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Abstract This paper presents a rigorous analysis of an optimal boundary control problem governed by a linear elliptic
equation of infinite order subject to pointwise control constraints. Such problems arise naturally in various applications but
remain insufficiently studied due to the analytical difficulties associated with infinite-order operators and control constraints.
The main objective of this work is to establish the Well-posedness of the state equation and derive optimality conditions
for the associated control problem. Under assumptions on the system coefficient and admissible control set, we prove the
existence and uniqueness of the weak solution to the state equation. Under pointwise control constraints on the boundary,
we demonstrate the existence of an optimal control using convexity and compactness arguments that are adapted to the
infinite order setting. By deriving the associated adjoint system, we formulate first order necessary optimality conditions in
the form of a variational inequality involving the boundary adjoint variable. Furthermore, we discuss optimality conditions
under coercivity assumptions on the infinite order operator. The results presented in this paper extend several known results
for finite order elliptic systems to the infinite order framework, thereby filling an important gap in the existing literature on
boundary optimal control.
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1. Introduction

Optimal control problems governed by partial differential equations have attracted considerable attention due to
their wide range of applications in science and engineering. Boundary control problems for elliptic systems play
a central role in many physical and engineering models where the control acts on the boundary of the spatial
domain. Over the past decades, extensive research has been devoted to finite order elliptic systems, leading to
well-established theoretical frameworks concerning existence, uniqueness and optimality conditions.

In contrast, elliptic systems of infinite order have received significantly less attention, despite their relevance
in advanced models of continuum mechanics, signal processing and control theory. The analysis of such systems
presents substantial mathematical challenges, mainly due to the nonstandard structure of infinite-order differential
operators and the lack of compactness properties commonly used in finite-order setting. These difficulties become
even more pronounced when pointwise control constraints are imposed.

Infinite order operators provide a powerful framework for describing multi-scale phenomena, long-range
interactions and regularizing mechanisms not captured by standard second-or fourth-order elliptic equations. They
naturally arise in anomalous diffusion, material science and quantum mechanics.

Several authors have investigated boundary optimal control problems for elliptic equations and systems of finite
order under various types of constraints. However the extension of these results to infinite-order elliptic systems
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remains largely unexplored. In particular, the literature lacks comprehensive studies addressing the existence
of optimal control and the derivation of necessary optimality conditions in the presence of pointwise control
constraints for infinite-order systems.

The purpose of this paper is to fill this gap by providing a rigorous theoretical analysis of a boundary optimal
control problem governed by linear elliptic systems of infinite order.

The main objective of this study is to establish a rigorous analytical framework that ensures the well-posedness
of the state equations, characterizes the mapping from boundary controls to system states and derives first-order
optimality conditions for the constrained control problems by using [1, 2].

For linear elliptic control problems of infinite order with pointwise control constraints were established in the
paper by [11, 23, 26] and constraints on the state were investigated by [21, 24] , for a semilinear problems of infinite
order with finite dimension, this obtained by [12, 20].

The paper which a near connection to our work we refer to [16, 17, 18, 28]. The existence of the Lagrange
multipliers was discussed by [13, 25, 27] for elliptic case.

In Dubinskii [4, 5] studied the Cauchy Dirichlet problem

oo

L(u) = Y (-1)l*ID*Aq(x, D7u) = h(), e
|a]=0
D"lu(z)]5q =0, lw|=0,1,2,---

infinite order Sobolev spaces

W g, PaH9) = {ule) € C(Q) : Pr) = S [ID%ull B < oo},
|a|=0

where a,, > 0 and P, > 1 are numerical sequences and established of W*{a,, P, } and boundary value problem
above is investigated where Q C RY.

Gali. et al. [6] presented a set of inequalities defining on optimal control of a system governed by self-adjoint
elliptic operators with an infinite number of variables.

Subsequently Lions suggested a problem related to this result but in different direction by taking the case of
operators of infinite order with finite dimensions.

Gali has solved this problem, the result has been published in [7].

Gali. et al. [8, 9, 10] presented some control problems generated by both elliptic and hyperbolic linear operator of
infinite order with finite number of variables. El-Zahaby et al. [15, 19, 22] obtained the optimal control of problems
governed by variational inequalities of an infinite order with finite domain.

We define the Sobolev space W>°{a,,, 2} of infinite order of periodic functions ¢(z) defined on all boundary T
of R", n > 1 as follows

o0

W{aq,2} = {6 € C¥(R"): 3 aal D*6]3 < o0},

|o|=0

where a,, > 0 is a numerical sequence and ||.||2 is the canonical norm with space L?(R") all functions are assumed
to be the real value on

af
D = 0
0z 0xy? -+ - Oz’
oo
where o = (o, g, - - -, o) i @ multi-index for differentiation |a| = ) «.

i=1
The duality paring of the space W>{a,, 2} and W~>{a,, 2} is postulated by the formula

@)= 3 o [ bole)D o)

|o]=0
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where ¢ € W>®{a,, 2}, € W—>{a,,2}.
From above, W>{a,, 2} is everywhere dense in L?(R"™) with topological inclusions and W ~>°{a,, 2} dense
the topological dual space with respect to L?(R™), so we have the following chain

W{aqs,2} C L*(R™) € W™{aq,2}.
Analogous to the above chain, we have
W5 {aa, 2} € L*(R™) € W™ "{aq, 2},

where W§°{a,, 2} is the set of all function of W>{a,, 2} which vanish on the boundary I" of R", i.e.,

Wgo{aa72} =
{o(x) € CP(RY) - [I6]* = ) aallD*¢l[3 < 00, D¥Igr =0, |w|=0,1,---}.
|| =0

The main contributions of this paper are threefold:

1. We develop a new variational formulation for infinite-order elliptic boundary control, proving existence,
uniqueness and regularity of solutions driven solely by boundary inputs.

2. We establish the existence of an optimal control under pointwise constraints on the control, relying on
convexity and compactness arguments tailored to the infinite-order setting.

3. We derive a complete optimality system, including the adjoint equation, boundary trace characterization
and variational inequality describing the optimal control. Additionally, we formulate first-order necessary
optimality conditions using the Lagrange principle and adjoint system techniques. .

The novelty of this work lies in extending classical boundary optimal control results from finite-order elliptic
systems to the infinite-order case under pointwise control constraints. The results presented here contribute new
theoretical insights to the field of optimization and control of partial differential equations and provide a foundation
for future studies on nonlinear systems and numerical approximations.

The paper is structured as follows: In section one, we introduce for functional spaces of infinity order with
finite dimension. The existence of optimal control is given in section two. In section three, we derive optimality
conditions for boundary control problem of infinite order with pointwise control constraints. In section four, we
formulate Lagrange principle. Finally, section five concludes the paper and outlines possible directions for future
research.

2. Existence of Optimal Control

Assumption 2.1. Let Q C RY be a bounded domain with Lipschitz-Continuous boundary I' and suppose that
A>0,yq € L2(Q), yr € L3(T), B € L*(T) with 3(x) > 0 for almost all z € T and ug, up € L*(T) with ug(z) <

up(x).

We consider the following linear elliptic control problem with boundary control

. 1 A
min J(y, u) = §||y —yall72(o) + §HU||L2(F)
subject to
(P) Ay=0 in
y|w“F:6(U_y) on T, |w|:07132a"'
and

ta(7) < u(x) < up(x),

Stat., Optim. Inf. Comput. Vol. x, Month 202x



BASIMA ABD ELHAKIM, SAMIRA EL-TAMIMY AND GHADA E. MOSTAFA 3

where A is infinite order operator with finite dimension of the form
o0

Ay =Y (-1)a,D*y, aq > 0.
|| =0

This operator is bounded, self adjoint mapping W§5°{aa, 2} onto W§°{a,,2}. We define the set of admissible
control U,q4 by:
Usd = {u € L*(T) : ua(x) < u(z) < up(x) for almostevery =€ T'}.
U,q is non-empty, closed, convex and bounded in L?(T").
For the existence of a unique solution to problem (P), we suppose

/F (B(2))? ds(z) > 0

Definition 2.1. We call z € U,4 an optimal control for (P) if J(y(a),a) < J(y(u),u) for all u € U,q4. The function
y = y(u) is said to be the (associated) optimal state, we say that 4 € U,4 is a local optimal solution for (P) if there
exist an € > 0 so that

J(y(a),a) < J(y(u),u) forall we U, with [lu—1|z2r) <e

The operator G : L%(T') — W>{a,, 2}, u — y(u) is continuous.

We interpret G as a continuous linear operator mapping L?(T') into L?(f2) that is we take S = Ey G and
S L2(T) — L%(Q), u > y(u).

We transformed the control problem into so-called reduced cost functional in term of pure control u:

1 A
f(u) = gHSU —yall72@) + 5”“”%2@)' (2.1)

Theorem 2.1. With Assumption 2.1 holding there exist a unique weak solution y € W>{a,,2} for every u €
L3(T). i.e.

oo

> [ D n@ o 0w do+ [ oy ds= [ puwas 22

|a]=0
Furthermore
[Yllwefan,2y < cllullLzry,
for a constant c depend on 5 € L>=°(T).

Proof

In order to apply the Lax-Milgram Lemma, we put V = W>°{a,,, 2} and define the functional F'(v) and the bilinear
form a, respectively, by

Fv) = /F Buvds

aly,v] = Z ((—1)‘O‘|aaD2ay(x),v(x))Lz(Rn)
|a|=0
= Z ((—1)‘a|aaD20y(aj),’U(l‘))L2(Rn)
|a|=1
+ (a(@)y(@),v(x)) 2 (re) + (B()y(2), v(2)) L2(r)
= Z (aaD%y(z), Dav(x))L2(R”')
|a|=1

+ (g(@)y(x), v(@)) 2(R7) + (B(2)y(2), v(2)) L2(1)
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where ¢(z), 5(z) are real valued functions. To this end, We have to verify that the bilinear form « is bounded and
V-elliptic First, one easily derives

aly ol = | 3 (@aDy(w), D0(w)) g2 e
|a|=1
+ (q(x)y(z),v(x)) 2 (rry + (B(x)y(x),v(2)) L2(1)
< aollyllwee fan 23 1Vl W {an,2}

i.e the boundedness of a. Indeed, this is an immediate consequence of the estimates

|/QQ($)Z/U($)0{$| < ||Q||L°°(Q)||y||L2(Q)||U||L2(Q)

< lallzo ) lyllwefan 23 IVl wee tan .2}

| / Byvds| < 1Bl Iyl 2oy ol
T

< 1Bl Lo rycollyllwes {an,23 10llwee {an 2}

where the trace has been used for the latter estimate. To show the V-ellipticity, we argue as follows. In view of
assumptions, we have ¢ # 0 in L () or 5 # 0 in L*°(I"). In case where 3 # 0 there exist a measurable set
I’y ¢ T with [T'y| > 0 and 6 > 0 such that 8(z) > § for all z € T'y. For ¢ # 0, we have ¢(z) > ¢ for all x € Q we
find that

o0

aly,y] = Y (aaDy(x), DY ())L2(rn)

lal=1

+ (q(2)y(2), y(@)) L2(rm) + (B(2)y(2), y(2)) L2(1)

o0

( Z aoDy(x), D*Y(x))12(rr) + 0(y(2), y()) L2(1))

la=1

min{l,
L L) TR
C(Fl) {aa,2}

Y

Consequently, the assumptions of Lax-Milgram lemma are satisfied. In addition, employing the trace theorem
once more, We can conclude as follows:

F@) = | / Buvds|

< Bz mllullzz@yllvll2
< |18l zee () 1wl L2 (ry ol vl wes {aq 2}
< cllull 2@y llvllwee {aq,2}

But this means that || F'[|y - 14, 2} < ¢l|ul/z2(r) and the asserted estimate for ||y~ (4,2} then follows from the
Lax-Milgram Lemma. This cocludes the proof. U

Theorem 2.2. Let U,y C L*(T') be nonempty, bounded, closed convex and yqo € L?*(Q), A\ > 0. The mapping
S : L*(T) — L%(Q) is assumed to be a linear and continuous operator. Then there exist an optimal control i
solving
; 1 2 A
i flu) = §||3u —yaliz@) + §||U||L2(r)

If A > 0 holds or if S is injective, then u is uniquely determined.
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Proof
Since f(u) > 0 holds, the infimum
j = inf ists.
j= b fuw) exists
By Assumption, U, # 0. Thus, there is a minimizing sequence {u,, }nen satisfying lim f(u,) = j.
n—oo
The set U, is bounded and closed. From the convexity of U,4 we infer that U, is weakly sequentially compact.
Thus, there exist a subsequence {uy, }ren Of {t, }nen and an element @ € U, 4 satisfying u,,, — @ for k — oo.
Since S is continuous, f is continuous from the convexity of J we infer

k—

recall that j is the infimum of all function value f(u),u € Uyq. From 4 € U,q we have f(u) > j.

Thus, f(u) = j and @ is an optimal control.

This proof is standard (Lions [14]), it is enough to note also that, even if A > 0, this implies that .J is strictly
convex and there exist an unique optimal solution. O

3. First Order Optimality Conditions

We derive first order optimality conditions.
Lemma 3.1. Let U be a real Banach spaces, U C U = L?(T") be open, C C U be a convex and f : U — R be a

function which is Gateaux differentiable in U. Suppose that u € C'is a solution to

. 1 A
gélgf(u) = 5 llSu~ zal| 72 o) + 5 lullzz ). (3.1

Then the following variational inequality holds

f@(u—ua)>0 forall uel (3.2)
If u € c solves (3.2) and f is convex, then u is a solution to (3.1).
Next, we apply the previous Lemma to (3.1).

Theorem 3.2. Let U,y C U = L*(T) be a nonempty, convex and z; € L*(Q), A\ > 0 be given.
Furthermore, assume that S € L(L*(2), L?(Q)). Then @ € U,q solve (3.1) if the variational inequality

(St = za,y — Y)r2(0) + M, u — )2y >0,  forall u€ U (3.3)

Proof
The gradient of f is given by
() = S*(Su — zq4) + \u

then from (3.2) we have (3.3).
The variational inequality (3.3) can be expressed as

(Sﬂ — zgq,Su — Sﬂ)LQ(Q) + )\(1_1,, U — ﬂ)LQ(F) >0, forall u € Uyy.

O
Definition 3.1. The weak solution p € W§°{a,, 2} of the adjoint equation
Ap=19—z4 in Q
o] (3.4)
p“lr+Bp=0 on T, |w|=0,1,2,--

Stat., Optim. Inf. Comput. Vol. x, Month 202x



6 BOUNDARY OPTIMAL CONTROL OF INFINITE ORDER LINEAR ELLIPTIC SYSTEMS:. - -

with § = st is called the associated adjoint or dual state, let z4 € L?(2).

Furthermore, §j € W5 {a,, 2} — L*(Q).

Thus, z4 — § belong to L?(£2). By Lax-Milgram Lemma there exist a unique state p € W§°{a,,2} satisfying
(3.4).

Let y be the weak solution to (2.2).
Now, choosing p as a test function in the weak formulation of (2.1), we obtain

f: /Qaa(DO‘y)(x)(Dap)(a:) da:+/

Q

a(@)y(@)p() do + / By(@)p(x) ds

|a]=1
:/ﬂu(x)up(x) ds
r

on the other-hand, for p we obtain the test function y € W§°{a,, 2} that

> /Q%(D“P)(w)(my)(l“) dw+/ﬁ<1($)p($)y(w) dw+/rﬁp($)y($) ds

|a]=1

:/Q@—zd)dx

since the left hand sides are equal the assertion immediately follows and we find that

/Q (F— za)y = / Bp(x)u ds

/(/\a + Bp)(u—1u) ds >0 V. u€ U (3.5)
r

substitute in (3.3), we obtain

Theorem 3.3. Let @ denote an optimal control for (P) and let § denote the associated state. Then the adjoint
equation (3.4) has a unique weak solution p that satisfies the variational inequality

/(Aa + Bp)(u—a) ds >0 V oue Uy (3.6)
T

Conversely, every control @ € U,q which together with its associated state §j = y(u) = Su and the solution p to
(3.4) satisfies the variational inequality (3.6) is optimal solution to (P) .

In this case, we obtain that

Uq () if  Bz)p(x) + Aa(z) >0
u(x) = q € ua(z),w(x)] if  Blx)p(e) + Mu(z) =0 (3.7
up () if B(z)p(x) + Aa(z) <0

and the weak minimum principle becomes

min  {(B(z)p(z) + Au(z))v} = {(B(2)p(z) + Au(z))u(z)}

wg () <v<up(x)

for almost every x € I.
In addition, we have the following result.
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Theorem 3.4. (Minimum Principle)
Suppose that @ is an optimal control for (P) and let p denote the associated adjoint state. Then, for almost every
x € I, the minimum

‘ Ao
min r)plz)v + =v
oy gu,,@){ﬁ( Jp()v + v}

is attained at v = u(x).
Hence, for A > 0 we have for almost every « € I the projection formula
a(x) = P[ua(m),ub(x)]{%lﬁ(x)p(m)} (3.8)
Conversely, a control @ € U, is optimal if it satisfies, together with the associated adjoint state p, the projection

formula (3.8). Summarizing, a control u is optimal for (P) if and only if u satisfies together with y and p.
The following first-order necessary optimality system

Ay=0 in € Ap=17—zg

e =Bu—-y), |w=012- pp+sp=0
u € Uyg

(At + Bp,v — U2y > 0 V ve Uy

4. The Formal Lagrange Principle

In this section, we derive the optimality conditions by utilizing the Lagrange functional.

We treat all Lagrange multipliers as function in L?(T") without any proof. Therefore, we call this procedure
”formal”. But the main goal of this section is to explain the use strategy which can be also applied to much more
complex problems.

The Lagrangian function for problem (P) is defined by

Ly, usp) = T(y,u) + /

Ayp: da + / (!l — B(u— y))p ds
Q

r

where p; : Q — R,and, ps : I' — R are the Lagrange multipliers associated with the partial differential equation
and bounded condition, respectively.

We set p = (p1, p2). From the Lagrange principle we conclude that (7, @) together with the Lagrange multipliers
p1, p2 satisfies the first-order necessary optimality conditions for

(mir; L(y,u,p), u € Uyg
Y, u

Since y is now formally unconstrained, the derivative of £ with respect to y has to vanish that is
D,L(y,u,p)h=0 for all y € W>{a,,2}

is equivalent with the weak form (3.4).
Moreover, from the box constraints for « we deduce the variational inequality

D L(§,u,p)(u—1u) >0  forall  u€ Uy

is equivalent with the variational inequality (3.6).
The proof can be found in [3].
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5. Conclusion

This study examined a boundary optimal control problem governed by an infinite-order linear elliptic system under
pointwise control constraints. By establishing an appropriate functional framework for infinite-order operators, we
proved the well-posedness of the state equation and derived the necessary optimality conditions using variational
methods and the Lagrange multiplier approach. The analysis showed that, despite the additional complexities
introduced by the infinite-order operator and the presence of pointwise constraints, the control problem remains
mathematically tractable and admits a unique optimal solution. The results extend classical elliptic optimal control
theory to a more general and nonlocal setting. Future work may focus on semilinear extensions, numerical
approximation schemes, and further applications of infinite-order models.
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