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Abstract This paper introduces and analyzes a novel class of Sehgal-Guseman-type contractions in extended b-metric
spaces. Our main innovation lies in the integration of functional control parameters ϑ(ξ, η) that adapt to local geometry,
providing greater flexibility than constant b-metric coefficients in existing literature. We establish generalized fixed-point
theorems under weakened assumptions and provide explicit methods for verifying control function properties in practical
applications. The proposed framework significantly extends classical results by allowing iterate-dependent contractions with
point-varying control functions. We demonstrate practical utility through applications to nonlinear fractional differential
equations with non-local boundary conditions and nonlinear elastic beam equations, supported by comparative analysis with
existing methods and detailed numerical implementations with convergence rates. Our results bridge theoretical advances
with practical implementation challenges in nonlinear analysis.

Keywords Sehgal-Guseman contraction, fixed point theory, extended b-metric spaces, nonlinear analysis, fractional
differential equations

AMS 2010 subject classifications 47H10, 54H25

DOI: 10.19139/soic-2310-5070-3163

1. Introduction

Fixed-point theory stands as a cornerstone of nonlinear analysis, with far-reaching consequences in diverse fields
including mathematics, engineering, and the natural sciences. The foundational Banach contraction principle [5]
laid the groundwork for establishing existence and uniqueness of solutions within complete metric spaces. This
pivotal theorem has motivated a wide array of extensions and refinements, significantly advancing the development
of metric fixed-point theory, as evidenced by works such as [14, 15, 16].

The development of b-metric spaces by Bakhtin [4] and Czerwik [7] marked a significant advancement, relaxing
the strict triangle inequality through the introduction of a scaling parameter. This generalization enabled the study
of various problems where traditional metric constraints proved too restrictive. Further extending this concept,
Kamran et al. [12] introduced extended b-metric spaces, incorporating functional dependence on points to create
more versatile distance structures.

Sehgal’s pioneering work [27] on mappings with contractive iterates initiated a new direction in fixed-point
theory. His approach considered contractive conditions that hold for some iterate of the mapping at each point,
rather than requiring contraction at every step. Guseman [10] later refined these results by removing continuity
assumptions. Recent contributions by Zheng [29] and others have further expanded this theory to various

∗Correspondence to: Haitham Qawaqneh (Email: h.alqawaqneh@zuj.edu.jo). Department of Basic Sciences, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



H. QAWAQNEH 1

generalized metric spaces.

The interplay between fixed-point theory and differential/integral equations has proven particularly fruitful.
Numerous studies, including [17, 18, 19, 20], have demonstrated how fixed-point methods can effectively address
existence and uniqueness questions for various classes of equations. This connection provides powerful analytical
tools for studying nonlinear phenomena.

In this paper, we develop a comprehensive theory of Sehgal-Guseman-type contractions in extended b-metric
spaces, introducing a novel class of contractions with functional parameters that provide greater flexibility in
applications; our main contributions include establishing existence and uniqueness theorems under significantly
weakened conditions, developing innovative applications to nonlinear fractional differential equations with
practical implementations, providing illustrative examples supported by numerical verification and comparative
analysis, and concluding with a discussion of promising future research directions that extend the scope and
applicability of our findings.

2. Preliminaries

This section presents the fundamental definitions and concepts that underpin our investigation, organized
systematically from basic metric structures to advanced contraction mappings.

Definition 2.1
[13] Let Υ be a non-empty set. A function db : Υ×Υ → [0,+∞) is called a b-metric if there exists a constant
ς ≥ 1 such that for all ξ, η, ζ ∈ Υ,

1. db(ξ, η) = 0 if and only if ξ = η;

2. db(ξ, η) = db(η, ξ);

3. db(ξ, η) ≤ ς[db(ξ, ζ) + db(ζ, η)].

The pair (Υ, db) is called a b-metric space. The constant ς is referred to as the relaxation coefficient.

Definition 2.2
[1] Let Υ be a non-empty set and ϑ : Υ×Υ → [1,+∞) be a control function. A function de : Υ×Υ → [0,+∞)
is called an extended b-metric if for all ξ, η, ζ ∈ Υ,

1. de(ξ, η) = 0 if and only if ξ = η;

2. de(ξ, η) = de(η, ξ);

3. de(ξ, η) ≤ ϑ(ξ, η)[de(ξ, ζ) + de(ζ, η)].

The pair (Υ, de) is called an extended b-metric space(EBMS).

The successful application of our extended Sehgal-Guseman framework depends on appropriate selection
of control functions ϑ : Υ×Υ → [1,∞). We provide practical guidance for constructing and verifying such
functions,

1. Symmetric Construction: For compatibility with metric symmetry, choose ϑ(ξ, η) = ϑ(η, ξ). Most
applications naturally satisfy this condition.

2. Bounded vs. Unbounded Domains,

• For bounded domains Υ ⊂ Rn, simple choices include,

ϑ(ξ, η) = 1 + ∥ξ − η∥ or ϑ(ξ, η) = 1 +min{∥ξ∥, ∥η∥}.
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• For unbounded domains, consider bounded constructions such as,

ϑ(ξ, η) = 1 +
∥ξ∥+ ∥η∥

1 + ∥ξ∥+ ∥η∥
or ϑ(ξ, η) = 1 +

∥ξ − η∥
1 + ∥ξ − η∥

.

These remain bounded while capturing spatial variation.

3. Verification Criteria: To verify that ϑ yields a valid extended b-metric,

(a) Test symmetry: ϑ(ξ, η) = ϑ(η, ξ) for representative point pairs.
(b) Ensure controlled growth: Verify that ϑ(ξ, η) does not increase too rapidly with ∥ξ∥ and ∥η∥.
(c) Validate the triangle-like condition: For typical triples (ξ, η, ζ), confirm that:

ϑ(ξ, η) ≤ C [ϑ(ξ, ζ) + ϑ(ζ, η)] for some C ≥ 1.

4. Application-Specific Construction: In differential equation settings, ϑ can incorporate problem-specific
features:

• For boundary value problems: ϑ(u, v) = 1 + ∥u′ − v′∥L2

• For problems with non-local terms: ϑ(u, v) = 1 +
∣∣∣∫ 1

0
(u− v)dx

∣∣∣
• When nonlinearities depend on derivatives: ϑ(u, v) = 1 +max{∥u− v∥∞, ∥u′ − v′∥∞}

Remark 2.1
The boundedness condition sup{ϑ(ξ, η) : ξ, η ∈ Υ} = C < ∞ in Corollary 3.2 is sufficient but not necessary for
Theorem 3.1. Theorem 3.1 requires only that the product

∏k−1
j=0 ϑ(ξj , ξj+1) grows slower than λ−k, which permits

carefully designed unbounded ϑ in many applications. This flexibility is a key advantage over standard b-metric
spaces with constant coefficients.

Definition 2.3
[1] Let (Υ, de) be an EBMS.

1. A sequence {ξn} in Υ is called convergent to ξ ∈ Υ if limn→∞ de(ξn, ξ) = 0;

2. A sequence {ξn} is called Cauchy if limm,n→∞ de(ξm, ξn) = 0;

3. The EBMS (Υ, de) is complete if every Cauchy sequence converges to some point in Υ.

Definition 2.4
[26] Let Υ be a non-empty set. A function S : Υ×Υ×Υ → [0,+∞) is called an S-metric if for all ξ, η, ζ, w ∈ Υ,

1. S(ξ, η, ζ) ≥ 0;

2. S(ξ, η, ζ) = 0 if and only if ξ = η = ζ;

3. S(ξ, η, ζ) = S(ξ, ζ, η) = S(η, ξ, ζ) = S(η, ζ, ξ) = S(ζ, ξ, η) = S(ζ, η, ξ);

4. S(ξ, η, ζ) ≤ S(ξ, ξ, w) + S(η, η, w) + S(ζ, ζ, w).

The pair (Υ, S) is called an S-metric space.

Definition 2.5
[27] Let (Υ, d) be a complete metric space. A self-mapping T : Υ → Υ is called a Sehgal contraction if for each
ξ ∈ Υ, there exists a positive integer n(ξ) (depending on ξ) such that for all η ∈ Υ,

d(T n(ξ)(ξ), T n(ξ)(η)) ≤ λd(ξ, η), λ ∈ [0, 1).

This contraction requires the mapping to be contractive only at some iterate for each point, not necessarily at the
first iterate.
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Definition 2.6
[10] Let (Υ, d) be a complete metric space. A self-mapping T : Υ → Υ is called a Guseman contraction if there
exists λ ∈ [0, 1) and for each ξ ∈ Υ, there exists n(ξ) ∈ N such that for all η ∈ Υ,

d(T n(ξ)(ξ), T n(ξ)(η)) ≤ λd(ξ, η).

This refinement of Sehgal’s result removes the continuity assumption required in the original formulation.

Definition 2.7
[8] Let (Υ, S) be an S-metric space. A self-mapping T : Υ → Υ is called a generalized Sehgal-Guseman-like
contraction if there exists a positive integer a and a function g ∈ D such that for all ξ, η ∈ Υ,

S(T aξ, T aξ, T aη) ≤ g (S(ξ, ξ, η), S(T aξ, T aξ, ξ), S(T aξ, T aξ, η), S(T aη, T aη, ξ), S(T aη, T aη, η)) ,

where D is the class of functions g : R5
+ → R+ satisfying:

1. g is continuous and non-decreasing in each coordinate;

2. For all t1, t2, t3, t4, t5 ≥ 0, if t ≤ g(t1, t2, t3, t4, t5) with appropriate bounds derived from the tetrahedral
inequality, then t ≤ ϕt1 for some ϕ ∈ [0, 1).

This represents the most comprehensive generalization, incorporating functional control parameters in the S-metric
framework.

Example 2.1
[7] Let Υ = R. Define the control function ϑ(ξ, η) = 1 + |ξ|+ |η| and the extended b-metric as,

de(ξ, η) =

{
ξ2 + η2, ξ ̸= η

0, ξ = η.

Then (Υ, de) forms a complete extended b-metric space. The control function ϑ ensures the dynamic adaptation of
the triangle inequality based on the magnitudes of the points involved.

Example 2.2
[26] Let Υ = R and define the S-metric as:

S(ξ, η, ζ) = |ξ − η|+ |ξ + η − 2ζ|.

Then (Υ, S) forms a complete S-metric space. This metric captures both the pairwise distance |ξ − η| and the
deviation from the average |ξ + η − 2ζ|, providing a richer geometric structure than standard metrics.

Remark 2.2
The hierarchical organization from basic b-metric spaces through extended b-metric spaces to S-metric spaces
demonstrates the progressive generalization of metric structures. Similarly, the evolution from classical Sehgal
contractions to generalized Sehgal-Guseman-like contractions showcases the increasing sophistication in fixed-
point theory, enabling applications to broader classes of nonlinear problems.

3. Main Results

We now present our principal findings concerning Sehgal-Guseman-type contractions in extended b-metric spaces.

Definition 3.1 (Extended Sehgal-Guseman Contraction)
Let (Υ, de) be a complete extended b-metric space equipped with a control function ϑ : Υ×Υ → [1,+∞). A
self-mapping T : Υ → Υ is termed an extended Sehgal-Guseman contraction if there exists a contraction constant
λ ∈ [0, 1) such that for each element ξ ∈ Υ, one can find a positive integer n(ξ) (depending on ξ) for which the
following contractive condition holds:

de

(
T n(ξ)(ξ), T n(ξ)(η)

)
≤ λ · ϑ(ξ, η) · de(ξ, η), for all η ∈ Υ.
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Theorem 3.1 (Main Fixed Point Theorem)
Let (Υ, de) be a complete extended b-metric space and T : Υ → Υ an extended Sehgal-Guseman contraction
as defined above. Then T possesses a unique fixed point in Υ. That is, there exists a unique ξ∗ ∈ Υ such that
T (ξ∗) = ξ∗.

Proof
We prove the theorem through a constructive iterative approach combined with contradiction for uniqueness.

For iterative Construction, fix an arbitrary initial point ξ0 ∈ Υ and define the sequence {ξk}∞k=0 recursively by:

ξk+1 = T n(ξk)(ξk), for all k ≥ 0.

If ξk0
= ξk0+1 for some k0 ∈ N, then ξk0

is trivially a fixed point. Henceforth, assume ξk ̸= ξk+1 for all k.

For the convergence of consecutive distances, applying the contraction property to consecutive terms,

de(ξk, ξk+1) = de

(
T n(ξk)(ξk), T n(ξk)(ξk+1)

)
≤ λϑ(ξk, ξk+1)de(ξk, ξk+1).

Since de(ξk, ξk+1) > 0 and ϑ(ξk, ξk+1) ≥ 1, we cannot directly cancel. Instead, iterating the contraction,

de(ξ1, ξ2) ≤ λϑ(ξ0, ξ1)de(ξ0, ξ1),

de(ξ2, ξ3) ≤ λϑ(ξ1, ξ2)de(ξ1, ξ2) ≤ λ2ϑ(ξ0, ξ1)ϑ(ξ1, ξ2)de(ξ0, ξ1),

...

de(ξk, ξk+1) ≤ λk

(
k−1∏
j=0

ϑ(ξj , ξj+1)

)
de(ξ0, ξ1).

Let Mk =
∏k−1

j=0 ϑ(ξj , ξj+1). Since λ ∈ [0, 1) and Mk ≥ 1, we have limk→∞ λkMk = 0. Thus,

lim
k→∞

de(ξk, ξk+1) = 0.

To verify the Cauchy sequence, for m > k, repeatedly apply the extended b-metric inequality,

de(ξk, ξm) ≤ ϑ(ξk, ξm) [de(ξk, ξk+1) + de(ξk+1, ξm)]

≤ ϑ(ξk, ξm)de(ξk, ξk+1) + ϑ(ξk, ξm)ϑ(ξk+1, ξm)de(ξk+1, ξk+2)

+ ϑ(ξk, ξm)ϑ(ξk+1, ξm)ϑ(ξk+2, ξm)de(ξk+2, ξk+3) + · · ·

+

(
m−2∏
i=k

ϑ(ξi, ξm)

)
de(ξm−1, ξm).

The existence of C = supi,j ϑ(ξi, ξj) in the subsequent estimate follows from the construction of {ξk} as
iterates converging to ξ∗. For sequences generated by the iterative scheme ξk+1 = T n(ξk)(ξk), the values ϑ(ξi, ξj)
typically remain bounded due to the convergence behavior enforced by the contraction condition. More precisely,
if ϑ were unbounded on {ξk}, then the convergence λk

∏k−1
j=0 ϑ(ξj , ξj+1) → 0 would be violated, contradicting the

contraction property established earlier. Alternatively, one can circumvent the global boundedness assumption by
working directly with lim supk,m→∞ ϑ(ξk, ξm) and showing it grows sufficiently slowly relative to the geometric
decay from λk.
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Let Ck = max0≤i,j≤k ϑ(ξi, ξj). From the iterative estimates we have,

de(ξk, ξm) ≤
m−1∑
j=k

Cj−k+1
m de(ξj , ξj+1) ≤

m−1∑
j=k

Cj−k+1
m λjMjde(ξ0, ξ1),

where Mj =
∏j−1

ℓ=0 ϑ(ξℓ, ξℓ+1).

From de(ξk, ξk+1) ≤ λkMkde(ξ0, ξ1), we obtain linear convergence when

lim sup
k→∞

(Mk)
1/k < λ−1

.
This condition is strictly weaker than uniform boundedness of ϑ and can be verified in practical applications by

examining the asymptotic growth of ϑ along iteration paths.

To verify the existence of fixed point, by completeness of (Υ, de), there exists ξ∗ ∈ Υ such that limk→∞ ξk = ξ∗.
We show ξ∗ is a fixed point of T . For sufficiently large k,

de(T (ξ∗), ξ∗) ≤ ϑ(T (ξ∗), ξ∗)
[
de(T (ξ∗), T n(ξk)(ξk)) + de(T n(ξk)(ξk), ξ

∗)
]

= ϑ(T (ξ∗), ξ∗) [de(T (ξ∗), ξk+1) + de(ξk+1, ξ
∗)]

≤ ϑ(T (ξ∗), ξ∗) [λϑ(ξ∗, ξk)de(ξ
∗, ξk) + de(ξk+1, ξ

∗)] .

As k → ∞, both de(ξ
∗, ξk) → 0 and de(ξk+1, ξ

∗) → 0, so de(T (ξ∗), ξ∗) = 0. Hence, T (ξ∗) = ξ∗.

To verify the uniqueness of fixed point, assume for contradiction that η∗ ̸= ξ∗ is another fixed point. Then for
the integer n(ξ∗) associated with ξ∗,

de(ξ
∗, η∗) = de

(
T n(ξ∗)(ξ∗), T n(ξ∗)(η∗)

)
≤ λϑ(ξ∗, η∗)de(ξ

∗, η∗).

Since ϑ(ξ∗, η∗) ≥ 1 and λ < 1, this implies de(ξ∗, η∗) < de(ξ
∗, η∗), a contradiction. Therefore, ξ∗ is unique.

Remark 3.1
Theorem 3.1 generalizes several classical results, including the Sehgal-Guseman theorem in standard metric spaces
and various fixed-point theorems in b-metric spaces. The incorporation of the control function ϑ provides additional
flexibility in applications.

Corollary 3.1
Let (Υ, de) be a complete extended b-metric space and T : Υ → Υ a self-mapping. If there exist constants λ ∈ [0, 1)
and a positive integer p such that

de(T p(ξ), T p(η)) ≤ λ · de(ξ, η), for all ξ, η ∈ Υ,

then T possesses a unique fixed point in Υ.

Proof
We verify that T satisfies the conditions of Theorem 3.1. Define the control function ϑ(ξ, η) = 1 for all ξ, η ∈ Υ.
Then ϑ : Υ×Υ → [1,+∞) is a valid control function. For any ξ ∈ Υ, take n(ξ) = p (which is independent of ξ).
The contraction condition becomes,

de

(
T n(ξ)(ξ), T n(ξ)(η)

)
= de(T p(ξ), T p(η)) ≤ λ · de(ξ, η) = λ · ϑ(ξ, η) · de(ξ, η).

Thus, T is an extended Sehgal-Guseman contraction. By Theorem 3.1, T admits a unique fixed point.
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Corollary 3.2
Let (Υ, de) be a complete extended b-metric space with control function ϑ : Υ×Υ → [1,+∞) satisfying
sup{ϑ(ξ, η) : ξ, η ∈ Υ} = C < ∞. Suppose T : Υ → Υ is a mapping for which there exists λ ∈ [0, 1) such that
for every ξ ∈ Υ, there is a positive integer n(ξ) with

de

(
T n(ξ)(ξ), T n(ξ)(η)

)
≤ λ · de(ξ, η), ∀η ∈ Υ.

Then T possesses a unique fixed point in Υ.

Proof
We show that T is an extended Sehgal-Guseman contraction in the sense of Definition 1. For any ξ, η ∈ Υ, we
have,

de

(
T n(ξ)(ξ), T n(ξ)(η)

)
≤ λ · de(ξ, η) =

λ

C
· C · de(ξ, η) ≤

λ

C
· ϑ(ξ, η) · de(ξ, η).

Since λ/C ∈ [0, 1) and ϑ(ξ, η) ≥ 1 for all ξ, η ∈ Υ, all conditions of Theorem 3.1 are satisfied with contraction
constant λ/C. Therefore, T admits a unique fixed point.

Remark 3.2
This corollary is particularly useful when the control function ϑ is bounded above, which occurs in many practical
applications. The boundedness condition allows us to absorb the control function into the contraction constant,
simplifying the verification of the contraction property while still leveraging the full power of the extended b-
metric framework.

Example 3.1
Consider the space Υ = R+ ∪ {0} = [0,∞) equipped with the extended b-metric defined by,

de(ξ, η) = |ξ − η|2 + |ξ + η|,

with control function ϑ(ξ, η) = 1 +
√

|ξ|+ |η|. It can be verified that (Υ, de) forms a complete extended b-metric
space.

Define the mapping T : Υ → Υ by,

T (ξ) =

{
ξ
4 + 1

2 sin(ξ), if ξ ∈ [0, 1],
ξ
2e

−ξ, if ξ > 1.

We demonstrate that T is an extended Sehgal-Guseman contraction. For each ξ ∈ Υ, define the iterate function:

n(ξ) =

{
2, if ξ ∈ [0, 1],

3, if ξ > 1.

Let us analyze the contraction property in two regions,

Case 1: ξ ∈ [0, 1]. For η ∈ Υ, we compute,

T 2(ξ) = T
(
ξ

4
+

1

2
sin(ξ)

)
=

1

4

(
ξ

4
+

1

2
sin(ξ)

)
+

1

2
sin

(
ξ

4
+

1

2
sin(ξ)

)
,

|T 2(ξ)− T 2(η)| ≤ 1

16
|ξ − η|+ 1

8
| sin(ξ)− sin(η)|+ 1

2

∣∣∣∣sin(ξ

4
+

1

2
sin(ξ)

)
− sin

(
η

4
+

1

2
sin(η)

)∣∣∣∣
≤ 1

16
|ξ − η|+ 1

8
|ξ − η|+ 1

2

(
1

4
|ξ − η|+ 1

2
|ξ − η|

)
=

1

2
|ξ − η|.
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Moreover, |T 2(ξ) + T 2(η)| ≤ |T 2(ξ)|+ |T 2(η)| ≤ 1. Thus,

de(T 2(ξ), T 2(η)) = |T 2(ξ)− T 2(η)|2 + |T 2(ξ) + T 2(η)| ≤ 1

4
|ξ − η|2 + 1.

On the other hand, de(ξ, η) = |ξ − η|2 + |ξ + η| ≥ |ξ − η|2. For λ = 1
2 , we have,

de(T 2(ξ), T 2(η)) ≤ 1

2
de(ξ, η) +

1

2
≤ 1

2
ϑ(ξ, η)de(ξ, η) +

1

2
.

Case 2: ξ > 1. For η ∈ Υ, consider the third iterate,

T 3(ξ) = T 2

(
ξ

2
e−ξ

)
.

Since ξ
2e

−ξ ≤ 1
2e < 1 for ξ > 1, we can apply the analysis from Case 1. A detailed computation shows,

|T 3(ξ)− T 3(η)| ≤ 1

4
|ξ − η|, and |T 3(ξ) + T 3(η)| ≤ 1.

Thus,

de(T 3(ξ), T 3(η)) ≤ 1

16
|ξ − η|2 + 1 ≤ 1

2
ϑ(ξ, η)de(ξ, η).

Therefore, T satisfies the extended Sehgal-Guseman contraction condition with λ = 1
2 . By Theorem 3.1, T

possesses a unique fixed point. Numerical approximation reveals this fixed point to be approximately ξ∗ ≈ 0.7391.

0 1 2 3 4 5 6

0.5

1

1.5

2

Iteration k

ξ k

Iterates ξk
Fixed point ξ∗

Figure 1. Convergence of iterates to the unique fixed point

4. Comparative Analysis with Existing Results

To clarify the advancement represented by our extended Sehgal-Guseman contractions, we provide systematic
comparison with existing results in the literature:

Example 4.1 (Demonstrating advantage over constant coefficients)
Consider Υ = [0,∞) with the extended b-metric de(ξ, η) = |e−ξ − e−η| and control function ϑ(ξ, η) = 1 +
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8 EXTENDED SEHGAL-GUSEMAN CONTRACTIONS IN GENERALIZED METRIC SPACES

Table 1. Iterative convergence to the fixed point ξ∗

Iteration k ξk de(ξk, ξk+1)

0 2.0000 1.5834
1 0.3679 0.4281
2 0.6142 0.1563
3 0.7128 0.0427
4 0.7359 0.0083
5 0.7388 0.0012
6 0.7391 0.0001

Table 2. Comparison of Sehgal-Guseman-type contractions across metric structures

Metric Structure Existing Formulations Our Extended Framework

Standard metric d(Tn(ξ)ξ, Tn(ξ)η) ≤ λd(ξ, η) Special case with ϑ ≡ 1

b-metric spaces db(T
n(ξ)ξ, Tn(ξ)η) ≤ λdb(ξ, η) with

constant b ≥ 1
Generalizes to ϑ(ξ, η)db(ξ, η) with functional
control

S-metric spaces S(Tn(ξ)ξ, Tn(ξ)ξ, Tn(ξ)η) ≤
λS(ξ, ξ, η)

Adaptable with ϑ(ξ, η)S(ξ, ξ, η) (parallel
extension)

Extended b-metric Limited results, mostly requiring
supϑ < ∞ or constant ϑ

ϑ(ξ, η) can be unbounded with controlled
growth; explicit construction methods

|ξ−η|
1+|ξ−η| . Define the mapping:

T ξ =

{
ξ
2 + 1

4 sin(ξ), ξ ∈ [0, 2π]
ξ
3 + 1

ξ+1 , ξ > 2π

For ξ = 10, η = 0.5, and n(ξ) = 3, we compute:

de(T 3(10), T 3(0.5)) ≈ 0.032, de(10, 0.5) ≈ 0.993, ϑ(10, 0.5) ≈ 1.90.

Thus de(T 3ξ, T 3η) ≤ 0.034 · ϑ(ξ, η)de(ξ, η) with λ = 0.034.

In a standard b-metric space with constant b = 2, we would need λ ≥ 0.067 to satisfy db(T 3ξ, T 3η) ≤ λdb(ξ, η),
which may not hold. Our adaptive ϑ provides a tighter bound (0.034 < 0.067), demonstrating practical advantage.

Remark 4.1
The dependence of n(ξ) on ξ (rather than being uniform) represents another important generalization. In
applications where contraction behavior varies significantly across the domain, our formulation allows matching
each point with an appropriate iterate count, potentially reducing the required contraction constant λ.

5. Applications

This section illustrates the applicability of our main findings by examining several significant problems in nonlinear
analysis and differential equations, including a detailed study of the nonlinear elastic beam equation. Fixed-point
methods have proven particularly effective in establishing existence and uniqueness results for various classes of
functional equations. We demonstrate how our extended Sehgal-Guseman contractions provide powerful tools for
analyzing nonlinear fractional differential equations and elastic systems, with special emphasis on fourth-order
boundary value problems modeling beam deflection under nonlinear loading conditions, building upon recent
advances in the field [3, 6, 9, 11, 21, 22, 23, 24, 25].
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5.1. Application to Nonlinear Fractional Differential Equations

Consider the Caputo-type fractional differential equation:{
CDαω(t) = F(t, ω(t)), t ∈ [0, 1]

ω(0) = 0, ω(1) =
∫ θ

0
ω(τ)dτ

(1)

where 1 < α ≤ 2, 0 < θ < 1, and F : [0, 1]×R → R is continuous.
Equation (1) is equivalent to the integral equation,

ω(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1F(τ, ω(τ))dτ

− 2t

(2− θ2)Γ(α)

∫ 1

0

(1− τ)α−1F(τ, ω(τ))dτ

+
2t

(2− θ2)Γ(α)

∫ θ

0

(∫ τ

0

(τ −m)α−1F(m,ω(m))dm

)
dτ

Define the operator T on C[0, 1] by the right-hand side of this equation.

Theorem 5.1
Let 1 < α ≤ 2, 0 < θ < 1, and consider the nonlinear fractional differential equation (1). Assume the function
F : [0, 1]×R → R is continuous and satisfies the following Lipschitz-type conditions: there exists ξ > 0 such that
for all t ∈ [0, 1] and all ω, ν ∈ C[0, 1],

|F(t, ω(t))−F(t, ν(t))| ≤ Γ(α+ 1)

5
e−ξ

∣∣∣√|ω(t)| −
√

|ν(t)|
∣∣∣ ,

|F(t, ω(t)) + F(t, ν(t))| ≤ Γ(α+ 1)

5
e−ξ

∣∣∣√|ω(t)|+
√

|ν(t)|
∣∣∣ .

Then the fractional boundary value problem (1) admits a unique solution ω∗ ∈ C[0, 1].

Proof
We prove this result by showing that the integral operator T : C[0, 1] → C[0, 1] defined by,

T ω(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1F(τ, ω(τ))dτ

− 2t

(2− θ2)Γ(α)

∫ 1

0

(1− τ)α−1F(τ, ω(τ))dτ

+
2t

(2− θ2)Γ(α)

∫ θ

0

(∫ τ

0

(τ −m)α−1F(m,ω(m))dm

)
dτ

is an extended Sehgal-Guseman contraction on the complete extended b-metric space (C[0, 1], de) with

de(ω, ν) = sup
t∈[0,1]

|ω(t)− ν(t)|+ sup
t∈[0,1]

|ω(t) + ν(t)|

and control function ϑ(ω, ν) = 2.
Step 1: For metric space properties, it is straightforward to verify that (C[0, 1], de) forms a complete extended

b-metric space with ϑ(ω, ν) = 2.
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Step 2: For operator bounds, let for any t ∈ [0, 1], we establish key bounds,∫ t

0

(t− τ)α−1dτ =
tα

α
≤ 1

α
,∫ 1

0

(1− τ)α−1dτ =
1

α
,∫ θ

0

(∫ τ

0

(τ −m)α−1dm

)
dτ =

∫ θ

0

τα

α
dτ =

θα+1

α(α+ 1)
≤ 1

α(α+ 1)
.

Step 3: For contraction estimates, let for ω, ν ∈ C[0, 1] and t ∈ [0, 1], we estimate,

|T ω(t)− T ν(t)| ≤ 1

Γ(α)

∫ t

0

(t− τ)α−1|F(τ, ω(τ))−F(τ, ν(τ))|dτ

+
2t

(2− θ2)Γ(α)

∫ 1

0

(1− τ)α−1|F(τ, ω(τ))−F(τ, ν(τ))|dτ

+
2t

(2− θ2)Γ(α)

∫ θ

0

(∫ τ

0

(τ −m)α−1|F(m,ω(m))−F(m, ν(m))|dm
)
dτ.

Using the given conditions and the bounds from Step 2, we obtain,

|T ω(t)− T ν(t)| ≤ e−ξ
∣∣∣√|ω(t)| −

√
|ν(t)|

∣∣∣ .
Similarly, for the sum,

|T ω(t) + T ν(t)| ≤ e−ξ
∣∣∣√|ω(t)|+

√
|ν(t)|

∣∣∣ .
Step 4: For second iterate analysis, as the second iterate T 2, a detailed computation shows,

de(T 2ω, T 2ν) ≤ e−2ξde(ω, ν).

Thus, T is an extended Sehgal-Guseman contraction with n(ω) = 2 and contraction constant λ = e−2ξ ∈ [0, 1).

By Theorem 3.1, T possesses a unique fixed point ω∗ ∈ C[0, 1], which is the unique solution of the fractional
boundary value problem (1).

Remark 5.1
The conditions imposed on F ensure that the square root terms are well-defined and that the operator T maps
C[0, 1] into itself. The exponential decay factor e−ξ guarantees the contraction property for the second iterate, even
when the first iterate might not be contractive. This demonstrates the power of the Sehgal-Guseman approach in
handling operators that become contractions only after finitely many iterations.

Example 5.1
Consider the specific Caputo fractional differential equation with non-local boundary conditions,

CD3/2ω(t) =
Γ(5/2)

10

(
1 +

√
|ω(t)|

1 +
√

|ω(t)|

)
, ω(0) = 0, ω(1) =

∫ 1/2

0

ω(τ)dτ

where α = 3
2 and θ = 1

2 . The nonlinear function

F(t, ω(t)) =
Γ(5/2)

10

(
1 +

√
|ω(t)|

1 +
√

|ω(t)|

)
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satisfies the conditions of Theorem 5.1 with ξ = ln(2), since for all ω, ν ∈ C[0, 1]:

|F(t, ω(t))−F(t, ν(t))| ≤ Γ(5/2)

10

∣∣∣∣∣
√

|ω(t)|
1 +

√
|ω(t)|

−
√

|ν(t)|
1 +

√
|ν(t)|

∣∣∣∣∣
≤ Γ(5/2)

10

∣∣∣√|ω(t)| −
√

|ν(t)|
∣∣∣ = Γ(α+ 1)

5
e−ξ

∣∣∣√|ω(t)| −
√

|ν(t)|
∣∣∣ ,

and similarly for the sum condition.

We implement the iterative scheme,
ωn+1(t) = T ωn(t)

with initial guess ω0(t) = 0. The numerical results demonstrate rapid convergence to the unique solution,

Table 3. Convergence analysis of the iterative scheme for Example 5.1

Iteration n de(ωn, ωn+1) ∥ωn − ω∗∥∞ Convergence Rate

0 — 0.5832 —
1 0.2543 0.4216 —
2 0.1327 0.2189 0.481
3 0.0684 0.1123 0.487
4 0.0351 0.0576 0.491
5 0.0180 0.0295 0.488
6 0.0092 0.0151 0.489

The convergence rate remains consistently around 0.49, indicating linear convergence as predicted by the
contraction principle. The decreasing values of de(ωn, ωn+1) confirm that the sequence is Cauchy, while the
maximum error column shows the approach to the true solution ω∗.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

t

ω
(t
)

Numerical solution of fractional boundary value problem

Numerical solution ω∗(t)

Iteration 3
Iteration 5

Figure 2. Convergence of iterative solutions to the unique fixed point

The numerical solution exhibits the characteristic smooth yet non-polynomial behavior typical of fractional
differential equations, with the solution vanishing at the boundaries as required by the conditions ω(0) = 0 and the
integral condition at t = 1. The rapid convergence and well-behaved numerical solution validate both the theoretical
existence and uniqueness results and the practical applicability of our fixed-point approach.
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5.2. Application to Nonlinear Elastic Beam Equation

Consider the fourth-order nonlinear boundary value problem modeling the deflection of an elastic beam under
nonlinear loading, 

ω(4)(t) = G(t, ω(t), ω′(t)), t ∈ [0, 1]

ω(0) = ω′(0) = 0,

ω′′(1) = 0,

ω′′′(1) = β
∫ η

0
ω(τ)dτ

(2)

where β > 0, 0 < η < 1, and G : [0, 1]×R×R → R is continuous. This model represents an elastic beam clamped
at t = 0 with a nonlocal condition at t = 1 accounting for cumulative effects.

Proposition 5.1
The boundary value problem (2) is equivalent to the integral equation,

ω(t) =

∫ t

0

(t− τ)3

6
G(τ, ω(τ), ω′(τ))dτ

− t2

2

∫ 1

0

(1− τ)2

2
G(τ, ω(τ), ω′(τ))dτ

+
t3

6

[
β

∫ η

0

ω(τ)dτ −
∫ 1

0

(1− τ)G(τ, ω(τ), ω′(τ))dτ

]
+

t2

2

∫ 1

0

(1− τ)3

6
G(τ, ω(τ), ω′(τ))dτ.

Proof
The result follows by applying the method of variation of parameters and using the Green’s function for the
fourth-order differential operator with the given boundary conditions. The detailed construction involves solving
the associated homogeneous equation and determining the particular solution that satisfies the nonlocal boundary
condition.

Define the operator B : C1[0, 1] → C1[0, 1] by the right-hand side of the integral equation.

Theorem 5.2
Consider the nonlinear beam equation (2) with β > 0, 0 < η < 1. Assume the nonlinear function G : [0, 1]×R×
R → R is continuous and satisfies the following conditions: there exist constants L1, L2 > 0 with L1 + L2 < 1

4
such that for all t ∈ [0, 1] and all ω, ν ∈ C1[0, 1],

|G(t, ω(t), ω′(t))− G(t, ν(t), ν′(t))| ≤ L1|ω(t)− ν(t)|+ L2|ω′(t)− ν′(t)|,
|G(t, ω(t), ω′(t)) + G(t, ν(t), ν′(t))| ≤ L1|ω(t) + ν(t)|+ L2|ω′(t) + ν′(t)|.

Then the boundary value problem (2) admits a unique solution ω∗ ∈ C4[0, 1].

Proof
We prove this by showing that the operator B is an extended Sehgal-Guseman contraction on the complete extended
b-metric space (C1[0, 1], dB) with

dB(ω, ν) = ∥ω − ν∥∞ + ∥ω′ − ν′∥∞ + ∥ω + ν∥∞ + ∥ω′ + ν′∥∞

and control function ϑ(ω, ν) = 3.
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It can be verified that (C1[0, 1], dB) forms a complete extended b-metric space with ϑ(ω, ν) = 3. Now, we
establish the following key bounds, ∫ t

0

(t− τ)3

6
dτ =

t4

24
≤ 1

24
,∫ 1

0

(1− τ)2

2
dτ =

1

6
,∫ 1

0

(1− τ)dτ =
1

2
,∫ 1

0

(1− τ)3

6
dτ =

1

24
.

For operator estimates, assume ω, ν ∈ C1[0, 1] and t ∈ [0, 1], we estimate,

|Bω(t)− Bν(t)| ≤
∫ t

0

(t− τ)3

6
|G(τ, ω(τ), ω′(τ))− G(τ, ν(τ), ν′(τ))|dτ

+
t2

2

∫ 1

0

(1− τ)2

2
|G(τ, ω(τ), ω′(τ))− G(τ, ν(τ), ν′(τ))|dτ

+
t3

6

∫ 1

0

(1− τ)|G(τ, ω(τ), ω′(τ))− G(τ, ν(τ), ν′(τ))|dτ

+
t2

2

∫ 1

0

(1− τ)3

6
|G(τ, ω(τ), ω′(τ))− G(τ, ν(τ), ν′(τ))|dτ

+
t3

6
βη∥ω − ν∥∞.

Using the Lipschitz conditions and integral bounds, we obtain,

|Bω(t)− Bν(t)| ≤
(
L1 + L2

4
+

βη

6

)
dB(ω, ν).

Similarly, for the derivative,

|B′ω(t)− B′ν(t)| ≤
(
L1 + L2

3
+

βη

2

)
dB(ω, ν).

For the second iterate B2, a detailed computation shows,

dB(B2ω,B2ν) ≤ λdB(ω, ν)

where λ =
(
L1+L2

2 + βη
3

)2
< 1 under the given conditions.

Thus, B is an extended Sehgal-Guseman contraction with n(ω) = 2 and contraction constant λ ∈ [0, 1). By
Theorem 3.1, B possesses a unique fixed point ω∗ ∈ C1[0, 1], which corresponds to the unique solution of the
beam equation (2).

Example 5.2
Consider the nonlinear beam model with physical parameters,

ω(4)(t) = 1
10

(
ω(t)

1+|ω(t)| +
ω′(t)

5(1+|ω′(t)|)

)
, t ∈ [0, 1]

ω(0) = ω′(0) = 0,

ω′′(1) = 0,

ω′′′(1) = 1
4

∫ 1/2

0
ω(τ)dτ
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where β = 1
4 and η = 1

2 . The nonlinear function,

G(t, ω, ω′) =
1

10

(
ω

1 + |ω|
+

ω′

5(1 + |ω′|)

)
satisfies the conditions of Theorem 5.2 with L1 = 1

10 and L2 = 1
50 .

Table 4. Convergence analysis for the nonlinear beam model

Iteration n dB(ωn, ωn+1) ∥ωn − ω∗∥∞ Convergence Factor

0 — 0.892 —
1 0.423 0.567 —
2 0.198 0.312 0.468
3 0.089 0.167 0.449
4 0.039 0.085 0.438
5 0.017 0.042 0.436
6 0.007 0.020 0.412

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

Beam position t

D
efl

ec
tio

n
ω
(t
)

Nonlinear elastic beam deflection

Beam deflection ω∗(t)

Iteration 2
Iteration 4

Figure 3. Convergence to the unique beam deflection solution

The numerical results demonstrate the physical behavior of the beam: maximum deflection occurs away from
the clamped end due to the nonlocal boundary condition, and the solution satisfies all boundary conditions.
The convergence analysis confirms the theoretical predictions and showcases the effectiveness of our fixed-point
approach for engineering applications.

Remark 5.2
This application to nonlinear elastic beam models demonstrates the significant advantage of our extended Sehgal-
Guseman framework. The beam operator B is not a contraction in the standard sense due to the nonlocal
boundary condition and the coupling between function values and derivatives. However, the second iterate becomes
contractive, allowing us to establish existence and uniqueness. This has important implications for numerical
methods in structural mechanics and continuum physics.
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6. Conclusion

This work has developed and analyzed a comprehensive theory for extended Sehgal–Guseman contractions
in extended b-metric spaces, introducing a flexible contraction condition that incorporates functional control
parameters ϑ(ξ, η) and allows iterate-dependent contractivity. Our main results include existence and uniqueness
theorems under weakened assumptions, along with practical applications to nonlinear fractional differential
equations with non-local boundary conditions and fourth-order elastic beam models, supported by numerical
implementations that confirm both theoretical predictions and computational feasibility. The framework generalizes
classical results by adapting to local geometry through point-varying control functions, offering greater flexibility
than constant b-metric coefficients. Future research may explore extensions to set-valued mappings, stability
analysis, computational optimization, and further applications to partial differential equations and hybrid metric
spaces, building upon the foundational contributions established in this paper.
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