.50]
,

wii

[0.30, 0.40]
,

wiii

[0.60, 0.70]
,

wiv

[0.40, 0.60]

})
,

((
e3
0.6 , r, 1

)
,

{
wi

[0.20, 0.30]
,

wii

[0.30, 0.40]
,

wiii

[0.50, 0.80]
,

wiv

[0.50, 0.60]

})
,

((
e2
0.7 , r, 0

)
,

{
wi

[0.0, 0.10]
,

wii

[0.0, 0.10]
,

wiii

[0.30, 0.50]
,

wiv

[0.30, 0.40]

})
,

((
e3
0.6 ,m, 0

)
,

{
wi

[0.10, 0.20]
,

wii

[0.30, 0.50]
,

wiii

[0.40, 0.50]
,

wiv

[0.40, 0.50]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.0, 0.10]
,

wii

[0.10, 0.20]
,

wiii

[0.30, 0.50]
,

wiv

[0.20, 0.50]

})}
.

Therefore (G,B)
WIV ⊆ (F,A)

WIV .

Definition 3.5. Two PIVFSES (F,A)
WIV and (G,B)

WIV over W , are said to be equal if (F,A)
WIV is a PIVFSES

subset of (G,A)
WIV and (G,A)

WIV is a PIVFSES subset of (F,A)
WIV .

Definition 3.6. An agree-PIVFSES (F,A)
WIV

1
over W is a PIVFSES subset of (F,A)

WIV defined as follows:

(F,A)
WIV

1
= {F

1
(α) : α ∈ E ×X × {1}} .

Definition 3.7. A disagree-PIVFSES (F,A)
WIV
0 over W is a Interval-valued Fuzzy soft expert set subset of

(F,A)
WIV defined as follows:

(F,A)
WIV
0 = {F

0
(α) : α ∈ E ×X × {0}} .

Example 3.8. Consider Example 3.2. Then the agree- Interval-valued Fuzzy soft expert set (F,Z)
WIV

1
over W is

(F,Z)
WIV

1
=

{((
e1
0.8 ,m, 1

)
,

{
wi

[0.20, 0.30]
,

wii

[0.10, 0.20]
,

wiii

[0.20, 0.40]
,

wiv

[0.20, 0.50]

})
,

((
e1
0.8 , n, 1

)
,

{
wi

[0.0, 0.30]
,

wii

[0.60, 0.90]
,

wiii

[0.40, 0.70]
,

wiv

[0.20, 0.50]

})
,
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((
e1
0.8 , r, 1

)
,

{
wi

[0.40, 0.60]
,

wii

[0.10, 0.30]
,

wiii

[0.10, 0.20]
,

wiv

[0.70, 0.80]

})
,

((
e2
0.7 ,m, 1

)
,

{
wi

[0.40, 0.70]
,

wii

[0.80, 0.90]
,

wiii

[0.60, 0.90]
,

wiv

[0.30, 0.60]

})
,

((
e2
0.7 , n, 1

)
,

{
wi

[0.0, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.50]

})
,

((
e2
0.7 , r, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.30]

})
,

((
e3
0.6 ,m, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.30]
,

wiii

[0.30, 0.40]
,

wiv

[0.20, 0.30]

})
,

((
e3
0.6 , n, 1

)
,

{
wi

[0.10, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.30, 0.60]
,

wiv

[0.40, 0.50]

})
,

((
e3
0.6 , r, 1

)
,

{
wi

[0.50, 0.80]
,

wii

[0.10, 0.30]
,

wiii

[0.0, 0.30]
,

wiv

[0.80, 0.90]

})
,

and the disagree- Interval-valued Fuzzy soft expert set (F,Z)
WIV

0
over W is

(F,Z)
WIV

0
=

((
e1
0.8 ,m, 0

)
,

{
wi

[0.40, 0.70]
,

wii

[0.20, 0.30]
,

wiii

[0.20, 0.50]
,

wiv

[0.50, 0.80]

})
,

((
e1
0.8 , n, 0

)
,

{
wi

[0.30, 0.60]
,

wii

[0.30, 0.60]
,

wiii

[0.20, 0.50]
,

wiv

[0.50, 0.70]

})
,

((
e1
0.8 , r, 0

)
,

{
wi

[0.20, 0.70]
,

wii

[0.30, 0.80]
,

wiii

[0.40, 0.70]
,

wiv

[0.50, 0.80]

})
,

((
e2
0.7 ,m, 0

)
,

{
wi

[0.40, 0.70]
,

wii

[0.50, 0.80]
,

wiii

[0.50, 0.80]
,

wiv

[0.70, 0.90]

})
,

((
e2
0.7 , n, 0

)
,

{
wi

[0.60, 0.90]
,

wii

[0.50, 0.70]
,

wiii

[0.50, 0.80]
,

wiv

[0.70, 0.90]

})
,

((
e2
0.7 , r, 0

)
,

{
wi

[0.60, 0.80]
,

wii

[0.50, 0.70]
,

wiii

[0.50, 0.70]
,

wiv

[0.60, 0.80]

})
,

((
e3
0.6 ,m, 0

)
,

{
wi

[0.30, 0.40]
,

wii

[0.40, 0.70]
,

wiii

[0.30, 0.50]
,

wiv

[0.30, 0.60]

})
,

((
e3
0.6 , n, 0

)
,

{
wi

[0.20, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.60, 0.70]
,

wiv

[0.30, 0.50]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.10, 0.20]
,

wii

[0.10, 0.30]
,

wiii

[0.20, 0.50]
,

wiv

[0.30, 0.50]

})}
.
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Definition 3.9. (F,A)
c represents the complement of an interval-valued fuzzy soft expert set (F,A), which is

defined by (F,A) = (F c, ⌉A) where F c :⌉A → Int (W ) is a mapping given by

F c (α) = c(F (⌉α)), ∀α ∈⌉A,

where c is an interval-valued fuzzy complement and ⌉A ⊂ {⌉E ×X ×O}.

Example 3.10. Take Example 3.2 as an example. Utilizing the fundamental fuzzy complement, we’ve

(F,Z)
WIV c

=

{((
e1
0.8 ,m, 1

)
,

{
wi

[0.70, 0.80]
,

wii

[0.80, 0.90]
,

wiii

[0.60, 0.80]
,

wiv

[0.50, 0.80]

})
,

((
e1
0.8 , n, 1

)
,

{
wi

[0.70, 1.0]
,

wii

[0.10, 0.40]
,

wiii

[0.30, 0.60]
,

wiv

[0.50, 0.80]

})
,

((
e1
0.8 , r, 1

)
,

{
wi

[0.40, 0.60]
,

wii

[0.70, 0.90]
,

wiii

[0.80, 0.90]
,

wiv

[0.20, 0.30]

})
,

((
e2
0.7 ,m, 1

)
,

{
wi

[0.30, 0.60]
,

wii

[0.10, 0.20]
,

wiii

[0.10, 0.40]
,

wiv

[0.40, 0.70]

})
,

((
e2
0.7 , n, 1

)
,

{
wi

[0.80, 1.0]
,

wii

[0.60, 0.80]
,

wiii

[0.50, 0.80]
,

wiv

[0.50, 0.80]

})
,

((
e2
0.7 , r, 1

)
,

{
wi

[0.80, 0.90]
,

wii

[0.60, 0.80]
,

wiii

[0.50, 0.80]
,

wiv

[0.70, 0.80]

})
,

((
e3
0.6 ,m, 1

)
,

{
wi

[0.80, 0.90]
,

wii

[0.70, 0.80]
,

wiii

[0.60, 0.70]
,

wiv

[0.70, 0.80]

})
,

((
e3
0.6 , n, 1

)
,

{
wi

[0.60, 0.90]
,

wii

[0.40, 0.60]
,

wiii

[0.40, 0.70]
,

wiv

[0.50, 0.60]

})
,

((
e3
0.6 , r, 1

)
,

{
wi

[0.20, 0.50]
,

wii

[0.70, 0.90]
,

wiii

[0.70, 1.0]
,

wiv

[0.10, 0.20]

})
,

((
e1
0.8 ,m, 0

)
,

{
wi

[0.30, 0.60]
,

wii

[0.70, 0.80]
,

wiii

[0.50, 0.80]
,

wiv

[0.20, 0.50]

})
,

((
e1
0.8 , n, 0

)
,

{
wi

[0.40, 0.70]
,

wii

[0.40, 0.70]
,

wiii

[0.50, 0.80]
,

wiv

[0.30, 0.50]

})
,

((
e1
0.8 , r, 0

)
,

{
wi

[0.30, 0.80]
,

wii

[0.20, 0.70]
,

wiii

[0.30, 0.60]
,

wiv

[0.20, 0.50]

})
,

((
e2
0.7 ,m, 0

)
,

{
wi

[0.30, 0.60]
,

wii

[0.20, 0.50]
,

wiii

[0.20, 0.50]
,

wiv

[0.10, 0.30]

})
,

((
e2
0.7 , n, 0

)
,

{
wi

[0.10, 0.40]
,

wii

[0.30, 0.50]
,

wiii

[0.20, 0.50]
,

wiv

[0.10, 0.30]

})
,
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((
e2
0.7 , r, 0

)
,

{
wi

[0.20, 0.40]
,

wii

[0.30, 0.50]
,

wiii

[0.30, 0.50]
,

wiv

[0.20, 0.40]

})
,

((
e3
0.6 ,m, 0

)
,

{
wi

[0.60, 0.70]
,

wii

[0.30, 0.60]
,

wiii

[0.50, 0.70]
,

wiv

[0.40, 0.70]

})
,

((
e3
0.6 , n, 0

)
,

{
wi

[0.60, 0.80]
,

wii

[0.40, 0.60]
,

wiii

[0.30, 0.40]
,

wiv

[0.50, 0.70]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.80, 0.90]
,

wii

[0.70, 0.90]
,

wiii

[0.50, 0.80]
,

wiv

[0.50, 0.70]

})}
.

Proposition 3.11
If (F,A)WIV is a fuzzy soft expert set over W, then

1.
(
(F,A)

WIV c
)c

= (F,A)
WIV

.

Proof
From Definition 3.9, the complement (F,A)c is given by (F c, A) where:

F c(α) = 1− F (α) ∀α ∈ A

Taking the complement again yields:
((F,A)c)

c
= ((F c)c, A)

with the membership function:

(F c)c(α) = 1−
(
1− F (α)

)
= F (α) ∀α ∈ A

Thus, we have shown the double complement returns the original set.

4. Union and intersection

This section presents the definitions, characteristics, and examples of the union and intersection of an interval-
valued fuzzy soft expert set.

Definition 4.1. The PIVFSES (H,C)
WIV is the union of two PIVFSESs (F,A)

WIV and (G,B)
WIV over W ,

represented as (F,A)
WIV ∪̃ (G,B)

WIV . such that C = A ∪B ⊂ {E ×X ×O} and ∀ ε ∈ C,

H (ε)
WIV

=


F (ε) , if ε ∈ A−B

G (ε) , if ε ∈ B −A

F (ε)
⋃̃

G (ε) , if ε ∈ A ∪B

where
⋃̃

is an interval-valued fuzzy union.

Example 4.2. Take Example 3.2 as an example.Let’s
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A =
{(

e1
0.8 , n, 1

)
,
(

e1
0.8 , r, 1

)
,
(

e2
0.7 ,m, 1

)
,
(

e2
0.7 ,m, 0

)
,
(

e2
0.7 , r, 1

)
,
(

e3
0.6 , n, 1

)
,

(
e3
0.6 , n, 0

)
,
(

e3
0.6 , r, 0

)}
. B =

{(
e1
0.8 , n, 1

)
,
(

e1
0.8 , r, 1

)
,
(

e2
0.7 ,m, 1

)
,
(

e2
0.7 , r, 0

)
,
(

e3
0.6 , n, 0

)
,
(

e3
0.6 , r, 0

)}
.

Suppose (F,A)
WIV and (G,B)

WIV are two PIVFSESs over W such that

(F,A)
WIV

=

{((
e1
0.8 , n, 1

)
,

{
wi

[0.0, 0.30]
,

wii

[0.60, 0.90]
,

wiii

[0.40, 0.70]
,

wiv

[0.20, 0.50]

})
,

((
e1
0.8 , r, 1

)
,

{
wi

[0.40, 0.60]
,

wii

[0.10, 0.30]
,

wiii

[0.10, 0.20]
,

wiv

[0.70, 0.80]

})
,

((
e2
0.7 ,m, 1

)
,

{
wi

[0.40, 0.50]
,

wii

[0.80, 0.90]
,

wiii

[0.60, 0.90]
,

wiv

[0.30, 0.60]

})
,

((
e2
0.7 ,m, 0

)
,

{
wi

[0.0, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.50]

})
,

((
e2
0.7 , r, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.30]

})
,

((
e3
0.6 , n, 1

)
,

{
wi

[0.10, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[03., 0.60]
,

wiv

[0.40, 0.50]

})
,

((
e3
0.6 , n, 0

)
,

{
wi

[0.20, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.60, 0.70]
,

wiv

[0.30, 0.50]

})}
.

((
e3
0.6 , r, 0

)
,

{
wi

[0.10, 0.20]
,

wii

[0.10, 0.30]
,

wiii

[0.20, 0.50]
,

wiv

[0.30, 0.50]

})}
.

(G,B)
WIV

=

{((
e1
0.8 , n, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.80, 0.90]
,

wiii

[0.50, 0.60]
,

wiv

[0.50, 0.90]

})
,

((
e1
0.8 , r, 1

)
,

{
wi

[0.30, 0.70]
,

wii

[0.10, 0.40]
,

wiii

[0.30, 0.60]
,

wiv

[0.50, 0.80]

})
,

((
e2
0.7 ,m, 1

)
,

{
wi

[0.30, 0.60]
,

wii

[0.10, 0.20]
,

wiii

[0.10, 0.40]
,

wiv

[0.20, 0.70]

})
,

((
e2
0.7 , r, 0

)
,

{
wi

[0.80, 1.0]
,

wii

[0.60, 0.80]
,

wiii

[0.50, 0.70]
,

wiv

[0.50, 0.80]

})
,

((
e3
0.6 , n, 0

)
,

{
wi

[0.10, 0.50]
,

wii

[0.60, 0.80]
,

wiii

[0.50, 0.80]
,

wiv

[0.70, 0.80]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.0, 0.30]
,

wii

[0.20, 0.50]
,

wiii

[0.20, 0.40]
,

wiv

[0.70, 0.80]

})}
.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



A. BATAIHAH 13

Then (F,A)
WIV ∪̃ (G,B)

WIV
= (H,C)

WIV where

(H,C)
WIV

=

{((
e1
0.8 , n, 1

)
,

{
wi

[0.10, 0.30]
,

wii

[0.80, 0.90]
,

wiii

[0.50, 0.70]
,

wiv

[0.50, 0.90]

})
,

((
e1
0.8 , r, 1

)
,

{
wi

[0.40, 0.70]
,

wii

[0.10, 0.40]
,

wiii

[0.30, 0.60]
,

wiv

[0.70, 0.80]

})
,

((
e2
0.7 ,m, 1

)
,

{
wi

[0.40, 0.60]
,

wii

[0.80, 0.90]
,

wiii

[0.60, 0.90]
,

wiv

[0.30, 0.70]

})
,

((
e2
0.7 ,m, 0

)
,

{
wi

[0, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.50]

})
,

((
e2
0.7 , r, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.30]

})
,

((
e2
0.7 , r, 0

)
,

{
wi

[0.80, 1]
,

wii

[0.60, 0.80]
,

wiii

[0.50, 0.70]
,

wiv

[0.50, 0.80]

})
,

((
e3
0.6 , n, 1

)
,

{
wi

[0.10, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.30, 0.60]
,

wiv

[0.40, 0.50]

})
,

((
e3
0.6 , n, 0

)
,

{
wi

[0.20, 0.50]
,

wii

[0.60, 0.80]
,

wiii

[0.60, 0.80]
,

wiv

[0.70, 0.80]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.10, 0.30]
,

wii

[0.20, 0.50]
,

wiii

[0.20, 0.50]
,

wiv

[0.70, 0.80]

})}
.

Proposition 4.3
If (F,A)WIV , (G,B)

WIV and (H,C)
WIV are three PIVFSESs over W , then

1. (F,A)WIV ∪̃ ((G,B)WIV ∪̃ (H,C)WIV ) = ((F,A)WIV ∪̃ (G,B)WIV ) ∪̃ (H,C)WIV ,
2. (F,A)WIV ∪̃ (F,A)WIV = (F,A)WIV .

Definition 4.4. The PIVFSES (H,C)
WIV is the intersection of two PIVFSESs (F,A)

WIV and (G,B)
WIV over

W , represented as (F,A)
WIV ∪̃ (G,B)

WIV . such that C = A ∪B ⊂ {E ×X ×O} and ∀ ε ∈ C,

H (ε) =


F (ε) , if ε ∈ A−B

G (ε) , if ε ∈ B −A

F (ε)
⋂̃

G (ε) , if ε ∈ A ∩B

where
⋂̃

is an interval-valued fuzzy intersection.

Example 4.5. Consider Example 4.2 we have (F,A)
WIV ∩̃ (G,B)

WIV
= (H,C) where

(H,C)
WIV

=

{((
e1
0.8 , n, 1

)
,

{
wi

[0, 0.20]
,

wii

[0.60, 0.90]
,

wiii

[0.40, 0.60]
,

wiv

[0.20, 0.50]

})
,
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((
e1
0.8 , r, 1

)
,

{
wi

[0.40, 0.60]
,

wii

[0.10, 0.30]
,

wiii

[0.10, 0.20]
,

wiv

[0.50, 0.80]

})
,

((
e2
0.7 ,m, 1

)
,

{
wi

[0.30, 0.50]
,

wii

[0.10, 0.20]
,

wiii

[0.10, 0.40]
,

wiv

[0.20, 0.60]

})
,

((
e2
0.7 ,m, 0

)
,

{
wi

[0.0, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.50]

})
,

((
e2
0.7 , r, 1

)
,

{
wi

[0.10, 0.2
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.50]
,

wiv

[0.20, 0.30]

})
,

((
e2
0.7 , r, 0

)
,

{
wi

[0.80, 1.0]
,

wii

[0.60, 0.80]
,

wiii

[0.50, 0.70]
,

wiv

[0.50, 0.80]

})
,

((
e3
0.6 , n, 1

)
,

{
wi

[0.10, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.30, 0.60]
,

wiv

[0.40, 0.50]

})
,

((
e3
0.6 , n, 0

)
,

{
wi

[0.10, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.50, 0.70]
,

wiv

[0.30, 0.50]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.0, 0.20]
,

wii

[0.10, 0.30]
,

wiii

[0.20, 0.40]
,

wiv

[0.30, 0.50]

})}
.

Proposition 4.6
If (F,A)WIV , (G,B)

WIV and (H,C)
WIV are three PIVFSESs over W , then

1. (F,A)WIV ∩̃ ((G,B)WIV ∩̃ (H,C)WIV ) = ((F,A)WIV ∩̃ (G,B)WIV ) ∩̃ (H,C)WIV ,
2. (F,A)WIV ∩̃ (F,A)WIV = (F,A)WIV .

Proposition 4.7
If (F,A)WIV , (G,B)

WIV and (H,C)
WIV are three PIVFSESs over W , then

1. (F,A)
WIV ∪̃

(
(G,B)

WIV ∩̃ (H,C)
WIV

)
=

(
(F,A)

WIV ∪̃ (G,B)
WIV

)
∩̃
(
(F,A)

WIV ∪̃ (H,C)
WIV

)
,

2. (F,A)
WIV ∩̃

(
(G,B)

WIV ∪̃ (H,C)
WIV

)
=

(
(F,A)

WIV ∩̃ (G,B)
WIV

)
∪̃
(
(F,A)

WIV ∩̃ (H,C)
WIV

)
.

5. AND and OR operations

The definitions, attributes, and examples of AND and OR operations for PIVFSES are presented in this section.

Definition 5.1. If (F,A)
WIV and (G,B)

WIV are two PIVFSES over W then (F,A)
WIV AND (G,B)

WIV denoted
by (F,A)

WIV ∧ (G,B)
WIV , is defined by

(F,A)
WIV ∧ (G,B)

WIV
= (H,A×B)

WIV

such that H (α, β)
WIV

= F (α)
⋂̃
G (β) , ∀ (α, β) ∈ A×B, where

⋂̃
is an interval-valued fuzzy intersection.

Example 5.2. Consider Example 3.2. Let
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A =
{(

e2
0.7 ,m, 1

)
,
(

e2
0.7 , n, 0

)
,
(

e3
0.6 , r, 1

)
,
(

e3
0.6 , r, 0

)}
and

B =
{(

e2
0.7 ,m, 1

)
,
(

e2
0.7 , r, 1

)
,
(

e3
0.6 , n, 0

)}
.

Suppose (F,A)
WIV and (G,B)

WIV are two fuzzy soft expert sets over W such that

(F,A)
WIV

=

{((
e2
0.7 ,m, 1

)
,

{
wi

[0.0, 0.20]
,

wii

[0.10, 0.40]
,

wiii

[0.10, 0.30]
,

wiv

[0.30, 0.40]

})
,

((
e2
0.7 , n, 0

)
,

{
wi

[0.60, 0.80]
,

wii

[0.70, 1.0]
,

wiii

[0.80, 0.90]
,

wiv

[0.60, 0.90]

})
,

((
e3
0.6 , r, 1

)
,

{
wi

[0.20, 0.40]
,

wii

[0.30, 0.60]
,

wiii

[0.40, 0.50]
,

wiv

[0.30, 0.50]

})
,

((
e3
0.6 , r, 0

)
,

{
wi

[0.40, 0.70]
,

wii

[0.40, 0.60]
,

wiii

[0.50, 0.80]
,

wiv

[0.50, 0.70]

})}

(G,B)
WIV

=

{((
e2
0.7 ,m, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.30]
,

wiii

[0.20, 0.40]
,

wiv

[0.20, 0.50]

})
,

((
e2
0.7 , r, 1

)
,

{
wi

[0.70, 0.80]
,

wii

[0.80, 0.90]
,

wiii

[0.90, 1.0]
,

wiv

[0.70, 0.80]

})
,

((
e3
0.6 , n, 0

)
,

{
wi

[0.30, 0.50]
,

wii

[0.20, 0.50]
,

wiii

[0.50, 0.60]
,

wiv

[0.40, 0.80]

})}
.

Then (F,A)
WIV ∧ (G,B)

WIV
= (H,A×B)

WIV

=

{(((
e2
0.7 ,m, 1

)
,
(

e2
0.7 ,m, 1

))
,

{
wi

[0.0, 0.20]
,

wii

[0.10, 0.30]
,

wiii

[0.10, 0.30]
,

wiv

[0.20, 0.40]

})
,

(((
e2
0.7 ,m, 1

)
,
(

e2
0.7 , r, 1

))
,

{
wi

[0.0, 0.20]
,

wii

[0.10, 0.40]
,

wiii

[0.10, 0.30]
,

wiv

[0.30, 0.40]

})
,

(((
e2
0.7 ,m, 1

)
,
(

e3
0.6 , n, 0

))
,

{
wi

[0.0, 0.20]
,

wii

[0.10, 0.40]
,

wiii

[0.10, 0.30]
,

wiv

[0.30, 0.40]

})
,

(((
e2
0.7 , n, 0

)
,
(

e2
0.7 ,m, 1

))
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.30]
,

wiii

[0.20, 0.40]
,

wiv

[0.20, 0.50]

})
,

(((
e2
0.7 , n, 0

)
,
(

e2
0.7 , r, 1

))
,

{
wi

[0.60, 0.80]
,

wii

[0.70, 0.90]
,

wiii

[0.80, 0.90]
,

wiv

[0.60, 0.80]

})
,

(((
e2
0.7 , n, 0

)
,
(

e3
0.6 , n, 0

))
,

{
wi

[0.30, 0.50]
,

wii

[0.20, 0.50]
,

wiii

[0.50, 0.60]
,

wiv

[0.40, 0.80]

})
,

(((
e3
0.6 , r, 1

)
,
(

e2
0.7 ,m, 1

))
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.30]
,

wiii

[0.20, 0.40]
,

wiv

[0.20, 0.50]

})
,
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(((
e3
0.6 , r, 1

)
,
(

e2
0.7 , r, 1

))
,

{
wi

[0.20, 0.40]
,

wii

[0.30, 0.60]
,

wiii

[0.40, 0.50]
,

wiv

[0.30, 0.50]

})
,

(((
e3
0.6 , r, 1

)
,
(

e3
0.6 , n, 0

))
,

{
wi

[0.20, 0.40]
,

wii

[0.20, 0.50]
,

wiii

[0.40, 0.50]
,

wiv

[0.30, 0.50]

})
,

(((
e3
0.6 , r, 0

)
,
(

e2
0.7 ,m, 1

))
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.30]
,

wiii

[0.20, 0.40]
,

wiv

[0.20, 0.50]

})
,

(((
e3
0.6 , r, 0

)
,
(

e2
0.7 , r, 1

))
,

{
wi

[0.40, 0.70]
,

wii

[0.40, 0.60]
,

wiii

[0.50, 0.80]
,

wiv

[0.50, 0.70]

})
,

(((
e3
0.6 , r, 0

)
,
(

e3
0.6 , n, 0

))
,

{
wi

[0.30, 0.50]
,

wii

[0.20, 0.50]
,

wiii

[0.50, 0.60]
,

wiv

[0.40, 0.70]

})}
.

Definition 5.3. If (F,A)
WIV and (G,B)

WIV are two PIVFSES over W then (F,A)
WIV OR (G,B)

WIV denoted
by (F,A)

WIV ∨ (G,B)
WIV , is defined by

(F,A)
WIV ∨ (G,B)

WIV
= (H,A×B)

WIV

such that H (α, β)
WIV

= F (α)
⋃̃
G (β) , ∀ (α, β) ∈ A×B, where

⋃̃
is an interval-valued fuzzy union.

Example 5.4. Consider Example 5.2 we have (F,A)
WIV ∨ (G,B)

WIV
= (H,A×B)

WIV

=

{(((
e2
0.7 ,m, 1

)
,
(

e2
0.7 ,m, 1

))
,

{
wi

[0.10, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.20, 0.40]
,

wiv

[0.30, 0.50]

})
,

(((
e2
0.7 ,m, 1

)
,
(

e2
0.7 , r, 1

))
,

{
wi

[0.70, 0.80]
,

wii

[0.80, 0.90]
,

wiii

[0.90, 1.0]
,

wiv

[0.70, 0.80]

})
,

(((
e2
0.7 ,m, 1

)
,
(

e3
0.6 , n, 0

))
,

{
wi

[0.30, 0.50]
,

wii

[0.20, 0.50]
,

wiii

[0.50, 0.60]
,

wiv

[0.40, 0.80]

})
,

(((
e2
0.7 , n, 0

)
,
(

e2
0.7 ,m, 1

))
,

{
wi

[0.60, 0.80]
,

wii

[0.70, 1.0]
,

wiii

[0.80, 0.90]
,

wiv

[0.60, 0.90]

})
,

(((
e2
0.7 , n, 0

)
,
(

e2
0.7 , r, 1

))
,

{
wi

[0.70, 0.80]
,

wii

[0.80, 1.0]
,

wiii

[0.90, 1.0]
,

wiv

[0.70, 0.90]

})
,

(((
e2
0.7 , n, 0

)
,
(

e3
0.6 , n, 0

))
,

{
wi

[0.60, 0.80]
,

wii

[0.70, 1.0]
,

wiii

[0.80, 0.90]
,

wiv

[0.60, 0.90]

})
,

(((
e3
0.6 , r, 1

)
,
(

e2
0.7 ,m, 1

))
,

{
wi

[0.20, 0.40]
,

wii

[0.30, 0.60]
,

wiii

[0.40, 0.50]
,

wiv

[0.30, 0.50]

})
,

(((
e3
0.6 , r, 1

)
,
(

e2
0.7 , r, 1

))
,

{
wi

[0.70, 0.80]
,

wii

[0.80, 0.90]
,

wiii

[0.90, 1.0]
,

wiv

[0.70, 0.80]

})
,

(((
e3
0.6 , r, 1

)
,
(

e3
0.6 , n, 0

))
,

{
wi

[0.30, 0.50]
,

wii

[0.30, 0.60]
,

wiii

[0.50, 0.60]
,

wiv

[0.40, 0.80]

})
,
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(((
e3
0.6 , r, 0

)
,
(

e2
0.7 ,m, 1

))
,

{
wi

[0.40, 0.70]
,

wii

[0.40, 0.60]
,

wiii

[0.50, 0.80]
,

wiv

[0.50, 0.70]

})
,

(((
e3
0.6 , r, 0

)
,
(

e2
0.7 , r, 1

))
,

{
wi

[0.70, 0.80]
,

wii

[0.80, 0.90]
,

wiii

[0.90, 1.0]
,

wiv

[0.70, 0.80]

})
,

(((
e3
0.6 , r, 0

)
,
(

e3
0.6 , n, 0

))
,

{
wi

[0.40, 0.70]
,

wii

[0.40, 0.60]
,

wiii

[0.50, 0.80]
,

wiv

[0.50, 0.80]

})}
.

Proposition 5.5
If (F,A)WIV and (G,B)

WIV are two Parameterized interval-valued fuzzy soft expert set over W, then

1.
(
(F,A)WIV ∧ (G,B)WIV

)c
= (F,A)WIV c ∨ (G,B)WIV c

2.
(
(F,A)WIV ∨ (G,B)WIV

)c
= (F,A)WIV c ∧ (G,B)WIV c

Proposition 5.6
If (F,A)WIV , (G,B)

WIV and (H,C)
WIV are three Parameterized interval-valued fuzzy soft expert set over W,

then

1. (F,A)WIV ∧
(
(G,B)WIV ∧ (H,C)WIV

)
=
(
(F,A)WIV ∧ (G,B)WIV

)
∧ (H,C)WIV ,

2. (F,A)WIV ∨
(
(G,B)WIV ∨ (H,C)WIV

)
=

(
(F,A)WIV ∨ (G,B)WIV

)
∨ (H,C)WIV ,

3. (F,A)WIV ∨
(
(G,B)WIV ∧ (H,C)WIV

)
=

(
(F,A)WIV ∨ (G,B)WIV

)
∧
(
(F,A)WIV ∨ (H,C)WIV

)
,

4. (F,A)WIV ∧
(
(G,B)WIV ∨ (H,C)WIV

)
=

(
(F,A)WIV ∧ (G,B)WIV

)
∨
(
(F,A)WIV ∧ (H,C)WIV

)
.

6. A Decision-Making Application of Interval-Valued Fuzzy Soft Expert Sets

6.1. Introduction to the Problem

Decision-making in complex, real-world scenarios often involves multiple experts evaluating multiple alternatives
against multiple criteria, all under conditions of uncertainty. A hospital’s decision to expand its facilities is a prime
example of such a problem. The choice is not based on a single factor but on a combination of medical need,
financial feasibility, and operational capacity. Furthermore, expert opinions on these factors are rarely precise; they
are often best expressed as a range of possibilities.

This section shows how the PIVFSES framework can be applied in practice. Its key advantage is organizing
complex decision-making information in a clear and thorough way

The proposed framework effectively addresses the key challenges of this decision-making problem. It captures
the uncertainty inherent in expert judgments by utilizing interval-valued fuzzy sets (e.g., [0.6, 0.8]) instead of single
crisp values. Furthermore, it is designed to handle multiple criteria—such as cost, available space, and community
needs—while also synthesizing inputs from multiple experts. A critical feature is its ability to explicitly document
both agreement and disagreement for each alternative, ensuring a comprehensive and balanced assessment of all
options.

6.2. Problem Formulation

Suppose a hospital must decide on the best direction for expansion and has constituted a committee of experts
to evaluate the options. The set of possible expansion projects is defined as the set of alternatives, W =
{wi, wii, wiii, wiv}. These alternatives will be evaluated against a set of five criteria, E = {e1, e2, e3, e4, e5}, which
represent, respectively: the current expertise of the staff (e1), medical needs within the city (e2), space available for
expansion (e3), the cost of employing additional specialized staff (e4), and the cost and availability of state-of-the-
art equipment (e5). To reflect their differing importance, the committee assigns a weight vector to these parameters,
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WE = {0.7, 0.8, 0.7, 0.9, 0.6}. Finally, the evaluations are provided by a panel of three experts, denoted by the set
X = {m,n, r}.

(F,Z)
WIV

=

{((
e1
0.7 ,m, 1

)
,

{
wi

[0.0, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.80, 1.0]
,

wiv

[0.60, 0.80]

})
,

((
e1
0.7 , n, 1

)
,

{
wi

[0.10, 0.30]
,

wii

[0.30, 0.50]
,

wiii

[0.70, 0.90]
,

wiv

[0.50, 0.70]

})
,

((
e1
0.7 , r, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.40, 0.60]
,

wiii

[0.60, 0.80]
,

wiv

[0.40, 0.60]

})
,

((
e2
0.8 ,m, 1

)
,

{
wi

[0.20, 0.40]
,

wii

[0.40, 0.50]
,

wiii

[0.70, 0.90]
,

wiv

[0.50, 0.60]

})
,

((
e2
0.8 , n, 1

)
,

{
wi

[0.30, 0.40]
,

wii

[0.30, 0.50]
,

wiii

[0.90, 1.0]
,

wiv

[0.50, 0.70]

})
,

((
e2
0.8 , r, 1

)
,

{
wi

[0.10, 0.30]
,

wii

[0.20, 0.40]
,

wiii

[0.80, 0.90]
,

wiv

[0.40, 0.50]

})
,

((
e3
0.7 ,m, 1

)
,

{
wi

[0.20, 0.30]
,

wii

[0.50, 0.60]
,

wiii

[0.70, 0.80]
,

wiv

[0.40, 0.70]

})
,

((
e3
0.7 , n, 1

)
,

{
wi

[0.10, 0.30]
,

wii

[0.40, 0.60]
,

wiii

[0.80, 0.90]
,

wiv

[0.60, 0.70]

})
,

((
e3
0.7 , r, 1

)
,

{
wi

[0.0, 0.10]
,

wii

[0.30, 0.50]
,

wiii

[0.60, 0.70]
,

wiv

[0.50, 0.70]

})
,

((
e4
0.9 ,m, 1

)
,

{
wi

[0.10, 0.20]
,

wii

[0.30, 0.60]
,

wiii

[0.70, 1.0]
,

wiv

[0.60, 0.90]

})
,

((
e4
0.9 , n, 1

)
,

{
wi

[0.30, 0.40]
,

wii

[0.20, 0.50]
,

wiii

[0.70, 0.90]
,

wiv

[0.60, 0.80]

})
,

((
e4
0.9 , r, 1

)
,

{
wi

[0.20, 0.40]
,

wii

[0.10, 0.40]
,

wiii

[0.80, 0.90]
,

wiv

[0.70, 0.90]

})
,

((
e5
0.6 ,m, 1

)
,

{
wi

[0.0, 0.10]
,

wii

[0.20, 0.30]
,

wiii

[0.60, 0.80]
,

wiv

[0.40, 0.50]

})
,

((
e5
0.6 , n, 1

)
,

{
wi

[0.0, 0.20]
,

wii

[0.20, 0.40]
,

wiii

[0.60, 0.70]
,

wiv

[0.50, 0.60]

})
,

((
e5
0.6 , r, 1

)
,

{
wi

[0.20, 0.40]
,

wii

[0.40, 0.60]
,

wiii

[0.70, 0.90]
,

wiv

[0.60, 0.70]

})
,

((
e1
0.7 ,m, 0

)
,

{
wi

[0.10, 0.30]
,

wii

[0.30, 0.50]
,

wiii

[0.70, 0.90]
,

wiv

[0.80, 0.90]

})
,
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((
e1
0.7 , n, 0

)
,

{
wi

[0.30, 0.50]
,

wii

[0.40, 0.60]
,

wiii

[0.60, 0.90]
,

wiv

[0.60, 0.80]

})
,

((
e1
0.7 , r, 0

)
,

{
wi

[0.0, 0.20]
,

wii

[0.30, 0.50]
,

wiii

[0.40, 0.70]
,

wiv

[0.30, 0.50]

})
,

((
e2
0.8 ,m, 0

)
,

{
wi

[0.50, 0.70]
,

wii

[0.70, 0.80]
,

wiii

[0.60, 0.70]
,

wiv

[0.70, 0.90]

})
,

((
e2
0.8 , n, 0

)
,

{
wi

[0.10, 0.30]
,

wii

[0.20, 0.40]
,

wiii

[0.80, 1.0]
,

wiv

[0.60, 0.70]

})
,

((
e2
0.8 , r, 0

)
,

{
wi

[0.20, 0.30]
,

wii

[0.40, 0.50]
,

wiii

[0.70, 0.90]
,

wiv

[0.60, 0.70]

})
,

((
e3
0.7 ,m, 0

)
,

{
wi

[0.10, 0.20]
,

wii

[0.70, 0.90]
,

wiii

[0.80, 1.0]
,

wiv

[0.50, 0.80]

})
,

((
e3
0.7 , n, 0

)
,

{
wi

[0.40, 0.50]
,

wii

[0.80, 0.90]
,

wiii

[0.40, 0.60]
,

wiv

[0.10, 0.30]

})
,

((
e3
0.7 , r, 0

)
,

{
wi

[0.60, 0.70]
,

wii

[0.50, 0.80]
,

wiii

[0.40, 0.60]
,

wiv

[0.10, 0.20]

})
,

((
e4
0.9 ,m, 0

)
,

{
wi

[0.50, 0.80]
,

wii

[0.80, 1]
,

wiii

[0.20, 0.50]
,

wiv

[0, 0.10]

})
,

((
e4
0.9 , n, 0

)
,

{
wi

[0.70, 0.90]
,

wii

[0.70, 0.80]
,

wiii

[0.40, 0.60]
,

wiv

[0.20, 0.40]

})
,

((
e4
0.9 , r, 0

)
,

{
wi

[0.60, 0.90]
,

wii

[0.70, 0.80]
,

wiii

[0.10, 0.30]
,

wiv

[0.20, 0.50]

})
,

((
e5
0.6 ,m, 0

)
,

{
wi

[0.50, 0.60]
,

wii

[0.50, 0.70]
,

wiii

[0.20, 0.50]
,

wiv

[0.0, 0.20]

})
,

((
e5
0.6 , n, 0

)
,

{
wi

[0.30, 0.40]
,

wii

[0.50, 0.70]
,

wiii

[0.10, 0.40]
,

wiv

[0.0, 0.20]

})
,

((
e5
0.6 , r, 0

)
,

{
wi

[0.60, 0.80]
,

wii

[0.50, 0.60]
,

wiii

[0.40, 0.60]
,

wiv

[0.20, 0.50]

})
,

Table 1 presents the agree-interval-valued fuzzy soft expert set, while Table 2 shows the corresponding disagree-
interval-valued fuzzy soft expert set.

Table 1. Agree-interval-valued Fuzzy Soft Expert Set

W wi wii wiii wiv(
e1
0.7 ,m

)
[0.0,0.20] [0.20,0.40] [0.80,1.0] [0.60,0.80]

Stat., Optim. Inf. Comput. Vol. x, Month 202x



20 A DECISION MAKING FRAMEWORK USING PARAMETERIZED INTERVAL VALUED FUZZY SOFT EXPERT SETS

W wi wii wiii wiv(
e2
0.8 ,m

)
[0.20,0.40] [0.40,0.50] [0.70,0.90] [0.50,0.60](

e3
0.7 ,m

)
[0.20,0.30] [0.50,0.60] [0.70,0.80] [0.40,0.70](

e4
0.9 ,m

)
[0.10,0.20] [0.30,0.60] [0.70,1.0] [0.60,0.90](

e5
0.6 ,m

)
[0.0,0.10] [0.20,0.30] [0.60,0.80] [0.40,0.50](

e1
0.7 , n

)
[0.10,0.30] [0.30,0.50] [0.70,0.90] [0.50,0.70](

e2
0.8 , n

)
[0.30,0.40] [0.30,0.50] [0.90,1.0] [0.50,0.70](

e3
0.7 , n

)
[0.10,0.30] [0.40,0.60] [0.80,0.90] [0.60,0.70](

e4
0.9 , n

)
[0.30,0.40] [0.20,0.50] [0.70,0.90] [0.60,0.80](

e5
0.6 , n

)
[0.0,0.20] [0.20,0.40] [0.60,0.70] [0.50,0.60](

e1
0.7 , r

)
[0.10,0.20] [0.40,0.60] [0.60,0.80] [0.40,0.60](

e2
0.8 , r

)
[0.10,0.30] [0.20,0.40] [0.80,0.90] [0.40,0.50](

e3
0.7 , r

)
[0.0,0.10] [0.30,0.50] [0.60,0.70] [0.50,0.70](

e4
0.9 , r

)
[0.20,0.40] [0.10,0.40] [0.80,0.90] [0.70,0.90](

e5
0.6 , r

)
[0.20,0.40] [0.40,0.60] [0.70,0.90] [0.60,0.70]

Table 2. Disagree-interval-valued fuzzy soft expert set

W wi wii wiii wiv(
e1
0.7 ,m

)
[0.10, 0.30] [0.30, 0.50] [0.70, 0.90] [0.80, 0.90](

e2
0.8 ,m

)
[0.50, 0.70] [0.70, 0.80] [0.60, 0.70] [0.70, 0.90](

e3
0.7 ,m

)
[0.10, 0.20] [0.70, 0.90] [0.80, 1.0] [0.50, 0.80](

e4
0.9 ,m

)
[0.50, 0.80] [0.80, 1.0] [0.20, 0.50] [0.0, 0.10](

e5
0.6 ,m

)
[0.50, 0.60] [0.50, 0.70] [0.20, 0.50] [0.0, 0.20](

e1
0.7 , n

)
[0.30, 0.50] [0.40, 0.60] [0.60, 0.90] [0.60, 0.80](

e2
0.8 , n

)
[0.10, 0.30] [0.20, 0.40] [0.80, 1.0] [0.60, 0.70](

e3
0.7 , n

)
[0.40, 0.50] [0.80, 0.90] [0.40, 0.60] [0.10, 0.30](

e4
0.9 , n

)
[0.70, 0.90] [0.70, 0.80] [0.40, 0.60] [0.20, 0.40](

e5
0.6 , n

)
[0.30, 0.40] [0.50, 0.70] [0.10, 0.40] [0.0, 0.20](

e1
0.7 , r

)
[0.0, 0.20] [0.30, 0.50] [0.40, 0.70] [0.30, 0.50](

e2
0.8 , r

)
[0.20, 0.30] [0.40, 0.50] [0.70, 0.90] [0.60, 0.70](

e3
0.7 , r

)
[0.60, 0.70] [0.50, 0.80] [0.40, 0.60] [0.10, 0.20](

e4
0.9 , r

)
[0.60, 0.90] [0.70, 0.80] [0.10, 0.30] [0.20, 0.50](

e5
0.6 , r

)
[0.60, 0.80] [0.50, 0.60] [0.40, 0.60] [0.20, 0.50]

Following deliberations, the committee constructs an Interval-Valued Fuzzy Soft Expert Set (F,Z), which
systematically aggregates all expert evaluations. This framework explicitly records opinions for (1) and against
(0) each alternative across every parameter. For clarity, the complete data is summarized in two comprehensive
tables.

For clarity and brevity, the raw data is summarized in two comprehensive tables: Table 1 presents the Agree-
PIVFSES, containing all evaluations where experts support an alternative, while Table 2 presents the Disagree-
PIVFSES, containing evaluations where experts oppose an alternative.

For the purpose of this illustrative example, the interval-valued evaluations in Tables 1 and 2 are constructed
synthetically to reflect plausible expert assessments under uncertainty. The values are designed to demonstrate how
the PIVFSESs framework systematically organizes and processes complex multi-expert, multi-criteria information.

The parameter weights
WE = {0.7, 0.8, 0.7, 0.9, 0.6}
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reflect the relative importance assigned to each criterion by the decision-making committee.
In a real-world application, these weights may be determined through established methods such as the Analytic

Hierarchy Process (AHP), direct expert elicitation, or other multi-criteria decision analysis techniques.

Table 3. Parameterized Agree-Interval-Valued Fuzzy Soft Expert Set

W wi wii wiii wiv

(e1,m) [0.00, 0.14] [0.14, 0.28] [0.56, 0.70] [0.42, 0.56]
(e2,m) [0.16, 0.32] [0.32, 0.40] [0.56, 0.72] [0.40, 0.48]
(e3,m) [0.14, 0.21] [0.35, 0.42] [0.49, 0.56] [0.28, 0.49]
(e4,m) [0.09, 0.18] [0.27, 0.54] [0.63, 0.90] [0.54, 0.81]
(e5,m) [0.00, 0.06] [0.12, 0.18] [0.36, 0.48] [0.24, 0.30]
(e1, n) [0.07, 0.21] [0.21, 0.35] [0.49, 0.63] [0.35, 0.49]
(e2, n) [0.24, 0.32] [0.24, 0.40] [0.72, 0.80] [0.40, 0.56]
(e3, n) [0.07, 0.21] [0.28, 0.42] [0.56, 0.63] [0.42, 0.49]
(e4, n) [0.27, 0.36] [0.18, 0.45] [0.63, 0.81] [0.54, 0.72]
(e5, n) [0.00, 0.12] [0.12, 0.24] [0.36, 0.42] [0.30, 0.36]
(e1, r) [0.07, 0.14] [0.28, 0.42] [0.42, 0.56] [0.28, 0.42]
(e2, r) [0.08, 0.24] [0.16, 0.32] [0.64, 0.72] [0.32, 0.40]
(e3, r) [0.00, 0.07] [0.21, 0.35] [0.42, 0.49] [0.35, 0.49]
(e4, r) [0.18, 0.36] [0.09, 0.36] [0.72, 0.81] [0.63, 0.81]
(e5, r) [0.12, 0.24] [0.24, 0.36] [0.42, 0.54] [0.36, 0.42]
[Ai] A1 = [1.90, 4.20] A2 = [4.40, 7.40] A3 = [10.70, 13.10] A4 = [7.80, 10.40]

Table 4. Parameterized Disagree-Interval-Valued Fuzzy Soft Expert Set

W wi wii wiii wiv

(e1,m) [0.07, 0.21] [0.21, 0.35] [0.49, 0.63] [0.56, 0.63]
(e2,m) [0.40, 0.56] [0.56, 0.64] [0.48, 0.56] [0.56, 0.72]
(e3,m) [0.07, 0.14] [0.49, 0.63] [0.56, 0.70] [0.35, 0.56]
(e4,m) [0.45, 0.72] [0.72, 0.90] [0.18, 0.45] [0.00, 0.09]
(e5,m) [0.30, 0.36] [0.30, 0.42] [0.12, 0.30] [0.00, 0.12]
(e1, n) [0.21, 0.35] [0.28, 0.42] [0.42, 0.63] [0.42, 0.56]
(e2, n) [0.08, 0.24] [0.16, 0.32] [0.64, 0.80] [0.48, 0.56]
(e3, n) [0.28, 0.35] [0.56, 0.63] [0.28, 0.42] [0.07, 0.21]
(e4, n) [0.63, 0.81] [0.63, 0.72] [0.36, 0.54] [0.18, 0.36]
(e5, n) [0.18, 0.24] [0.30, 0.42] [0.06, 0.24] [0.00, 0.12]
(e1, r) [0.00, 0.14] [0.21, 0.35] [0.28, 0.49] [0.21, 0.35]
(e2, r) [0.16, 0.24] [0.32, 0.40] [0.56, 0.72] [0.48, 0.56]
(e3, r) [0.42, 0.49] [0.35, 0.56] [0.28, 0.42] [0.07, 0.14]
(e4, r) [0.54, 0.81] [0.63, 0.72] [0.09, 0.27] [0.18, 0.45]
(e5, r) [0.36, 0.48] [0.30, 0.36] [0.24, 0.36] [0.12, 0.30]
[Di] D1 = [5.50, 8.10] D2 = [8.00, 10.50] D3 = [6.80, 10.20] D4 = [4.90, 7.70]

The values in these tables are the Parameterized results; for instance, the entry for ((e1/0.7),m, 1) was computed
by scaling the original expert assessment by the parameter weight of 0.7. This preprocessing directly embeds the
relative importance of each criterion into the dataset.
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6.3. Justification of the Scoring Algorithm

The core of the decision-making algorithm is the score function for an alternative wj :

S(wj) =
(A−

j +A+
j )− (D−

j +D+
j )

2
,

where Aj = [A−
j ,A

+
j ] and Dj = [D−

j ,D
+
j ] are the total agreement and disagreement intervals, respectively.

This function is chosen based on the midpoint method for interval comparison, a well-established technique
in interval analysis [12]. The midpoint a−+a+

2 of an interval [a−, a+] represents its center of gravity or expected
value, providing a robust scalar summary that balances optimistic and pessimistic bounds.

Advantages of this approach:

• Simplicity and Interpretability: The score S(wj) clearly represents the net preference (average support
minus average opposition).

• Linearity: It respects the linear aggregation performed in Step 1, making the overall process coherent.
• Comparative Robustness: While alternative methods exist (e.g., comparing interval areas or using

defuzzification techniques), the midpoint method is less sensitive to interval width and provides a direct
measure of central tendency, which is suitable for ranking when intervals have consistent precision.

Thus, S(wj) provides a mathematically sound and interpretable basis for ranking alternatives within the
PIVFSES framework.

6.4. The Algorithm

The following algorithm provides a step-by-step method to process the information in the agree and disagree tables
to arrive at a ranked list of alternatives.
Decision-Making Algorithm Based on Parameterized Interval-Valued Fuzzy Soft Expert Set

Input:

• Set of alternatives W = {wi, wii, wiii, wiv}.
• Parameterized Agree-PIVFSES (Table 3) and Parameterized Disagree-PIVFSES (Table 4).

Step 1: Aggregate the Evidence for Each Alternative
For each alternative wj ∈ W :

• Let the set of all Parameterized agree intervals be {A1j , A2j , . . . , A15j}, where each Akj = [A−
kj , A

+
kj ] comes

from Table 3.
• Let the set of all Parameterized disagree intervals be {D1j , D2j , . . . , D15j}, where each Dkj = [D−

kj , D
+
kj ]

comes from Table 4.
• Compute the total agree and disagree intervals:

Aj =

[
15∑
k=1

A−
kj ,

15∑
k=1

A+
kj

]
,

Dj =

[
15∑
k=1

D−
kj ,

15∑
k=1

D+
kj

]
.

• Explanation: Aj represents total support for wj , while Dj represents total opposition. Higher Aj and lower
Dj indicate better alternatives.

Step 2: Calculate the Score for Each Alternative
For each alternative wj ∈ W :

S(wj) =
(A−

j +A+
j )− (D−

j +D+
j )

2
.
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• Midpoint of total agree interval: (A−
j +A+

j )/2 represents average support.
• Midpoint of total disagree interval: (D−

j +D+
j )/2 represents average opposition.

• The score S(wj) is the difference: positive values indicate that support outweighs opposition; higher values
are better.

Step 3: Rank the Alternatives

• Sort all alternatives in descending order of S(wj).
• The alternative with the highest score is the best choice.

Output: Ranked alternatives: w(1), w(2), w(3), w(4), where w(1) is the most preferred.

6.5. Numerical Illustration

Let us illustrate the algorithm using the data from Tables 1 and 2. The bottom rows of these tables, labeled A and
D, have already performed Step 1 for us. They show the total agree and disagree intervals for each alternative:

• For wi: A1 = [1.9, 4.2], D1 = [5.5, 8.1]
• For wii: A2 = [4.4, 7.4], D2 = [8.0, 10.5]
• For wiii: A3 = [10.7, 13.1], D3 = [6.8, 10.2]
• For wiv: A4 = [7.8, 10.4], D4 = [4.9, 7.7]

Now, we proceed with Step 2 to calculate the scores.

• For alternative wi:

S(wi) =
(1.9 + 4.2)− (5.5 + 8.1)

2
=

6.1− 13.6

2
=

−7.5

2
= −3.75

• For alternative wii:

S(wii) =
(4.4 + 7.4)− (8.0 + 10.5)

2
=

11.8− 18.5

2
=

−6.7

2
= −3.35

• For alternative wiii:

S(wiii) =
(10.7 + 13.1)− (6.8 + 10.2)

2
=

23.8− 17.0

2
=

6.8

2
= 3.4

• For alternative wiv:

S(wiv) =
(7.8 + 10.4)− (4.9 + 7.7)

2
=

18.2− 12.6

2
=

5.6

2
= 2.8

Step 3: Ranking the alternatives by their scores in descending order:

S(wiii) = 3.4 > S(wiv) = 2.8 > S(wii) = −3.35 > S(wi) = −3.75

Thus, the final ranking is
wiii > wiv > wii > wi

6.6. The Decision

According to the parameterized interval-valued fuzzy soft expert decision model, alternative wiii is the most
suitable choice for the hospital’s expansion. It is the only alternative with a strongly positive score, indicating that
the collective, weighted for parameters support from the experts significantly outweighs their collective opposition
for this option. The management is recommended to proceed with alternative wiii.

This algorithm offers a structured, transparent, and mathematically rigorous framework for high-stakes decision-
making, effectively handling multiple expert opinions, criteria of differing importance, and inherent uncertainty.
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7. Future Work

The fact that new questions might serve as inspiration for more research is a significant outcome of our study,
as such research consistently generates new questions. The work described in this thesis offers the theoretical
foundation for more research on interval valued fuzzy soft sets and raises intriguing new problems for scholars. We
may identify issues related to our study that we want to explore further in the instances based on the prior findings.
We can look at the following subjects for future research:

1. To define and study the shadow interval-valued Fuzzy soft expert set which is a combination of fuzzy soft
expert and shadow soft set.

2. To define and study the time shadow interval-valued Fuzzy soft expert set which is a combination of fuzzy
soft expert and time shadow soft set.

3. To define and study the effective interval-valued Fuzzy soft expert set which is a combination of fuzzy soft
expert and effective fuzzy soft set.

8. Conclusion

In this work, we presented the parameterized interval-valued fuzzy soft expert set (PIVFSES), which
extends existing fuzzy soft decision-making frameworks. This model gathers interval-valued uncertainty, expert
evaluations, and parameter weighting within a single, unified structure. By integrating parameter weights directly
into the set, both the confidence of experts and the significance of decision-making criteria can have a direct impact
on outcomes, offering a more consistent and transparent decision process.

We also explored the theoretical properties of PIVFSES and defined the key operations needed for practical use.
To illustrate its applicability, we applied the model to a hospital expansion problem, demonstrating how interval-
valued expert opinions can be preserved throughout the analysis. Comparisons with simpler baseline approaches
show that PIVFSES captures more nuanced information and allows clearer distinctions among alternatives,
particularly when experts hold differing opinions or confidence levels.
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