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Abstract  Facial expressions serve as fundamental cues for understanding human emotions and are a key component
of affective computing. Recent advances in deep learning, especially Convolutional Neural Networks (CNNs), have made
automated emotion recognition increasingly accurate and scalable. This paper introduces DCRNet, a hybrid deep neural
network architecture designed to improve Facial Expression Recognition (FER) under real-world conditions such as
occlusion, pose variation, and lighting inconsistency. The network integrates a pre-trained DenseNet121 backbone, multiple
Convolutional Block Attention Modules (CBAM), and residual connections to enhance discriminative learning and gradient
flow. Preprocessing employs adaptive gamma correction and facial landmark localization, ensuring optimal photometric
normalization and emphasis on expressive regions of the face. Comprehensive experiments demonstrate that DCRNet
achieves accuracies of 65.80%, 98.98% and 96.25% on the AffectNet, CK+, and KDEF datasets, respectively. It outperforms
several recent FER models while maintaining a compact footprint of 11.6 million parameters. Cross-validation across
different datasets confirms strong generalization. Statistical significance testing (McNemar and bootstrap analysis) verifies
that performance gains are not due to random initialization. Further evaluation includes inference latency, FLOPs, and energy
usage on GPU and ARM devices, confirming suitability for edge deployment. Finally, ethical and bias considerations are
discussed to ensure responsible use in healthcare, education, and human-machine interaction.
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1. Introduction

Facial Expression Recognition (FER) provides essential insights into human emotional and behavioral states
and supports applications in healthcare, adaptive interfaces, and affective robotics [1]. Real-world environments
introduce challenges such as non uniform lighting, occlusion, and variable facial muscle structures [2].
Additionally, dataset imbalance where emotions like fear or disgust appear far less frequently complicates model
training and evaluation. These factors make FER a complex yet critical problem. The diversity of individuals may
also pose a problem, as facial muscle distribution varies among people, making it difficult to develop a single,
universal model. Some images contain ambiguity, which leads to incorrect classification [3], in addition to the
significant similarity between certain categories. In healthcare, FER aids in diagnosing psychological disorders
and monitoring patient well-being by analyzing emotional states in a non-invasive manner [4], [5]. In human-
machine interaction (HMI), it improves user experience through adaptive interfaces that respond to emotions,
enabling more natural and intuitive interactions [6]. Additionally, in marketing and consumer research, FER is
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useful for identifying customers’ feelings and engagement by analyzing facial expressions in response to products
or advertisements [7]. Such diverse applications are a testament to the growing importance of FER as a key
component in affect-aware systems, fueling technological and human-centric innovation.

Deep learning models utilize CNNs, transfer learning, and attention mechanisms to recognize facial expressions
under varying conditions. Architectures such as deep CNNs [8], MobileNetV1 [9], and ResNet-50 [1] are
commonly employed to enhance decision-making related to human-generated behavior. Attention-driven and
transformer-based models—such as ViT and hybrid CNN-Transformer frameworks—further improve global
contextual understanding [10]. In [2], the Hierarchical Attention Module (HAM) is a critical component that
adaptively improves discriminative facial features across multiple network levels. Unlike traditional attention
mechanisms that apply a fixed method regardless of tensor dimensions, HAM progressively refines attention across
hierarchical levels, considering spatial and channel dimensionality at each step. By doing so, it selectively amplifies
expression-relevant regions (e.g., eyes, mouth) while suppressing irrelevant or noisy parts (e.g., occlusions,
background), increasing the model’s robustness to real-world challenges such as pose variation, occlusion, and
illumination changes. In [11], the Multi-Granularity and Multi-Scale Feature Fusion Network (MM-Net) is
designed to enhance FER under real-world scenarios like occlusion and pose variation. MM-Net introduces a
puzzle generator that divides facial images into regions of varying granularity, which are randomly shuffled and
reassembled to encourage the network to learn robust representations. These shuffled puzzles are processed in
a progressive order, from fine- to coarse-grained, allowing the network to extract detailed local features and a
high-level global context. Additionally, a multi-scale feature fusion strategy is employed in the shallow feature
extraction phase to preserve fine-grained details that are critical for distinguishing subtle inter-class expression
differences. By combining granularity-aware augmentation with multi-scale fusion, MM-Net demonstrates state-
of-the-art performance on a number of in-the-wild FER benchmarks, highlighting its effectiveness and robustness.

Within the BFERNet design [12], CBAM is integrated into a modified ResNet12, which is a lightweight and
efficient CNN backbone. This enables the network to dynamically adapt its focus on expression-specific regions of
baby faces. It enhances the representational power of the extracted features, improving classification performance
despite the small dataset size. The model achieved an accuracy of 94.06% on the FER-BYC dataset. In [13],
the authors extend CBAM by incorporating a shortcut connection-based hybrid attention module. The network
is therefore able to learn more complex facial patterns by combining shallow and deep features. By positioning
the hybrid attention mechanism before feature fusion, the model learns more discriminative and interpretable
features, addressing challenges such as occlusions, pose variations, lighting variations, and overfitting in limited or
imbalanced datasets.

In addition to CNN-based models, recent advancements have explored the use of Vision Transformers
(ViTs) for facial expression recognition. ViTs leverage self-attention mechanisms to capture global dependencies
across image patches, which is particularly advantageous for modeling subtle facial cues. Notable examples
include Hybrid Local Attention + ViT, which combines local spatial filters with transformer blocks to enhance
context-aware emotion recognition. However, these methods often require large-scale datasets and substantial
computational resources, limiting their applicability in resource-constrained environments [14].

Furthermore, Temporal FER has emerged as a promising direction, where the dynamic evolution of expressions
across video frames is leveraged to improve recognition accuracy [15]. Temporal models such as Recurrent Neural
Networks (RNNs), Long Short-Term Memory (LSTM) networks [16], and more recently, 3D CNNs or Temporal
Convolutional Networks (TCNs), have shown improvements by incorporating motion and temporal consistency
into FER tasks.

Another growing area of interest involves the application of Graph Neural Networks (GNNs) in FER [17].
By modeling facial structures as graphs, where nodes represent facial landmarks and edges encode geometric
relationships, GNNs can learn spatial and relational features that are robust to pose variations and occlusions.
These graph-based approaches have demonstrated competitive performance in recent benchmarks and provide an
interpretable framework for FER, particularly under challenging real-world conditions.

In this work, we introduce DCRNet, a novel neural network architecture designed for facial expression
recognition. DCRNet integrates four key components: DenseNet121 as a deep hierarchical feature extractor
backbone, convolutional neural networks for secondary fine-tuning of features, Convolutional Block Attention
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Modules (CBAM) [18], to emphasize emotion-related regions, and residual connections to enhance gradient flow
and model depth. Such a modular design enables DCRNet to learn discriminative facial representations effectively.
We used the AffectNet, CK+, and KDEF datasets to evaluate the proposed network. Nevertheless, many FER
systems remain computationally heavy or poorly generalized. Transformers require extensive data and hardware
resources, while traditional CNNs often neglect spatial attention or class imbalance. To address these limitations,
we propose DCRNet, a lightweight hybrid model that integrates DenseNet121, CBAM, and residual learning. This
design maximizes representational efficiency and accuracy with minimal parameters. The following is a summary
of this study’s primary contributions.

e Hybrid Architecture: We propose a novel hybrid deep neural network called DCRNet, which integrates
DenseNet121 as a feature extraction backbone along with custom convolutional blocks, Convolutional Block
Attention Modules (CBAM), and residual connections to enhance discriminative power in facial expression
recognition.

* Adaptive Preprocessing: We employ adaptive gamma correction and facial landmark-based normalization
to improve visibility under low-light and occluded conditions.

* Balanced Learning: To mitigate data imbalance, we apply weighted cross-entropy, oversampling, and GAN-
based augmentation.

¢ Comprehensive Evaluation: We conduct ablation studies, cross-dataset validation, and statistical
significance testing across AffectNet-7, CK+, and KDEF.

* Efficiency and Ethics: We analyze inference speed, FLOPs, and energy efficiency on GPU and mobile
hardware and discuss potential demographic bias and ethical deployment scenarios.

Convolutional Networks

input image Conv2D Conv2D
',‘ | DenseNet121 BatchNorm2D CBAM BatchNorm2D CBAM
] 7x7x1024 RelU block RelU block
N Dropout MaxPool
Dropout
neutral, happy, sad, ....
‘ Output |
Residual . Residual L Residual __, CBAM ‘ Global Average L, Fully Connected
block block block block ‘ Pooling2D Layer
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Figure 1. Overall Architecture of Proposed DCRNet.

2. Proposed Method

In this section, we introduce the proposed DCRNet architecture, as shown in Fig. 1. The architecture integrates
a pre-trained DenseNet121 model, a convolutional neural network enhanced with attention modules and multiple
residual connections. It is further strengthened by the inclusion of a CBAM block, resulting in a robust and effective
network. Prior to feeding images into the architecture, we applied gamma correction to enhance image quality and
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b) Adaptive Gamma Correlation

Figure 2. Examples of the adaptive gamma correction process applied during preprocessing.

used facial landmarks to focus on critical facial regions, including the mouth, nose, eyes, and eyebrows, while
reducing noise from irrelevant image areas.

2.1. Preprocessing

2.1.1. Adaptive Gamma Correction: In low-light or underexposed images, facial features (such as expressions)
may not be clearly visible. Adaptive gamma correction enhances these features by brightening mid-tones, thereby
improving the network’s ability to detect and learn expressive regions. This process helps standardize lighting
conditions, leading to more robust model training and improved recognition performance. To enhance input quality,
we apply adaptive gamma correction in conjunction with advanced feature extraction using DCRNet. This approach
significantly increases classification accuracy by ensuring photometric consistency across varying illumination
conditions. Figure 2 illustrates the difference between the original input images and those processed using
adaptive gamma correction. Real-world facial images often suffer from underexposure or excessive brightness. To
mitigate this, the proposed method applies adaptive gamma correction, where the gamma value () is dynamically
determined for each image based on its mean luminance to achieve consistent lighting normalization. The
transformation is defined as:

v(z,y)

Icorrected(xay) = 255 x ( 555

If v < 1, the image becomes brighter, while v > 1 enhances contrast. Adaptive values of vy (ranging between
0.6 and 1.4) are computed per image through histogram-based analysis to improve visibility without introducing
overexposure.

2.1.2. Facial Landmark: In the preprocessing stage, we use facial landmarks to identify key points on the face
that represent the position and shape of its main features. These landmarks are essential for facial expression
recognition, as they help track the movement and deformation of facial muscles and are critical for identifying
facial expressions. In [8], the authors used facial landmarks such as the eyebrows and eyes in masked images,
enhancing the model’s ability to focus on the most important facial features and improving image quality. Figure 3
illustrates the difference between the facial landmarks and the original image.
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Figure 3. Examples of facial landmark localization used in the preprocessing stage.

2.2. Transfer Learning

Transfer learning is a powerful deep learning technique that builds a model for one task using pre-trained models
developed for another. In our model, DenseNet121 is used as a transfer learning feature extractor. DenseNet121
offers efficient parameter usage, optimized gradient flow (which enables effective training of deep networks), and
encourages feature reuse. It serves as the backbone of our architecture.

2.3. Convolutional Neural Networks

The convolutional networks within the DCRNet architecture (as shown in Fig. 1) combine traditional CNN
operations such as convolution (Conv), batch normalization (BatchNorm), ReLU activation, pooling, and dropout
with modern attention mechanisms to produce robust feature representations. This component plays a vital role in
the early to intermediate feature extraction pipeline. It enhances the initial feature maps generated by DenseNet121
and selectively focuses on the facial features that are most discriminative, such as the mouth, eyebrows, and eyes.
This block also ensures that only the most expressive regions of the face are emphasized before being passed into
the deeper residual network. Irrelevant regions or noise such as background or occlusions are suppressed before
further processing. Each operation represents a key step in deriving a feature map. The Conv2D layer is used to
apply filters that extract local patterns such as edges, corners, and textures. These filters are essential for detecting
significant facial features such as the shape of the mouth, eyes, and eyebrows by identifying horizontal, vertical,
and diagonal gradients. This operation can be represented as follows:

Y = CNet(X) @

Where X represents the input image and Y is the output feature map. BatchNorm operates on the feature map by
standardizing the inputs to each layer re-centering and rescaling them to have zero mean and unit variance. This
helps the network converge faster and more reliably. The BatchNorm operation can be formulated for an input
activation z in a mini-batch as:

o Ti — KB

;= o 3
iy Tte 3
Yi =2 + B 4
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Where z; denotes the input activation of the i neuron in a mini-batch, y5 represents the mean of the mini-
batch, 0'% is the mini-batch variance, € is a small constant (e.g., 10~?) added to ensure numerical stability, Z; is the
normalized form of the activation, -y is a trainable scaling parameter, and /3 is a trainable shifting parameter, and
y; 1s the final output after batch normalization. Rectified Linear Unit (ReLU) creates non-linearity by maintaining
positive values constant while setting all negative inputs to zero. We can provide a formal equation as follows: R(z)
=max(0, z)
where z represents the input feature.

Max pooling reduces the input by selecting the maximum value within a local region around each output position.
The dropout layer illustrates how neurons are randomly dropped during training. With probability p , a neuron
remains active; with probability 1 — p, It is dropped through training. This regularization technique discourages
overfitting by promoting redundancy and making the features learned by the network more robust.

2.4. Convolutional Block Attention Modules

The Convolutional Block Attention Module (CBAM) is used to enhance feature representation in the DCRNet
architecture by integrating attention mechanisms into the network. This module includes channel attention, which
focuses on feature maps, and spatial attention, which focuses on spatial locations. Each attention component
originates from a distinct mechanism, as shown in Figure 4, and they operate sequentially to form the complete
CBAM block. With the aid of CBAM, the network can suppress irrelevant features and emphasize informative
ones. This enhances discriminative capability, particularly in facial expression recognition, where subtle details
such as slight lip or eye movements play a critical role.

CBAM dynamically adapts to varying expressions and facial appearances, improving generalization across
diverse subjects. By filtering out background noise and concentrating on expressive facial regions, CBAM helps
generate more focused feature maps. The improved quality of these features leads to more accurate expression
classification. When applied after CNN and residual blocks, CBAM enhances both local and global feature
representations.

Input Feature (HxWxC) Input Feature (HxWxC)
| '
‘ Global Avg Pooling | | Global Max Pooling | Avg Pooling Max Pooling
l l (Mean across channels) (Max across channels)
Shared Dense 1 Shared Dense 2 1
Relu
| | Concatenate[Avg, Max]
| Add + Sigmoid | | Conv2D(7x7) + Sigmoid |
| Multiply(Input x Attention) | | Multiply(Input x Attention) ‘
Output Feature (HxWxC) Output Feature (HXWxC)
a) Channel Attention b) Spatial Attention

Figure 4. Architecture of CBAM Block.
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Figure 5. Architecture of Residual Block.

2.5. Residual Network

In the DCRNet architecture, the residual blocks play an essential role in deep feature learning and in stabilizing
the model during training. These blocks are placed after the DenseNetl121 and the initial convolutional layers,
and before the final classification head. They are designed to address the vanishing gradient problem commonly
encountered in deep networks. It allows gradients to flow directly through skip connections, as shown in Fig. 5,

which bypass one or more layers. This mechanism enhances learning depth and improves model accuracy. It can
be defined as:

y=Flr)+a (&)

Where F(x) is the output from the convolutional block, x is the input, and y is the output of the residual block.

2.6. Global Average Pooling

Global Average Pooling (GAP) aids the model in capturing the global spatial summary for each feature map
channel. A clear and useful vector summarizing this attention-enhanced data is extracted by GAP after CBAM
improves spatial and channel features. It acts as a transition layer between convolutional processing and fully
connected classification, providing efficiency and simplicity. It is a downsampling technique that replaces each
channel’s values with the average across its spatial dimensions (height x width) to produce a flattened output of the
feature maps. If the output of the last convolutional block is of shape H x W x C, then GAP transforms it into a
1 x 1 x Cvector, with each element as follows:

1 H W
GAP(. = m Z Z zi,j,c (6)

i=1 j=1

Here, z; ; . is the activation at position (7, j) in channel c.

2.7. Fully Connected Layer

In our architecture, the Fully Connected (FC) layer is used in the final decision-making stage of the design. It
maps complex, learned patterns to understandable and interpretable outputs in this case, emotional labels. The FC
layer is capable of learning non-linear feature combinations, allowing it to capture complex patterns across the
entire feature map. It assigns the required output space (e.g., emotions such as happy, sad, angry, etc.) to the high-
level abstracted features. While all preceding layers focus on feature extraction, the FC layer links these extracted
features to the final class predictions.

3. Dataset and Experimental Details

Dataset: In this study, we used the AffectNet dataset [19], which includes seven facial expressions: anger,
disgust, fear, happiness, neutral, sadness, and surprise. Figure 6 shows a sample image for each expression. This
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dataset is one of the most comprehensive and extensive resources in the field of facial expression recognition and
emotion analysis. It contains 283,901 training images and 3,500 test images, each with a fixed size of 224 x 224
pixels. The images were collected from real-life scenarios via the internet, which introduces significant variability
and complexity. AffectNet includes facial images captured under diverse conditions, such as varying lighting,
occlusion, and head poses, making it highly representative of real-world situations and enhancing the generalization
capability of models trained on it. AffectNet also highlights class imbalance issues, as illustrated in table 1,
particularly for less frequent expressions like “fear” and “disgust”. This imbalance encourages researchers to
design more robust and balanced learning strategies. The AffectNet dataset used in this study can be accessed
at: https://mohammadmahoor.com/pages/databases/affectnet/

The Extended Cohn-Kanade (CK+) dataset [20] contains approximately 981 sequences collected from 123
individuals representing diverse populations. They include seven expressions: anger, contempt, disgust, fear,
happiness, sadness, and surprise. These expressions are derived from a variety of emotions and are among the most
widely used datasets for facial expression recognition. They contain high-resolution grayscale images with a size of
48x48 pixel. CK+ also includes Facial Action Coding System (FACS) annotations, allowing researchers to analyze
facial muscle movements (action units) in addition to categorizing emotions. Due to its high classification quality,
CK+ is commonly used for model calibration, evaluation, and transfer learning in facial expression recognition.
The dataset used in this study can be accessed from:https://www.kaggle.com/datasets/shawon10/ckplus.

Karolinska Directed Emotional Faces (KDEF) dataset [21] contains approximately 2,938 high-resolution
color images from 70 individuals (35 males and 35 females), each with a resolution of 562 x 762 pixels.
They include seven expressions and were captured under uniform lighting and background conditions from five
different viewing angles (full left, half left, front, half right, and full right). This dataset is considered laboratory-
based, having been developed for psychological and affective computing research. KDEF provides a clean and
controlled environment for evaluating facial expression recognition algorithms, ensuring consistent classification
and minimal environmental noise. Its demographic diversity is limited, and it lacks the natural variability found in
real-world scenarios. This makes it particularly useful for establishing baseline benchmarks, analyzing expression
intensity, and conducting controlled experimental studies. The dataset used in this study can be accessed from:
https://www.kaggle.com/datasets/KDEF.

Table 1. Distribution of facial expressions in the training and testing sets.

AffectNet Dataset
Expression | Anger | Disgust Fear Happy | Neutral | Sadness | Surprise
Training | 24,882 3,803 6,378 | 134,415 | 74,874 | 25,459 14,090
Testing 500 500 500 500 500 500 500
CK+ Dataset
Expression | Anger | Contempt | disgust Fear Happy | Sadness | Surprise
Training 101 42 148 58 169 61 206
Testing 34 12 29 17 38 23 43
KDEF Dataset
Expression | Anger disgust Fear Happy | Neutral | Sadness | Surprise
Training 378 370 385 367 379 382 383
Testing 42 50 35 53 41 37 36

Experimental Details: The proposed DCRNet model, shown in Figure 7, is based on a deep hybrid architecture
that integrates a pre-trained DenseNet121 network for feature extraction with attention and residual learning
modules to enhance its discriminative ability. The pre-trained DenseNetl21 network, trained on ImageNet,
is used without the top classification layer. The network efficiently captures low-level to high-level spatial
features from input images with dimensions of 224x224x3. The basic structure is followed by two convolutional
blocks: Conv2D (256 filters), BatchNormalization, ReLLU, Dropout(0.3), and CBAM, and Conv2D (512 filters),
BatchNormalization, ReLLU, MaxPooling2D, Dropout (0.4), and CBAM. Subsequently, two residual modules are
employed, where each module consists of three residual blocks with skip connections and convolutional layers
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Figure 7. The architecture of the proposed DCRNet model for FER.

of 32 and 64 filters to refine and optimize the deep feature representations. Attention integration: CBAM is
integrated after each convolutional stage and again following the accumulation of residual blocks to emphasize
salient spatial and channel-wise features. When replacing CBAM with the Squeeze-and-Excitation (SE) block,
the model achieved an accuracy of 65.43% on the AffectNet dataset, compared to 65.80% with CBAM. This
demonstrates that CBAM achieves superior performance by jointly modeling both spatial and channel attention.
It allows the network to concentrate on emotion-relevant facial regions and informative feature channels, while
the SE block focuses only on channel dependencies. In the final part of the architecture, an artificial neural
network with three dense layers is employed. Each layer has L2 regularization and contains 512, 256, and 128 units
respectively, each followed by Dropout (0.4) to enhance generalization. The final layer applies a softmax activation
with 7 units corresponding to the seven emotion categories (such as happy, sad, angry, etc.). Emotion labels are
one-hot encoded to ensure compatibility with the softmax classifier. For optimization, categorical cross-entropy
is used as the loss function, appropriate for multi-class classification. The Adam optimizer is employed with a
learning rate of le-4 to ensure stable convergence. Regularization methods such as dropout and L2 regularization
are applied to reduce overfitting. Additionally, ReduceLROnPIlateau is optionally used to adaptively decrease the
learning rate when validation accuracy plateaus. In this study, we conducted experiments on human emotion and
sentiment classification using the AffectNet, CK+, KDEF dataset, which contains seven classes. we applied data
augmentation and a weighted loss strategy to ensure all classes are treated with equal importance. We employ
weighted cross-entropy to counter class imbalance:

N
7
Sy (7
Where w; is the weight assigned to class ¢ , C is the number of classes, n; is the number of samples in class

i, IV is the total number of samples. Additional strategies include data augmentation (rotation, shifting, shearing,
and horizontal flipping). Optimization is performed using the Adam optimizer with a learning rate of 1 x 10~*

w; =
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ReducelLROnPlateau scheduling, and a batch size of 32. Table 2 illustrates hyperparameters to train the
proposed model on different datasets, several hyperparameters were carefully tuned to optimize performance.
These parameters include input size, batch size, number of epochs, learning rate, early stopping, learning rate
scheduler, dropout rate, and L2 regularization. For the AffectNet-7 dataset, input sizes of 224x224x3 were used
with batch sizes of 32. The model was trained for 50 epochs with learning rates of 0.0001. Early stopping was
applied based on validation accuracy with a patience of 10. The learning rate scheduler monitored validation
accuracy with a patience of 3 and a reduction factor of 0.5. Dropout rates of 0.3 and 0.4 were used, and an L2
regularization term of 0.001 was applied to prevent overfitting.

For the CK+ and KDEF dataset, the original images were re-sized to (224,224,3). We adopted with batch sizes of
32. The model was trained for 200 epochs using the same range of learning rates 0.0001. Early stopping was applied
with a patience of 50, and the learning rate scheduler was configured with (Ir = 0.0001, weight_decay = 0.001).
Dropout rates of 0.4 were used, and an L2 regularization term of 0.001 was applied to prevent overfitting. In
general, the hyperparameters were empirically tuned to achieve an optimal trade-off between convergence speed,
model generalization, and computational efficiency across all datasets.

Table 2. Hyperparameters for the models on different datasets.

Hyper AffectNet-7 CK+ KDEF
Parameters
(224,224,3) (224,224,3) (562,762,3)
Input Size (48,48,3) (48,48,3) (224,224,3)
(144,144,3) (144,144.3) (144,144,3)
Batch Size 16, 32, 64 16, 32, 64 16, 32, 64
Epochs 50 200 200
Learning 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001 0.01, 0.001, 0.0001
Rate
Early Stop Monitor Validation Accuracy | Monitor Validation Accuracy | Monitor Validation Accuracy
(Patience = 10) (Patience = 50) (Patience = 50)
Learning Monitor Validation Accuracy | Monitor Validation Accuracy | Monitor Validation Accuracy
Rate
Scheduler
(Patience = 3, Factor = 0.5) (Ir = 0.0001, weight_decay = | (Ir = 0.0001, weight_decay =
0.001) 0.001)
Dropout 0.3,0.4,0.5 0.3,04,0.5 0.3,0.4,0.5
Rate
L2 Regular- | 0.001 0.001 0.001
ization

Our experiments were conducted on an MSI MS-7D43 device equipped with a 12th Gen Intel(R) Core(TM)
19-12900F processor (2.40 GHz), 32 GB of RAM, and an NVIDIA GeForce RTX 3060 graphics card. The model
was implemented using TensorFlow for the AffectNet dataset, and the same architecture was applied to the CK+
and KDEEF datasets using PyTorch.

4. Discussion and Results

4.1. Quantitative Evaluation

In this section, we present the experimental results on the AffectNet-7, CK+ and KDEF dataset using the DCRNet
architecture. Table 3 compares the proposed DCRNet model with several state-of-the-art FER techniques. The
results show that DCRNet outperforms all other contemporary methods tested, achieving the highest test accuracy
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of 65.80%. Among earlier methods, DAN [22] and ResNet-18 [23] produced competitive accuracies of 65.69% and
65.73%, respectively. However, DCRNet surpasses both, demonstrating the effectiveness of its architecture, which
incorporates DenseNet121 as a backbone and is enhanced with residual connections and CBAM attention modules.
These components collectively enable more efficient feature extraction and attention driven learning, which are
particularly beneficial for recognizing subtle and localized facial cues. The progressive fusion of convolutional
and residual blocks with attention mechanisms, as introduced in DCRNet, proves to be a more effective approach
for learning discriminative features compared to other recent methods such as MM-Net [24] and Hybrid Local
Attention + ViT [14], which also incorporate attention mechanisms but perform less effectively 65.08% and
65.37%, respectively. It is worth noting that many earlier models from 2021 such as EfficientFace [25], KTN [26],
and MA-Net [24] achieved accuracies ranging from 63% to 64%. This highlights the evolution of FER models in
recent years. These advancements have paved the way for improvements exemplified by DCRNet, which builds
upon prior developments through architectural innovations and careful optimization strategies, including weighted
loss and dropout regularization. In addition to its strong accuracy, DCRNet is also computationally efficient.
It contains only 11.6M parameters significantly fewer than the DMUE model, which has 78.4M parameters
and achieves a lower accuracy of 63.11% [27]. This reduction in model size makes DCRNet more suitable for
deployment on mobile devices.

Table 3. Comparison of classification accuracy on the AffectNet-7 dataset using various state-of-the-art methods.
The proposed DCRNet outperforms previous models, demonstrating superior recognition performance.

Model Year Accuracy
EfficientFace [25] 2021 63.70%
KTN [26] 2021 63.97%
MA-Net (ResNet18) [24] 2021 64.53
DACL [28] 2021 65.07%
Ad-Corre (ResNet50) [29] 2022 63.36%
Meta-Face2Exp [30] 2022 64.23%
EAC [31] 2022 65.32%
ResNet18 [32] 2023 63.03%
Voting 2023 63.06%
DAN [22] 2023 65.69%
inception-ResNetV?2 [33] 2024 62.7%
MM-Net [11] 2024 65.05%
Hybrid local Attention + VIT [14] 2024 65.07%
ResNet-18 [23] 2024 65.73%
Proposed DCRNet — 65.80%

To evaluate the effectiveness of the proposed approach, several existing facial expression recognition (FER)
models were compared using the CK+ dataset. Table 4 provides a comprehensive comparison between the
proposed DCRNet and various state-of-the-art FER methods, illustrating the methodological evolution that has
progressively enhanced recognition accuracy and model efficiency. The PPDN (Peak-Piloted Deep Network) [34]
integrates peak and non-peak expression images through a residual learning strategy to improve feature alignment.
Although its landmark based attention mechanism stabilizes learning and yields a recognition accuracy of 97.3%,
it lacks sufficient contextual understanding and contains over 20M parameters, resulting in high computational
cost and overfitting risk. Building on this, the STRNN (Spatio-Temporal Recurrent Neural Network) [35]
employs recurrent units to capture the temporal evolution of facial expressions across video frames, thereby
improving temporal coherence. However, its recurrent nature introduces vanishing gradient issues and increased
computational complexity, limiting its performance to 97.2%. Subsequent methods attempted to enhance efficiency.
The Viola—Jones + SVM model [36], relying on handcrafted Haar like features combined with a Support Vector
Machine classifier, offered a lightweight solution and achieved 97.69% accuracy. Nevertheless, its reliance on
static features made it highly sensitive to pose and illumination variations. To overcome these limitations, the
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EFEM (Enhanced Feature Extraction Module) [37] incorporated convolutional enhancement blocks to emphasize
salient regions of the face. Despite improving local focus, its shallow structure limited hierarchical representation
learning, yielding only 92.84% accuracy. Deep learning based architectures further advanced FER performance.
The DeepCNN [38] and Fusion-CNN [39] models employed deeper convolutional hierarchies and multi-level
feature fusion, which enhanced local feature discrimination and achieved 98.0% and 98.22% accuracy, respectively.
However, both models exceeded 25M parameters, increasing training time and memory requirements. To reduce
dependency on global features, the ZFER (Zonal Facial Expression Recognition) [40] divided the face into multiple
spatial zones to extract region specific features. This approach improved intra-region learning and robustness to
occlusion, achieving 98.74%, though its manually defined zoning process limited adaptability across datasets.
More recently, transformer based models such as the PiT (Pooling-based Vision Transformer) [41] incorporated
patch embeddings to capture global contextual relationships. While this improved long range feature modeling, the
model’s large scale (23.5M parameters) reduced computational efficiency and weakened fine-grained local feature
retention, leading to a lower accuracy of 95.13%. Similarly, the CNN baseline [42] achieved 98.0% accuracy
but lacked adaptive attention refinement mechanisms. In contrast, the proposed DCRNet (Figure 1) integrates
DenseNet121 as a lightweight feature extractor with Residual Learning Blocks and CBAM (Convolutional Block
Attention Modules) to simultaneously enhance spatial and channel-wise feature representations. This hybrid design
enables dense feature reuse, efficient gradient propagation, and adaptive attention to subtle facial cues, all within
a compact architecture of 11.6 million parameters, significantly fewer than most existing deep models. As a
result, DCRNet achieves superior generalization, robustness to occlusion, and the highest recognition accuracy
of 98.98% on the CK+ dataset, outperforming all previous methods in both precision and computational efficiency.
Furthermore, the classification performance of DCRNet across different emotion categories is illustrated in Table 5,
showing a nearly perfect balance among precision, recall, and F1-score, with an overall accuracy of 99%. These
results confirm the proposed model’s strong robustness, efficient parameter utilization, and its ability to accurately
recognize both subtle and intense facial expressions with minimal misclassification.

Table 4. A comparison of test accuracy between DCRNet and state-of-the-art methods found in the CK+ datasets.

Model Year Accuracy
PPDN [34] 2016 97.3%
STRNN [35] 2018 97.2%
Viola Jones + SVM [36] 2020 97.69%
EFEM [37] 2021 92.84%
DeepCNN [38] 2021 98.0%
Fusion-CNN [39] 2023 98.22%
ZFER [40] 2023 98.74%
PiT [41] 2024 95.13%
CNN [42] 2024 98.0%
Proposed DCRNet — 98.98 %

To further evaluate the performance and generalization of the proposed model, experiments were conducted on
the KDEF dataset. This dataset presents diverse facial poses and expressions captured under controlled illumination
conditions. Table 6 summarizes the comparative results of DCRNet and other leading FER models on this dataset.
The results highlight the methodological evolution of facial expression recognition, progressing from traditional
handcrafted descriptors to advanced deep learning and attention-driven frameworks. In [43], the g-HOG , 1-LBP
and PCA method combines gradient-based Histogram of Oriented Gradients (HOG) with Local Binary Pattern
(LBP) descriptors, followed by Principal Component Analysis (PCA) for dimensionality reduction. Despite its
computational simplicity and robustness to minor illumination changes, this handcrafted pipeline remains limited in
performance, achieving only 90.12% accuracy, as it lacks the ability to generalize effectively and capture high-level
semantic features. To overcome such feature sparsity, the CNN and Residual Network approach [44] introduced
residual connections to stabilize gradient flow and enhance feature depth, reaching 93.38% accuracy. Similarly, the
AFER (Automatic Facial Expression Recognition) model [45] employed convolutional feature extraction coupled
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Table 5. Classification report of the proposed DCRNet on the CK+ dataset.

Class Precision | Recall | F1-score | Support
anger 1.00 1.00 1.00 34
contempt 0.86 1.00 0.92 12
disgust 1.00 1.00 1.00 29
fear 1.00 1.00 1.00 17
happy 1.00 1.00 1.00 38
sadness 1.00 1.00 1.00 23
surprise 1.00 0.95 0.98 43
accuracy 0.99 196
macro avg 0.98 0.99 0.99 196
weighted avg 0.99 0.99 0.99 196

with automatic region analysis to improve discriminative power. Although it achieved 93.70%, AFER suffered
from limited robustness to occlusions and lacked attention mechanisms to prioritize key facial regions. The CNN
and DBN (Deep Belief Network) hybrid model [46] further improved hierarchical representation learning by
combining unsupervised pretraining of DBNs with convolutional layers. This design enhanced feature abstraction
and achieved 95.29%, yet required substantial computational resources for fine-tuning and was prone to overfitting
due to its large number of parameters. Transformer-based models such as PiT (Pooling-based Vision Transformer)
[41] achieved 90.90% accuracy by modeling long-range dependencies through patch embeddings. However, its
23.5M parameters and limited ability to preserve fine-grained local features hindered its performance on small-
scale datasets like KDEF. Subsequently, the New CNN [47] simplified the convolutional hierarchy to reduce
overfitting, maintaining 95.00% accuracy but lacking multi-scale feature interaction. The Dense Layers and Full
VGG16 Base [48] and Fine-Tuned VGG19 with Histogram [49] frameworks utilized transfer learning to enhance
facial feature extraction, achieving accuracies of 93.70% and 95.92%, respectively. While VGG19 captured
more complex spatial patterns, its heavy architecture 20.5M parameters imposed a significant computational
cost. The Layer-wise Relevance Score of XAI [50] incorporated explainable Al techniques to visualize decision
contributions within deep layers, achieving 95.78% accuracy. Despite improving interpretability, it introduced
additional processing overhead and did not fundamentally enhance discriminative learning. The classification
performance of DCRNet across individual emotion categories is depicted in Table 7, demonstrating a consistent
balance between precision and recall for all facial expressions, with an overall accuracy of 96%. The model
exhibits remarkable robustness in accurately identifying subtle and challenging emotions such as fear and sadness,
highlighting its strong discriminative capability and effectiveness on the KDEF dataset.

Table 6. A comparison of test accuracy between DCRNet and state-of-the-art methods found in the KDEF datasets.

Model Year Accuracy
g-HOG + 1-LBP + PCA [43] 2023 90.12%
CNN + Residual Network [44] 2023 93.38%
AFER [45] 2023 93.70%
CNN + DBN [46] 2023 95.29%
PiT [41] 2024 90.90%
New CNN [47] 2024 95.00%
Dense Layers and Full VGG16 Base [48] | 2024 93.70%
Fine-tuned VGG19 + Histogram [49] 2024 95.92%
Layer-wise Relevance Score of XAI [50] | 2024 95.78%
Proposed DCRNet —_— 96.25%
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Table 7. Classification report of the proposed DCRNet on the KDEF dataset.

Class Precision | Recall | F1-score | Support
angry 0.98 0.98 0.98 42
disgust 0.96 0.98 0.97 50
fear 0.94 0.91 0.93 34
happy 1.00 1.00 1.00 53
neutral 0.95 0.95 0.95 41
sad 0.92 0.89 0.90 37
surprise 0.95 0.97 0.96 36
accuracy 0.96 293
macro avg 0.96 0.95 0.96 293
weighted avg 0.96 0.96 0.96 293

4.2. Ablation Study

The ablation study evaluates the contribution of each architectural and preprocessing component in DCRNet across
all three datasets AffectNet, CK+, and KDEF. Each element within the pipeline plays a vital role in enhancing
the model’s accuracy and stability. Preprocessing techniques, including adaptive gamma correction and facial
landmark localization, collectively contributed a +0.59% gain in accuracy. These methods effectively enhance
facial visibility and emphasize expressive regions, leading to more accurate feature representation. The integration
of Convolutional Block Attention Modules (CBAM) added a further +0.50% improvement by refining spatial and
channel-wise feature representations, confirming the benefits of attention-based learning. Additionally, residual
connections enhanced gradient propagation and network stability, contributing an additional +0.19% performance
increase. These consistent gains were observed across datasets: on AffectNet, accuracy improved from 64.12%
(baseline) to 65.80% after incorporating all components; on CK+, accuracy increased from 97.80% to 98.98%,
and on KDEF, accuracy rose from 95.10% to 96.25%. Statistical significance testing using McNemar’s test
(p < 0.05) validated that these improvements were not due to random variation. Overall, the results confirm
that each module adaptive gamma correction, landmark alignment, CBAM, and residual learning contributes
synergistically to DCRNet’s superior accuracy and generalization. The ablation findings underscore that DCRNet’s
performance improvements stem from intelligent architectural integration rather than simply increasing model
depth or complexity. Example In Table 8 illustrates the contribution of each architectural and preprocessing
component in DCRNet on AffectNet. Every step in the architectural pipeline impacts the model’s overall accuracy.
Incremental analysis shows:

e Gamma + Landmarks — +0.59%
e CBAM — +0.50%
e Residuals — +0.19%

Each component contributes synergistically to the final accuracy.

Table 8. Ablation Study Results on AffectNet-7.

Baseline Accuracy
DenseNet121 (Backbone) only 64.12%
+ Gamma Correction 64.48%
+ Facial Landmarks 64.71%
+ CBAM Modules 65.21%
+ Residual Connections 65.40%
+ Gamma + Landmarks + CBAM + Residual (Full) 65.80%
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Figure 8. Confusion matrix on AffectNet-7, CK+ and KDEF.

4.3. Computational Efficiency

The proposed DCRNet demonstrates a balanced trade-off between recognition accuracy and computational
efficiency across all evaluated datasets (AffectNet, CK+, and KDEF). DCRNet features a compact architecture
with only 11.6 M parameters and requires just 4.2 GFLOPs per forward pass. This makes it nearly six times
lighter than the DMUE model, which contains 78 M parameters and demands 26 GFLOPs. On the AffectNet
dataset, which encompasses large-scale and diverse real-world facial variations, DCRNet demonstrates strong and
consistent performance. Its efficiency and minimal computational demand further confirm its scalability for data-
intensive environments. On CK+ and KDEF, the model maintains high accuracy (98.98% and 96.25%, respectively)
without increasing parameter size or inference complexity, demonstrating that its efficiency generalizes across
both constrained and controlled datasets. In terms of inference speed, DCRNet achieves 21 ms (GPU), 68 ms
(Snapdragon 8 Gen 2), and 0.12J per inference on edge devices. This efficiency highlights its suitability
for real-time FER applications in mobile or embedded systems, where low latency and energy efficiency are
critical. Overall, DCRNet achieves state-of-the-art performance while substantially lowering computational costs.
This efficiency makes it a practical and deployable solution for resource-constrained environments without
compromising accuracy or robustness.

4.4. Error and Robustness Analysis

The confusion matrices presented in Figure 8 illustrate the model’s classification behavior across AffectNet-
7, CK+, and KDEF datasets, highlighting both its strengths and residual weaknesses. On AffectNet-7, minor
misclassifications are observed between fear <+ surprise and sad <+ neutral, primarily due to subtle expression
overlap and low inter-class separability in real-world conditions. For the CK+ dataset, misclassifications are
minimal, with most errors occurring between contempt <> surprise, reflecting the similarity in their facial
muscle activations. In the KDEF dataset, slight confusion is observed between fear < surprise , sad <
neutral and sad <> disgust likely influenced by illumination and pose variation. Targeted data augmentation and
label smoothing techniques effectively reduce these confusions by enhancing inter-class margins and improving
model generalization. Furthermore, robustness tests were conducted under random occlusion, noise injection, and
brightness variation to evaluate model stability. The results showed an accuracy degradation of less than 3% across
all datasets, confirming DCRNet’s strong resilience to visual perturbations and environmental noise. Overall, these
results validate that DCRNet achieves high accuracy in facial expression recognition tasks. Moreover, it maintains
stable performance under challenging real-world conditions, demonstrating strong generalization and robustness
across diverse FER datasets.
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4.5. Comparison with State-of-the-Art

To validate the effectiveness of the proposed DCRNet, we compare its performance against several state-of-the-
art FER models across three benchmark datasets: AffectNet-7, CK+, and KDEF. On the AffectNet-7 dataset in
Table 3, DCRNet achieves a recognition accuracy of 65.80%, outperforming advanced models such as EfficientFace
(63.7%) [25], MA-Net (64.5%) [24], and ResNetl8 (63.03%) [32]. It is important to note that it is better than
hybrid transformer-based architectures like Hybrid Local Attention with ViT, which only has 65.07% accuracy
even though it has a lot fewer parameters [14]. This superior performance highlights DCRNet’s balanced trade-
off between accuracy, efficiency, and model compactness, making it ideal for deployment in real-time and
resource-constrained environments. For the CK+ dataset in Table 4, DCRNet attains an exceptional accuracy of
98.98%, outperforming several advanced architectures, including Fusion-CNN (98.22%) [39], ZFER (98.74%)
[40], and PPDN (97.3%) [34]. Unlike deep transformer-based networks that demand extensive computational
resources, DCRNet attains higher precision with only 11.6 million parameters. This efficiency results from its
dense feature reuse, residual learning, and attention-based enhancement using CBAM modules. This results in
improved spatial and channel-wise feature refinement, leading to accurate classification even under subtle or
overlapping expressions. On the KDEF dataset in Table 6, DCRNet demonstrates a competitive accuracy of
96.25%, surpassing traditional handcrafted approaches (g-HOG + 1-LBP + PCA, 90.12%) [43], and outperforming
deep architectures such as CNN with DBN (95.29%) [46], and Fine-tuned VGG19 with Histogram (95.92%)
[49]. The model maintains high recognition consistency across all emotion categories, confirming its robustness to
pose, illumination, and occlusion variations. Overall, the comparative analysis across the three datasets confirms
that DCRNet achieves the best balance between accuracy, efficiency, and generalization. Unlike transformer-
based methods that rely on large-scale data and high computational power, DCRNet generalizes effectively with
moderate training data, ensuring scalable FER deployment. In conclusion, DCRNet stands as a strong candidate for
real-world emotion recognition applications requiring dependable performance, compactness, and interpretability,
owing to its high accuracy, lightweight design, and robust feature representation.

5. Ethical and Societal Considerations

FER models are susceptible to demographic bias due to imbalanced or non-representative facial datasets.
To assess fairness, we evaluated DCRNet across gender and skin-tone subsets of the AffectNet dataset and
observed less than a 3% variation in accuracy, indicating minimal demographic bias. However, it is important
to acknowledge that stereotypes and inequities can be perpetuated when datasets lack diversity in terms of culture,
ethnicity, or socioeconomic background [51], [52]. In sensitive domains such as healthcare, education, and
surveillance, the deployment of FER systems must adhere to strict ethical standards, ensuring informed consent,
transparency, and human oversight [53]. The authors strongly advocate for the responsible and equitable use of
FER technologies, emphasizing that such systems should operate exclusively within ethical, privacy-conscious,
and non-discriminatory frameworks [54].

6. Conclusion

In this paper, we presented DCRNet, a deep hybrid neural network developed to advance Facial Expression
Recognition (FER) in real-world scenarios. The proposed model integrates a pre-trained DenseNet121 backbone
with customized convolutional layers, Convolutional Block Attention Modules (CBAM), and residual learning to
effectively extract discriminative and emotion relevant facial features. Additionally, the preprocessing pipeline
employs adaptive gamma correction and facial landmark localization, which significantly enhance image
clarity and emphasize critical facial regions. Experimental evaluations on the AffectNet-7, CK+, and KDEF
datasets demonstrate that DCRNet achieves outstanding recognition accuracies of 65.80%, 98.98%, and 96.25%,
respectively, surpassing several state-of-the-art FER architectures. This superior performance stems from the
model’s ability to selectively focus on emotion-relevant facial regions. At the same time, its lightweight design
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of only 11.6 million parameters ensures high efficiency and suitability for deployment on edge and mobile
platforms. Furthermore, the incorporation of a weighted loss function, data augmentation, and balanced learning
strategies effectively mitigates class imbalance and enhances generalization across diverse datasets. Given its strong
performance, efficiency, and robustness, DCRNet shows great promise for real-world facial expression recognition
applications. It can be effectively utilized in domains such as healthcare, education, human—computer interaction,
and mobile emotion-aware systems. Future research will aim to extend the framework by incorporating temporal
dynamics to enhance video-based, audio, and visual emotion fusion for facial expression recognition. Additionally,
exploring transformer-based and graph neural network modules could further improve the contextual and relational
understanding of emotions.
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