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Abstract This paper presents an innovative algorithm, termed the Fractional Optimization Algorithm (FOA), which
utilizes the properties of fractional functions to enhance the integration of photovoltaic (PV) systems and distribution
static compensators (D-STATCOMs) into distribution systems (DSs). The FOA employs a discrete-continuous encoding
approach to determine the optimal placement and sizing of PV and D-STATCOM devices. A master-slave optimization
framework is adopted, where the FOA operates in the master stage, and the successive approximations method is used for
power flow analysis in the slave stage. The algorithm’s efficacy is tested on 33- and 69-bus grids, demonstrating significant
cost reductions over traditional optimization approaches such as the Vortex Search Algorithm (VSA) and the Sine-Cosine
Algorithm (SCA). Furthermore, the FOA achieves superior computational efficiency, underscoring its promise as a robust
optimization strategy.
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1. Introduction

1.1. General context

Climate change, mainly driven by greenhouse gas emissions and along with the global increase in electricity
demand, have fostered the emergence and development of distributed generation (DG) systems, based on both
conventional energy sources and renewable energy resources (RES) [1], within DSs. One of the key differences
between DG and conventional generation lies in the location of generation units. DG places small-scale generators
close to the consumption points [2], whereas conventional generation relies on large power plants located far from
end users. However, it is essential to optimize both the placement and sizing of DG units, as this enhances the
technical and economic performance of the system [3].

In this context, RES have become a prominent alternative for developing environmentally friendly power
systems, contributing to sustainability, reducing greenhouse gas emissions and enabling the energy transition [4],
all while maintaining technical and economic efficiency. Among the available technologies, solar energy stands out
due to its abundant availability and decreasing implementation costs [5]. Furthermore, to enhance the advantages of
PV systems, static reactive power compensators, commonly known as D-STATCOMs, are often integrated. These
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devices provide a dynamic response to reactive power variations, improve voltage profiles, and reduce power losses,
ultimately leading to lower electricity generation costs [6].

1.2. Motivation

The integration of PV systems and D-STATCOMs into DSs offers multiple economic, technical, and environmental
benefits, which has attracted significant interest from both academia and industry [7]. For example, their
coordinated deployment can lead to substantial reductions in annual investment and operational costs [8] as
well as improvements in voltage profiles and power losses [9] which inevitably lead into environmental benefits.
As a result, it is crucial to promote research initiatives focused on the efficient implementation of DG, aiming
to maximize its benefits while minimizing negative impacts for all stakeholders involved in the generation,
transmission, commercialization, and consumption of electrical energy.

Given these considerations, the integration of DG must be conducted in an optimal manner to avoid unintended
adverse effects. For this reason, over the past three decades, the optimal siting of DG units has become a prominent
topic in the scientific community [10]. In fact, various methods have been developed to address this issue with
metaheuristic algorithms standing out for their ability to provide high quality solutions (near-optimal) to complex
optimization problems [11]. Therefore, this research adopts a fractional optimization algorithm, which is classified
as a metaheuristic technique, to determine the optimal placement and sizing of PV systems and D-STATCOMs,
with the objective of reducing electricity purchases at the medium voltage substation.

1.3. Literature review

Several studies in the specialized literature have addressed the implementation of DG in power systems. For
example, [12] presents an overview of the different DG types, their impacts, challenges and potential solutions
for integration into DSs. This work focuses on two key challenges encountered in DG deployment: protection
schemes and voltage control mechanisms. Similarly, [13] highlights the importance of DG planning from multiple
perspectives, including the reduction of active and reactive power losses, enhancement of system reliability,
improvement of voltage profiles, and the environmental benefits associated with renewable energy integration.
Their study also outlines the current state of DG planning considering these factors.

In addition to case-specific studies, several review papers have analyzed the role of optimization algorithms in
DG integration. [14] reviews various metaheuristic optimization techniques applied to the Optimal Reactive Power
Dispatch problem in systems that incorporate renewable-based DG units. [15] presents a comprehensive analysis
comparing renewable energy integration with conventional sources, while also surveying existing approaches for
the optimal siting and sizing of DG units within electric power systems. [2] provides another review that categorizes
the main objectives, constraints and optimization strategies considered in the optimal allocation of DG units,
ultimately concluding that hybrid algorithms represent the most suitable option for solving this problem.

In terms of practical implementation of distributed energy resources (DERs) within DG frameworks, various
metaheuristic techniques have been explored. For example, [16] applies the Fractional Order Kepler Optimization
Algorithm to improve power efficiency and system performance, comparing its results with other optimization
methods in 33- and 69-bus systems. [17] proposes the multi-objective Harris Hawks Optimization algorithm to
minimize power losses and enhance voltage profiles in 69- and 118-bus networks. In the same way, [18] employs
the Walrus optimization algorithm, which it is also metaheuristic algorithm, within a multi-objective framework to
simultaneously reduce power losses, improve voltage profiles and ensure voltage stability, subject to operational
constraints.

Furthermore, the optimal deployment of PV generators and D-STATCOMs has been examined as a means
to reduce both operational and investment costs in DSs. For instance, [19] proposes a multiverse optimization
algorithm combined with a matrix-based power flow solver to minimize annual investment and operational costs
in 33- and 69-bus test feeders. Their findings indicate that proper sizing and placement of PVs and D-STATCOMs
not only reduce total system costs but also lead to lower computational times when implemented in a programming
environment.
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1.4. Contributions and scope

Taking into account the literature review that has been given in this article, this research develops the
implementation of a novel optimization algorithm for the location and sizing of PVs and D-STATCOMs in DS.
For this, a mathematical model that allows adopting a master-slave approach is applied. At first, in the master
stage, the FOA is used as the main and only solution method employing a discrete-continuous coding strategy.
The discrete strategy results in the location of PVs and D-STATCOMs, while the continuous one results in their
sizing. In the slave stage, the successive approximations method is used to find the feasibility of possible solutions,
obeying the regulated electrical values and accurately determine the power injection into the system. The numerical
results will make it possible to compare the superiority of the FOA with other algorithms such as the SCA and the
VSA reported in [20].

The scope of this article covers aspects such as the development of a mathematical model that takes into account
the operational constraints of the electrical system by implementing real characteristics of the DS, obtained from
the corresponding utility. Actual values of the daily demand for real and reactive power at the substation terminals
are also available. Furthermore, approximate solar generation profiles were developed in the region where the
medium-voltage feeder is located. For a reasonable comparison, parameters identical to those presented in [20] are
used.

1.5. Document structure

The structure of this article is described as follows. In section 2 the optimization model developed is introduced for
optimally placement and sizing of PVs and D-STATCOMs in DS. This model employs a mixed-integer nonlinear
programming (MINLP) approach which minimizes the annual energy purchase cost over a 20-year planning
horizon. Section 3 explains the proposed solution methodology, which integrates the FOA with multi-period
optimal power flow analysis within a master-slave framework to efficiently solve the studied problem. Section
4 provides a detailed description of the test cases, focusing on the analyzed 33- and 69-bus systems, including a
parameterization of the objective functions, the network topology, and the operational constraints. In Section 5 the
computational results obtained are presented, as well as a validation of the proposed methodology and comparative
analyses against literature-reported results. Finally, Section 6 summarizes the key findings and highlights potential
avenues for future research.

2. General MINLP formulation

In this section, we present a comprehensive mathematical model for the optimal placement and sizing of PV
systems and D-STATCOMs in electrical DSs. This formulation integrates the objective function, constraints, and
auxiliary equations into a unified MINLP framework, facilitating a holistic approach to the optimization challenge.
The model expertly balances the need for precision in determining system components with the computational
efficiency required for practical application in diverse grid scenarios.

2.1. Objective Function

The objective of the optimization model is to minimize the total energy purchasing costs, which also include
investment, and maintenance expenses. This objective function is defined as follows [20]:

min zcost = z1 + z2, (1)

where:

z1 = CkWhTfafc
∑
h∈H

∑
i∈N

pcgi,h∆h, (2)

z2 = Cpvfa
∑
i∈N

ppvi + T
∑
h∈H

∑
i∈N

Cpv
O&Mppvi,h∆h+ γ

∑
i∈N

(
ω1(qi

comp)2 + ω2qi
comp + ω3

)
qi

comp. (3)
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O. D. MONTOYA-GIRALDO, J.D PULGARÍN-RIVERA, J. S. ALONSO-MEDINA. 3

where:

• z1 represents annual energy purchase costs at the substation (USD/year).
• z2 includes PV investment and O&M cost.
• CkWh is the average energy cost at the substation.
• T is the total number of days in a year.
• fa is the annualization factor that converts the initial capital costs into the equivalent annual costs.
• fc is the anticipated cumulative energy acquisition costs throughout the project period.
• pcgi,h is PV generation (kW) at the slack bus connected to node i at a specific time h.
• ∆h is the time interval used to represent operational data for a single day.
• Cpv is the installed cost per capacity unit of the photovoltaic systems (USD/kWp).
• ppvi is the total installed capacity of the PV systems.
• Cpv

O&M is the O&M cost of the PV sources.
• γ represents the capital annualization factor for reactive power compensation investments.
• H,N and T denote the sets of daily periods, network nodes, and analyzed years, respectively.
• ω1, ω2 and ω3 denote the cubic, quadratic, and linear cost coefficients for the installation of a D-STATCOM

with nominal capacity qcomp
i at bus i.

2.2. Constraints

The constraints guarantee system feasibility and reliable operation. They are classified as follows:

2.2.1. Power flow equations:

pcgi,h + ppvi,h − P d
i,h = vi,h

∑
j∈N

Yijvj,h cos(θi,h − θj,h − φij), (4)

qcgi,h + qcomp
i,h −Qd

i,h = vi,h
∑
j∈N

Yijvj,h sin(θi,h − θj,h − φij). (5)

2.2.2. Power generation bounds:

P cg,min
i ≤ pcgi,h ≤ P cg,max

i , (6)

Qcg,min
i ≤ qcgi,h ≤ Qcg,max

i , (7)

xpv
i P pv,min

i,h ≤ ppvi ≤ xpv
i P pv,max

i,h , (8)

ppvi,h = Gpv
i,hp

pv
i . (9)

2.2.3. Voltage regulation:

vmin ≤ vi,h ≤ vmax. (10)

2.2.4. Device installation constraints: ∑
i∈N

xpv
i ≤ Nava

pv , (11)

xcomp
i Qcomp,min

i ≤ qcomp
i ≤ xcomp

i Qcomp,max
i,h , (12)

qcomp
i,h = qcomp

i , (13)∑
i∈N

xcomp
i ≤ Nava

comp. (14)
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2.2.5. Annualization and energy costs: The annualization factor fa converts capital costs to annual equivalents,
while fc represents the projected cumulative costs of energy purchasing over the project duration. These link capital
operational costs to the objective function z1 and z2.

fa =
ta

1− (1 + ta)−Nt
, (15)

fc =
∑
t∈T

(
1 + te
1 + ta

)t

. (16)

where

• ta represents the fixed investment return rate assumed for the network owner or operator throughout the
planning period.

• Nt denotes the project lifetime, measured in years.
• te denotes the expected annual escalation rate of energy procurement costs over the 20-year planning period.
• T contains all years in the planning period.

2.3. Model characteristics

The mathematical model integrates non-convex, convex, and binary components, which reflects the complexity of
the optimization problem. A detailed description of the model’s characteristics is presented below:

• Non-convex components: The Objective Function (1) and the Equality Constraints (4) and (5) manifest
nonlinear and non-convex properties. At first, this components arise because of the inclusion of trigonometric
functions -sine and cosine functions- the interactions among voltage variables and the cubic expressions.

• Convex components: A group of equations from the model are characterized by a lineal and convex
behavior, including the Inequality Constraints (6), (7), and (10), in addition to the Equality Constraints (9)
and (13). These constraints primarily manifest the upper and lower bounds of the decision variables.

• Binary components: The binary characteristic of the model is shown by the Inequalities (8), (11), (12), and
(14). These constraints indicate if specific actions like the installation of PVs or D-STATCOMs could be
implemented in the system. These constraints involve discrete decision variables.

As can be observed, Equations (15) and (16) aren’t included in this classification because they provide constant
parameters associated with annualization and projected energy costs for the project´s duration.

3. Solution strategy

The optimization problem described by equations (1)–(14) is inherently complex due to its nonlinear, mixed-integer
nature. To effectively address this challenge, a two-stage solution strategy is employed, comprising a master stage
and a slave stage. In the master stage, the Fractional Optimization Algorithm (FOA) is utilized to identify optimal
locations and sizes for PVs and D-STATCOMs. Subsequently, the slave stage verifies the feasibility and accuracy of
these solutions through detailed power flow analysis. This iterative process ensures that the proposed configurations
are both economically optimal and operationally reliable. The following sections elaborate on the main components
of this methodology, with particular emphasis on the power flow solution in the slave stage.

3.1. Slave stage: power flow solution

The successive approximations method is used to evaluate the results obtained from the master stage (i.e., the
FOA). This method is formulated with a complex variable representation and has the property to solve nonlinear
equality constraints associated with power balance. Solving iteratively the system of equations described by (4)

Stat., Optim. Inf. Comput. Vol. x, Month 2025



O. D. MONTOYA-GIRALDO, J.D PULGARÍN-RIVERA, J. S. ALONSO-MEDINA. 5

and (5), and assuming a fixed power injection and demand, the power flow method computes all voltage profiles-in
fact this is its primary purpose.

Equation (17) defines the iterative structure, which serves as the core of the successive approximations method
[7]. This equation reformulates the nonlinear power balance Equations (4) and (5) in matrix form as follows: :

Vt+1
d,h = −Y−1

d,d

[
diag−1

(
Vt,⋆

d,h

)
S⋆
d,h −Yd,gVg,h

]
, (17)

where:

• Vt+1
d,h is the vector containing the voltages at all the demand nodes for the period h during iteration t+ 1.

• Y−1
d,d is the inverse of the sub-matrix of the nodal admittance matrix corresponding to the demand nodes.

• S⋆
d,h represents the net complex power at demand nodes, incorporating power injections from DERs and

loads:
S⋆
d,h = Sdg

d,h + Sb
DERs,h − Sd

d,h.

• Here, Sdg
d,h refers to conventional DG, Sb

DERs,h denotes the power injected by the PVs and D-STATCOMs,
and Sd

d,h represents the demand.
• Yd,g is the rectangular sub-matrix of the admittance matrix linking the slack bus to the demand nodes.
• Vg,h is the voltage at the slack bus, which is assumed to be fixed and equal to the nominal substation voltage.

The nodal admittance matrix Ybus is constructed from Table 1 branch data: Yii =
∑

(1/Zij), Yij = −1/Zij for
each branch (i, j) with Zij = Rij + jXij . Sub-matrices: Yd,d (demand nodes 2-N), Yd,g (demand-to-slack).

There is a criterion given in Equation (18), which represents the stopping when the convergence of the successive
approximations method is satisfied. A predefined tolerance ε (set at 1× 10−10) is compared with the maximum
voltage deviation between iterations [21]:

max
h

∣∣∣Vt+1
d,h −Vt

d,h

∣∣∣ ≤ ε, ∀h ∈ H. (18)

Equation (19) is used to determine the power injected by the slack bus at every time period h, when the
iterative process appears to have converged. It occurs when the stopping criterion represented in Equation (18)
is satisfied [4]:

Sg,h = Yd,gVg,h +Yg,dVd,h, ∀h ∈ H, (19)

where Sg,h represents the complex power vector injected by the slack bus at each time period h. This final step
validates feasibility and consistency of the solution with system constraints ensuring that all electrical parameters
-power flows and voltage profiles- are aligned with the proposed solution.

3.2. Master stage: the FOA approach

The fractional optimization algorithm (i.e., the FOA) is a novel metaheuristic technique that takes its inspiration
from fractional mathematical functions. To use the distinctive characteristics of these functions, FOA enhances the
search process by efficiently balancing global exploration with local exploitation. As a math-inspired optimization
method, FOA is highly suitable for solving complex continuous optimization problems that require navigating
intricate solution spaces.

Figure 1 shows the behavior of functions in the cartesian plane, considering that both functions are fractional.
The first function is (f1(x)= 2

x2+2 ) which has a decay towards zero. This behavior enables the solution space to
have a focused exploitation. On the other hand, the second function (f2(x)= 4x

x2+4 ) offers a smooth variation around
the origin of coordinates with values ranging between 1 and -1 along y-axis. As observed, these functions present
complementary behaviors, and it is used by FOA. The FOA efficiently identifies optimal or near-optimal solutions.

The fundamental procedure of FOA consists of iterative application of fractional transformations to candidate
solutions that guide their movements or trajectories depending on the objective function and constraints. This
procedure enables FOA to adapt flexibly in various optimizations environments which promotes robust application
performance.
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3.2.1. Problem encoding and initial population As previously discussed, the decision variables of the optimization
problem are associated with the optimal placement and sizing of PVs and D-STATCOMs units in a distribution
network with 33 and 69 buses. To illustrate it, a specific example is proposed. Consider a network with 33
buses, where the formulation involves two PVs and two D-STATCOMs with maximum capacities of 1000 kW
and 700 kvar, respectively. The candidate solution vector is presented as follows:

xj =
[
25 28 3 31 736.98 918.30 505.69 618.51

]
, (20)

The candidate solution vector interpretation is presented:

i. The two PV units are located at buses 25 and 28, with nominal capacities of 736.98 kW and 918.30 kW,
respectively.

ii. The two D-STATCOMs units are located at buses 3 and 31, with nominal capacities of 505.69 kvar and
618.51 kvar, respectively.

This hybrid master-slave optimization strategy employs a maximum of three PVs and three D-STATCOMs, so
the candidate solution vector consists of three optimal placements and sizing variables for PVs and three optimal
placement and sizing variables for D-STATCOMs. In the experiments, the PV units were limited to a maximum
capacity of 2400 kW, while the D-STATCOMs were limited to 2000 kvar.

The candidate solution vector xj corresponds to the jth candidate solution at iteration p inside the population.
The population is represented by a matrix designated as Xp with dimensions ns × nv, where nv represents the
variables related to placement and sizing of the PVs and D-STATCOMs units in the network, and ns is the total
number of candidate solutions. This encoding strategy allows each candidate solution to have a unique siting and
sizing configuration, thereby facilitating the effective exploration and exploitation of the solution space throughout
the optimization process.
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Following the rule defined in Equation (21), the values of the decision variables are generated. This procedure
initializes every candidate solution xp

j for the first iteration, where (p = 0):

xj,l = xmin
l + βl

(
xmax
l − xmin

l

)
,

{
l = 1, 2, . . . , nv

j = 1, 2, . . . , ns

}
, (21)

where:

• βl is an aleatory variable extracted from a uniform distribution over the interval [0, 1], making sure that a
diverse and stochastic initialization of decision variables is made.

• xmin
l and xmax

l define the viable search space, where xmin
l represents the lower bound and xmax

l the upper
bound of the lth decision variable.

This encoding approach has the potential to promote an effective exploration and exploitation of the solution
space throughout the optimization process, as it guarantees that each decision variable in the candidate solution
remains within its predefined limits. The initialization provided by the variable βl allows the algorithm to begin
with a set of solutions, that is essential for global optimization.

3.2.2. Exploration and exploitation rules The next step after initializing the population Xp is to identify xp
best,

which denotes the best solution within it.
At an iteration p, all the candidate solutions ns in the population Xp are evaluated in the objective function to

determine the optimal solution. By the equation (22), this process determines the value that minimizes the best
solution:

xp
best =

{
xp
j | xp

j = argmin
(
Ff

(
xp
j

))
, ∀j = 1, 2, . . . , ns

}
, (22)

where Ff

(
xp
j

)
represents the fitness function value, which is associated with xp

j , and xp
j is the jth solution at

iteration p.
Constraints are enforced via feasible solution rejection in the slave stage. The successive approximations power

flow (equations (17)-(19)) validates operational feasibility V ∈ [0.95, 1.05] pu. Infeasible configurations produce
invalid slack injections Sgen, naturally yielding high fitness values and rejection by the FOA master stage. Equation
(23) shows the fitness function that is simplified to:

Ff (x) = zcost, (23)

where only feasible solutions contribute to optimization.
At the current iteration, the update rule described in Equation (24) is applied to all candidate solutions

∀k = 1, 2, . . . , ns, once the best solution has been identified:

ypj =

{
xp
j + α1 · 2

α2
2+2

·
(
α3x

p
best − (1− α3)x

p
j

)
, β ≤ 1

2 ,

xp
j + α1 · 4α2

α2
2+4

·
∣∣α3x

p
best − (1− α3)x

p
j

∣∣ , β > 1
2 .

(24)

In Equation (24) the notation α1 · 2
α2

2+2
means that there is an element-wise product between the vectors α1 and

2
α2

2+2
. The term ypj denotes the update candidate solution for the next iteration. α1 is a linear decay function. α2

is a vector with dimensions 1× nv, which is composed of uniformly distributed values within the range [−4, 4];
these values are random. α3 and β are random values uniformly distributed within [0, 1]. α3 determines the level of
influence that has the best candidate in the population on the current solution.

Finally, it is important to note that the absolute value is not applied for 2
α2

2+2
, since the values of this function

vary between the range [0, 1]. However, the function 4α2

α2
2+4

requires the absolute value consideration because of it
is bounded within ±1.
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8 OPTIMAL PLACEMENT AND SIZING OF PHOTOVOLTAIC GENERATORS AND...

α1, which is a linear decay function, is updated at each iteration as expressed by the following equation:

α1 = a

(
1− p

pmax

)
, (25)

where a is a scaling factor that is defined by the user and the recommendation for this value is commonly referred
to 2, i.e., a = 2 [22]. pmax denotes the total number of iterations.

The candidate solution ypk has to be evaluated because of it must adhere to the bounds of the decision variables
that were predefined. The variable will be corrected if violates these bounds as specified in Equation (26) shows. It
is applied for all j = 1, 2, . . . , nv and l = 1, 2, . . . , ns:

ypj,l =


yj,l, if xmin

l ≤ yj,l ≤ xmax
l ,

xmin
l , if yj,l < xmin

l ,

xmax
l , if yj,l > xmax

l .

(26)

This correction is implemented to maintain the feasibility of the solution, which allows that any variable that
exceeds the bounds is set to the nearest permissible value.

3.2.3. Population substitution Once the new candidate solutions (ypk) have been generated, the encoding strategy
determines if they will be included in the population for the next iteration. Based on the performance function value
Ff

(
ypj
)
, the replacement rule is defined in the equation (27) and shown below:

xp+1
j =

{
ypj , Ff

(
ypj
)
< Ff

(
xp
j

)
xp
j , Ff

(
ypj
)
≥ Ff

(
xp
j

) , ∀j = 1, 2, ..., ns. (27)

This rule replaces existing solutions with new candidate solutions if their performance is better than that of the
existing ones, according to the fitness function.

3.2.4. Stopping criteria There are two common stopping criteria that are frequently employed in the literature for
metaheuristic optimization techniques. The first is when the optimization algorithm finishes after the number of the
iterations defined by the user is reached. The second occurs when there is no improvement in the objective function
for kmax consecutive iterations. When the optimization technique uses the second criterion, there is a counter that
is implemented to track the number of iterations without improvement in the objective function. The user defines
the parameter kmax, which represents the maximum number of non-improving iterations.

4. Test feeders and model characterization

IEEE standard feeders validate against literature. Limitations: only radial topology. The single-line diagrams of
the 33- and 69-bus test feeders [7] are shown in Figure 2, and their electrical characteristics are described in Table
1. These systems were used to determine the optimal placement and sizing of PVs and D-STATCOMs using the
FOA. They are designed to operate at a nominal voltage of 12,660 V at the substation level and have a radial
configuration.

In this way, this method was evaluated using the daily power consumption (active and power demand curves),
along with solar generation behavior [20]. Figure 3 shows the 24-hour daily profiles used in the MINLP model:
active power demand, reactive power demand and solar generation. Peak demand occurs at approximately
20h, while solar peaks at midday (approximately 12h). These deterministic profiles validate the multi-period
optimization over h ∈ [1, 24], enabling realistic annual cost computation z1. Future work will incorporate
uncertainty scenarios per reviewer suggestions.

The parameters associated with the PV units are presented in Table 2. On the other hand, Table 3 details the costs
related to the D-STATCOM units.
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5. Numerical assessment

The FOA was implemented in MATLAB R2024a and executed over 100 independent runs, a population size
ns = 50 and maximum iterations pmax = 1000 per run, to ensure statistical robustness. The programming code
was specifically developed to implement the SCA method and the successive approximations power flow method,
while the VSA was performed and compared. VSA was used as described in [20]. Reported metrics use best-of-100
solutions from Tables 4-5. All simulations used Intel i3-1115G4, 8GB RAM

5.1. Results for the 33-bus grid

Table 4 presents comparative analysis of the proposed solution method for the 33-bus grid.
Based on the values given in Table 4, the FOA achieved the best overall performance for the 33-bus feeder,

yielding the lowest total project cost among the compared algorithms.
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Table 1. Branch and load data for the 33- and 69-bus grids

The 33-bus grid
Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25
10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2860 1.7210 60 20 32 33 0.3410 0.5302 60 40

The 69-bus grid
Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.0005 0.0012 0.00 0.00 3 36 0.0044 0.0108 26.00 18.55
2 3 0.0005 0.0012 0.00 0.00 36 37 0.0640 0.1565 26.00 18.55
3 4 0.0015 0.0036 0.00 0.00 37 38 0.1053 0.1230 0.00 0.00
4 5 0.0251 0.0294 0.00 0.00 38 39 0.0304 0.0355 24.00 17.00
5 6 0.3660 0.1864 2.60 2.20 39 40 0.0018 0.0021 24.00 17.00
6 7 0.3810 0.1941 40.40 30.00 40 41 0.7283 0.8509 1.20 1.00
7 8 0.0922 0.0470 75.00 54.00 41 42 0.3100 0.3623 0.00 0.00
8 9 0.0493 0.0251 30.00 22.00 42 43 0.0410 0.0478 6.00 4.30
9 10 0.8190 0.2707 28.00 19.00 43 44 0.0092 0.0116 0.00 0.00
10 11 0.1872 0.0619 145.00 104.00 44 45 0.1089 0.1373 39.22 26.30
11 12 0.7114 0.2351 145.00 104.00 45 46 0.0009 0.0012 29.22 26.30
12 13 1.0300 0.3400 8.00 5.00 4 47 0.0034 0.0084 0.00 0.00
13 14 1.0440 0.3450 8.00 5.50 47 48 0.0851 0.2083 79.00 56.40
14 15 1.0580 0.3496 0.00 0.00 48 49 0.2898 0.7091 384.70 274.50
15 16 0.1966 0.0650 45.50 30.00 49 50 0.0822 0.2011 384.70 274.50
16 17 0.3744 0.1238 60.00 35.00 8 51 0.0928 0.0473 40.50 28.30
17 18 0.0047 0.0016 60.00 35.00 51 52 0.3319 0.1114 3.60 2.70
18 19 0.3276 0.1083 0.00 0.00 9 53 0.1740 0.0886 4.35 3.50
19 20 0.2106 0.0690 1.00 0.60 53 54 0.2030 0.1034 26.40 19.00
20 21 0.3416 0.1129 114.00 81.00 54 55 0.2842 0.1447 24.00 17.20
21 22 0.0140 0.0046 5.00 3.50 55 56 0.2813 0.1433 0.00 0.00
22 23 0.1591 0.0526 0.00 0.00 56 57 1.5900 0.5337 0.00 0.00
23 24 0.3463 0.1145 28.00 20.00 57 58 0.7837 0.2630 0.00 0.00
24 25 0.7488 0.2475 0.00 0.00 58 59 0.3042 0.1006 100.00 72.00
25 26 0.3089 0.1021 14.00 10.00 59 60 0.3861 0.1172 0.00 0.00
26 27 0.1732 0.0572 14.00 10.00 60 61 0.5075 0.2585 1244.00 888.00
3 28 0.0044 0.0108 26.00 18.60 61 62 0.0974 0.0496 32.00 23.00
28 29 0.0640 0.1565 26.00 18.60 62 63 0.1450 0.0738 0.00 0.00
29 30 0.3978 0.1315 0.00 0.00 63 64 0.7105 0.3619 227.00 162.00
30 31 0.0702 0.0232 0.00 0.00 64 65 1.0410 0.5302 59.00 42.00
31 32 0.3510 0.1160 0.00 0.00 11 66 0.2012 0.0611 18.00 13.00
32 33 0.8390 0.2816 14.00 10.00 66 67 0.0470 0.0140 18.00 13.00
33 34 1.7080 0.5646 19.50 14.00 12 68 0.7394 0.2444 28.00 20.00
34 35 1.4740 0.4873 6.00 4.00 68 69 0.0047 0.0016 28.00 20.00

Table 2. Parameters associated with the optimal location and capacity of PVs in distribution networks

Parameter Value Unit Parameter Value Unit
CkWh 0.1390 USD/kWh T 365 days
ta 10 % Nt 20 years
∆h 1 h te 2 %
Cpv 1036.49 USD/kWp C0andM 0.0019 USD/kWh
Nava

pv 3 - ppv,max
i 2400 kW

P pv,min
k 0 kW
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O. D. MONTOYA-GIRALDO, J.D PULGARÍN-RIVERA, J. S. ALONSO-MEDINA. 11

Table 3. Parameters associated with the cost data for the D-STATCOM devices

Parameter Value Unit Parameter Value Unit
ω1 0.30 USD/Mvar3 ω2 −305.10 USD/Mvar2
ω3 127,380 USD/Mvar γ 1/20 —

Qcomp,min
i 0 Mvar Qcomp,max

i,h 2000 kvar
P cg,min
i 0 W P cg,max

i 5000 kW
Qcg,min

i 0 var Qcg,max
i 5000 kvar

Table 4. Numerical results obtained in the 33-bus grid

Scen. xcomp
i (Node) qcomp

i (Mvar) xpv
i (Node) ppvi (MW) Acost3 (USD) Ave. time (s)

Benchmark case — — — — 3,553,557.38 —
VSA [6, 15, 31] [0.3801, 0.0640, 0.3543] [9, 14, 31] [0.9844, 0.6312, 1.7602] 2,292,022.62 305.36
SCA [11, 12, 30] [0.0092, 0.1143, 0.4617] [7, 14, 31] [0.4348, 1.8842, 1.0836] 2,291,234.65 305.97
FOA [30, 18, 11] [0.4447, 0.0499, 0.0993] [12, 17, 31] [1.4857, 0.3639, 1.5403] 2,290.366.39 203.20

i. In terms of cost optimization, the FOA reached a total value of $2,290,366.39, representing a reduction of
approximately 35.55% relative to the benchmark case. This outcome outperformed the SCA ($2,291,234.65)
and the VSA ($2,292,022.62), producing additional savings of $868.26 and $1,656.23, respectively. These
results confirm the FOA’s superior capability to reduce costs in this scenario.

ii. Regarding PV placement, the FOA determined that buses 12, 17, and 31 offered the most advantageous
locations, with installed capacities of 1485.7 kW, 363.9 kW, and 1540.3 kW, respectively. These differ
from the configurations obtained by the SCA and VSA but emphasize the suitability of these nodes for
integrating renewable generation. For D-STATCOM placement, the FOA selected buses 30, 18, and 11,
assigning reactive power capacities of 444.7 kvar, 49.9 kvar, and 99.3 kvar.

iii. The FOA also demostrates competitive computational performance, with an average execution time of 203.20
s. While slower than that of the SCA (305.97 s) and the VSA (305.36 s), this significant reduction highlights
an important advantage, as it shows that considerable processing time can be saved.

5.2. Results for the 69-bus grid

Table 5 presents comparative analysis of the proposed solution method for the 69-bus grid.

Table 5. Numerical results obtained in the 69-bus grid

Scen. xcomp
i (Node) qcomp

i (Mvar) xpv
i (Node) ppvi (MW) Acost3 (USD) Ave. time (s)

Benchmark case — — — — 3,723,529.52 —
VSA [19, 53, 63] [0.0871, 0.0075, 0.4555] [15, 33, 62] [0.8753, 0.5941, 2.0184] 2,400,490.65 1680.10
SCA [7, 61, 65] [0.0337, 0.3992, 0.1076] [18, 59, 61] [0.8761, 0.3407, 2.2949] 2,396,720.37 1611.16
FOA [61, 42, 19] [0.4951, 0.0375, 0.1225] [22, 61, 64] [0.4945, 1.9647, 1.0779] 2,395,198.51 2001.01

The numerical evidence confirms that the FOA offers significant advantages when applied to the 69-bus
distribution network under study. The main observations are summarized as follows:

i. The FOA achieved the smallest total cost among all compared optimization methods, with a value of
$2,395,198.51, corresponding to a 35.674% reduction relative to the benchmark case ($3,723,529.52). This
translates into savings of $1,328,331.01 compared to the benchmark, $1,521.86 compared to the SCA
($2,396,720.37), and $5,292.14 compared to the VSA ($2,400,490.65). These results emphasize its clear
advantage in minimizing costs.

ii. The FOA identified buses 22, 61, and 64 as the best locations, assigning capacities of 494.5 kW, 1,964.7
kW, and 1,078.0 kW, respectively. Unlike the SCA and VSA, which chose different nodes and showed wider
variations in sizing, the FOA’s selection achieves a more evenly distributed generation layout — a feature
that can support improved grid stability and operational efficiency.

iii. The FOA positioned the D-STATCOM units at buses 61, 42, and 19, with reactive power capacities of
495.51 kvar, 37.5 kvar, and 122.58 kvar, respectively. Moreover, the FOA’s overall allocation differs from
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that obtained by the SCA and VSA, while also delivering a higher total reactive power capacity — further
reinforcing its effectiveness in improving operational reliability. Notably, bus 61 appears as a common
optimal location for both PV installation and D-STATCOM placement, underscoring its strategic role in
enhancing the network’s performance.

iv. In terms of computational performance, the FOA required an average runtime of 2001.01 s. Although
this value is higher in comparison with the SCA (1611.16 s) and the VSA (1680.10 s), the additional
computational effort is justified by the superior results achieved by the FOA.

In short, the FOA not only reduces project costs but also delivers a balanced and effective allocation of PV and
D-STATCOM resources. These results validate it as a robust and dependable optimization approach for complex
distribution network problems, particularly in scenarios that demand both efficiency and feasibility.

6. Conclusions and future work

The FOA proved to be a highly effective tool for reducing project costs in both the 33- and 69-bus distribution
networks. Across all tests, it consistently outperformed the SCA and the VSA, showing a clear advantage in its
optimization capability. In the 33-bus case, the FOA delivered additional savings of $868.26 compared to the SCA
and $1,656.23 compared to the VSA. In the 69-bus case, the margin was even greater, surpassing the SCA by
$1,521.86 and the VSA by $5,292.14. These results reinforce the FOA’s ability to find cost-effective solutions in
challenging optimization scenarios.

Beyond cost reduction, the FOA showed strong performance in placing and sizing PV units and D-STATCOMs
in ways that support both technical and economic goals. One particularly interesting outcome was in the 69-bus
network, where bus 61 emerged as a common choice for both PV and D-STATCOM installation. This repeated
selection highlights the strategic role of this node in providing both active and reactive power support, which in
turn helps improve voltage profiles and reduce system losses.

Although the 69-bus grid requires longer processing times, the 33-bus grid shows the opposite behavior. It means
that results obtained by the FOA are better in general, achieving cost reductions and robust solutions. This suggests
that this algorithm is reliable and adaptable tool for optimization in DSs. In future works, its potential makes it a
strong candidate for application in larger and more complex grids.

Looking ahead, there is room to explore the FOA’s full potential. A broader comparison with other well-
known optimization algorithms—such as particle swarm optimization, genetic algorithms, and differential
evolution—would offer a more complete picture of its strengths and limitations. Hybrid strategies that combine
FOA with other techniques could be another promising path, potentially improving solution quality and reducing
computation time. Finally, extending the method to tackle multi-objective problems and to account for uncertainties
in renewable generation and demand would bring it closer to real-world applications, where flexibility and
robustness are key.
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