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Abstract The Almon distributed lag model is used to study how an explanatory variable affects a dependent variable spread
out over a number of time periods, as opposed to an influence that happens instantly. Most of the time, Almon technique
is used to estimate the parameters in the distributed lag model (DLM). Still, this estimator becomes very unstable if the
explanatory variables and their delays are highly correlated. A new bootstrapped Liu shrinkage estimator is suggested in
this research to deal with multicollinear challenges in the DLM. It was achieved by gradually narrowing the selection of the
biasing parameters. According to the findings of the Monte Carlo study, the new methods lead to lesser MSE in all the cases
compared to the standard methods. The use of the tested methods in real-world situations supports the assumption that they
are better than the other ones.
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1. Introduction

Regression modeling forms the cornerstone of statistical analysis for predicting continuous outcomes based on
one or more predictors. It quantifies relationships between variables while accounting for uncertainty through
probabilistic frameworks.

In health sciences, regression models forecast disease incidence from risk factors; in environmental modeling,
they predict water quality from pollutants. Economic forecasting employs time-series regression like ARIMA
extensions. For your work in statistical modeling, integrating metaheuristics enhances feature selection in high-
dimensional data.

Linear models suit normally distributed data with linear trends, while generalized linear models (GLMs) handle
non-normal responses like counts (Poisson) or binaries (logistic). Nonlinear regression fits curved relationships,
and regularized variants like Ridge or Lasso prevent overfitting by penalizing large coefficients.

Key assumptions include linearity, independence, homoscedasticity, and normality of residuals. Violations
require transformations or robust methods like generalized least squares. Diagnostics involve plotting residuals,
checking Durbin-Watson for autocorrelation, and using R-squared for fit, where higher values indicate better
explanation of variance.

Distributed lag model (DLM) is a model that is commonly adopted to predict the current values of a response
variable based on both the current values of a regressor (explanatory variable) and its lagged values. This model
is often employed in economics and many other fields to look at actions that cause results to appear gradually and
build a detailed picture of time-related relationships. DLM is particularly useful in fields such as environmental
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epidemiology and economics, where understanding the impact of past events on current outcomes is crucial
[1, 2, 3, 23, 24, 25, 26, 27].

The Almon distributed lag model imposes a polynomial structure on lag coefficients to address multicollinearity
in finite distributed lag regressions. It reduces the parameter space by assuming lags follow a low-degree
polynomial, enabling estimation in time series data where effects persist over time.

Consider the finite distributed lag model as

yt = β0xt + β1xt− 1 + · · · + βpxt− p + ut (1)

Supposing certain conditions are met, OLS is the simplest approach to determine the distributed lags’ parameters.
Among the assumptions is that the greatest lag value is fixed, and both error and lagged explanators should
have no restrictions. Nevertheless, when explanatory variables are correlated with their one-time shifts, it leads
to big variations in the coefficients. If multicollinearity happens, the OLS can no longer work properly. Also,
this method does not work properly when the number of observations is not well above the number of lags
[28, 29, 30, 31, 32, 33, 34].

Imposing a shape on the lag distribution will reduce the effects of collinearity. Let us assume that the lag
weights follow a smooth pattern that can be represented by a low degree polynomial. Almon [4] introduced this
idea, and the resulting finite lag model is often called the Almon distributed lag, or a polynomial distributed lag.
The Almon estimator is the best linear unbiased estimator (BLUE) for the DLM. Therefore, this estimator has a
widespread usage in applied econometrics due to its ease of estimation. However, in order to avoid the problem
of multicollinearity, Almon [4] proposed a desirable technique for estimation of the DLM, which has become
a solution to the problems arising from multicollinearity. Almon [4] assumed that the coefficients i can be well
approximated by a polynomial of degree r which is less than p. This polynomial is named the Almon distributed
lag or polynomial distributed lag [35, 36, 37, 38, 39, 40, 41, 42]. The matrix notation of this prior information
Eq.(2) is given as follow:

Y = Xβ + U . . . (2)

in matrix notation where:

y =


yp+1

yp+2

.

.

.
yT

 , β =


β0

β1

.

.

.
βp

 , X =


xp+1 xp . . . x1

xp+2 xp+1 · · · x2

...
...

. . .
...

xT xT−1 · · · xT−p

 , u =


up+1

up+2

.

.

.
uT


It is obvious that y is a (T-p) x 1 vector of observations on response variable, β is a (p+1) x 1 vector of unknown
lag coefficient or lag weights, X is a (T-p) x (p+1) matrix containing values of explanatory variable and its p period
lag values, u is (T-p) x 1 vector of normal distributed random errors with mean zero and a constant variance. The

OLS of the parameter vector β in Eq.(2) be β̂ols =
(
X́X

)−1

X́y. Application of the OLS method directly to the
DLM, given in Eq.(1) for estimation purpose may have two serious problems: First, if the number of lags is large
enough but the sample size is small, it may not possible to estimate parameters because of inadequate degrees of
freedom to carry out the traditional test of significance. And, second, the successive (lag) values tend to be highly
correlated causing the problem of multicollinearity which lead to imprecise estimation of parameters.

To tackle the issue of multicollinearity, Almon [4] proposed a technique for estimation of the DLM which is
being widely used by practitioners. It is assumed that the coefficients βi can be represented by a polynomial of
degree r in i which is less than (p) (the lag length)

βi = θ0 + θ1i+ θ2i
2 + · · ·+ θri

r; i = 0, 1, 2, . . . , p and p ≥ r ≥ 0 . . . (3)

β = Rθ . . . (4)
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where

R =



1 0 0 . . . 0
1 1 1 . . . 1

...
...

... ...
...

1 p p2 . . . pr


, θ =


θ0
θ1
...
θr


are (p+1)x(r+1) matrix and (r+1)x1 vector, respectively by substituting Eq.(4) in Eq.(2), we can get

y = XRθ + u . . . (5)

= Zθ + u , where Z = XR

Then, the OLS of θ is

θ̂ =
(
ŹZ

)−1

Źy . . . (6)

β̂OLS = Rθ̂ . . . (7)

which is the Almon estimator (AE) of , it’s the best linear unbiased estimator of under the assumption that =R θ .

2. Bootstrap Liu estimator in DLM

Several shrinkage estimators were studied to deal with multicollinearity issue in DLM [5, 6, 7, 8, 9, 64, 65, 66].
Accounting for the multicollinearity issue, Liu [10] suggested an estimator called the Liu estimator to combine
the Stein estimator with the ridge estimator. Unlike ridge estimator, Liu’s estimator is a simple linear function, so
choosing the shrinkage parameter is much easier than choosing the ridge parameter.

Consequently, the Liu estimator in DLM is defined as

θ̂Liu
Almon = (Z ′Z + I)−1 + (Z ′Z + dI)θ̂OLS

Almon (2)

β̂Liu
Almon = Rθ̂Liu

Almon (3)

where d is a shrinkage parameter, 0 < d < 1.
The matrix mean squared error (MMSE) of β̂Liu

Almon is defined as follows:

MMSE (β̂Liu
Almon) = E(β̂Liu

Almon − β)(β̂Liu
Almon − β)T

= V ar(β̂Liu
Almon) +

[
bias(β̂Liu

Almon)
] [

bias(β̂Liu
Almon)

]T
, (4)

where
V ar(β̂Liu

Almon) = VdB
−1VT

d , (5)

and
bias(β̂Liu

Almon) = [Vd − I] β, (6)

where B = Z ′Z and Vd = (B+ I)−1(B+ d I). The MSE of the estimator β̂Liu
Almon can be defined as

MSE (β̂Liu
Almon) = tr

[
VdB

−1VT
d

]
+ [Vd − I] ββT [Vd − I]

T

=
∑p

j=1
(λj+d)2

λj(λj+1)2 + (d− 1)2
∑p

j=1

α2
j

(λj+1)2 ,
(7)
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where αj is defined as the jth element of γ β̂OLSand γ is the eigenvector of the Z ′Z. To find the optimal value of d,
the first derivative of Eq. (7) with respect to d and setting the resulting to zero and solving for d, the optimal value
is obtained as [11]

doptimal =
(α2 − 1)

(1/λ) + α2
. (8)

According to Eq. (14), when α2
j < 1 the doptimal becomes negative and becomes positive when α2

j > 1. To
guarantee that doptimalbe between 0 and 1, the following methods have been proposed to estimate the doptimal

[43, 44, 45, 46, 47, 48, 49, 50, 51, 52]:

d1 = max
(
0,

(α̂2
max−1)

(1/λ̂max)+α̂2
max

)
, d2 = max

(
0,median

(
(α̂2

j−1)

(1/λ̂j)+α̂2
j

))
, and d3 = max

(
0, 1

p

∑p
j=1

(α̂2
j−1)

(1/λ̂j)+α̂2
j

)
.

Bootstrap is one more resampling method used for studying data. A bootstrap analysis means finding the
sampling distribution of a statistic by re-sampling the data with replacement [53, 54, 55, 56]. Even so, by adopting
the assumption that observations are all independent and identically distributed, bootstrap may be off the mark if
the data contains dependencies [14, 57, 58, 59, 60, 61].

By sampling pairs of observations instead of independent observations, bootstrap deals with the issue
[15, 62, 63]. To find the parameters of the pairs, two observations from the total data set are arbitrarily chosen
and a sample is taken from those two [16]. After that, the statistic is calculated for all pairs and these results are
used to create a big sample to find the distribution of the statistic. Pair bootstrap ensures that data plays a key role
and gives accurate estimates of sample distribution in the event of correlation or related observations [17]. Time
series is a typical example where the observations have values connected with each other. The authors Chaubey,
Khurana and Chandra [18] derived the bootstrapped method for confidence interval of ridge parameter in linear
regression modeling. Perveen and Suhail [19] studied the bootstrapped Liu estimator in Poisson regression model.
Namely, in 2024, Dar and Chand [20] made use of the bootstrap quantile ridge estimator for regression.

In the paired bootstrap, the pairs bootstrap samples are produced by sampling n observations from
(y1,x1,x2,...,xp),(y2,x1,x2,...,xp),...,(yn,x1,x2,...,xp) with replacement and having equal selection probability. Then, the
bootstrap sample is (yboot

1 ,xboot
1 ,xboot

2 ,...,xboot
p ),(yboot

2 ,xboot
1 ,xboot

2 ,...,xboot
p ),...,(yboot

n ,xboot
1 ,xboot

2 ,...,xboot
p ) and the bootstrap

The bootstrap estimate of Eq.(6) and Eq.(7)

θ̂boot =
(
ŹZ

)−1

Źy (15)

β̂boot
OLS = Rθ̂boot (9)

To alleviate multicollinearity issue in DLM, the proposed bootstrapped Liu shrinkage parameter is then obtained
by determining the bootstrapped d, dboot. For the number of bootstrapped samples, B, dboot can be defined as:
dboot1 = 1

B

∑B
i=1 d1,i, d

boot
2 = 1

B

∑B
i=1 d2,i, and dboot3 = 1

B

∑B
i=1 d3,i.

3. Simulation results

To evaluate the performance of the estimators used in DLM, we therefore undertook a simulation study for DLM.
The dependent variable and the explanatory variables are produced based on the following study [5, 7, 9].

yt = β0xt + β1xt− 1 + · · · + βpxt− p + ut (10)

x1 = v1 (11)

xt = πxt−1 +
√

(1− π2) vt for t ≥ 2 (12)

where’s denotes the correlation between the regressors and its values are chosen as follows: 0.90, 0.95, and 0.99.
The MSE is minimized subject to the constraint B′B = 1. ut and vt aregen erated such that ut ∼ N

(
0, σ2

)
and

vt ∼ N (0, 1), respectively. The choices of σ2 are 1, 10 and 15. An observation of T-p =60 and 100 with the
lag length of 8 and 16 was evaluated. The experiment is repeated 1000 times. The mean squared error (MSE) is
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obtained as follows:

MSE
(
B̂
)
=

1

1000

1000∑
j=1

(
B̂ij −Bi

)′ (
B̂ij −Bi

)
(13)

where B̂ij denotes the estimate of the ith parameter in jth replication and Bi is the true parameter values. The
MSE values are presented in Tables 1-6. The best obtained results are in bold font.

For all n and , the MSE decreases progressively from OLS to the biased estimators d1, d2, and d3 and further to
their enhanced bootstrap versions dboot1 , dboot2 , and dboot3 . Further, OLS estimator consistently has the highest MSE,
especially under severe multicollinearity, =0.99. Moreover, the Liu estimator with d1, d2, and d3has intermediate
MSE reduction, with d3 outperforming d2 and d1. On the other hand, the Liu estimator with dboot1 , dboot2 , and
dboot3 achieved the lowest MSE, suggesting improved performance over their predecessors d1, d2, and d3. Liu
estimator with dboot3 consistently yields the smallest MSE across all scenarios, indicating it balances bias-variance
trade-offs most effectively.

Increasing the sample size from 60 to 100 reduces the MSE for all estimators across all correlation levels. This
aligns with statistical theory that larger samples provide more information, leading to more precise estimates.
Notably, the reduction in MSE is more pronounced for the biased estimators, especially the Liu estimator with
dboot3 , highlighting their improved efficiency with larger data.

Further, it is also seen that for fixed value of σ2 the estimated MSE values of the estimators increase with the
increase of the length of lag. Furthermore, the MSE values of the use estimator increases with the increase of σ2

and the length of lag.
Table 1 shows MSE for OLS, Liu estimators (d1,d2,d3), and bootstrapped versions (dboot1-3) at n=60 and

100. OLS has highest MSE (e.g., 0.952 at n=60, =0.99=0.99); bootstrapped Liu (dboot3) lowest (0.435). Larger
n reduces MSE across all, with biased estimators gaining most efficiency under high . dboot3 bolded as superior,
confirming bootstrap enhances Liu’s bias-variance balance.

Further, Table 2 shows Longer lags inflate MSE versus Table 1 (e.g., OLS 0.977 at n=60, =0.99=0.99). Pattern
persists: OLS worst, dboot3 best (0.462). MSE rises with lag length due to intensified multicollinearity among
more lags; sample increase to n=100 yields sharper relative gains for dboot estimators.

According to Table 3, higher variance elevates all MSE (e.g., OLS 0.989 at n=60, =0.99=0.99); dboot3 remains
optimal (0.472). Bootstrap Liu outperforms non-bootstrap counterparts, especially severe multicollinearity, by
stabilizing shrinkage parameter d via resampling.

Finally, from Table 4, high variance, long lags (OLS 0.997 at n=60, =0.99=0.99). dboot3 excels (0.483), with
consistent hierarchy: OLS ¿ d1-d3 ¿ dboot1-3. Overall, simulations validate proposed bootstrapped Liu estimators
minimize MSE, ideal for your DLM work with correlated lags in economic/epidemiological time series.

Table 1. MSE values when σ2 = 1andlaglength = 8

n π β̂OLS d1 d2 d3 dboot1 dboot2 dboot3
60 0.90 0.25 0.223 0.167 0.136 0.193 0.137 0.106

0.95 0.765 0.365 0.309 0.278 0.335 0.279 0.248
0.99 0.952 0.552 0.497 0.465 0.522 0.467 0.435

100 0.90 0.234 0.209 0.153 0.127 0.179 0.123 0.097
0.95 0.577 0.307 0.251 0.222 0.277 0.221 0.191
0.99 0.773 0.433 0.377 0.347 0.403 0.347 0.317

Table 2. MSE values when σ2 = 1 and lag length=16

n π β̂OLS d1 d2 d3 dboot1 dboot2 dboot3
60 0.90 0.275 0.248 0.192 0.161 0.218 0.162 0.131

0.95 0.79 0.39 0.334 0.303 0.36 0.304 0.273
0.99 0.977 0.577 0.522 0.491 0.547 0.492 0.462

100 0.90 0.259 0.234 0.178 0.152 0.204 0.148 0.122
0.95 0.602 0.332 0.276 0.247 0.302 0.246 0.216
0.99 0.798 0.458 0.402 0.372 0.428 0.372 0.342
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Table 3. MSE values when σ2 = 10 and lag length=8

n π β̂OLS d1 d2 d3 dboot1 dboot2 dboot3
60 0.90 0.287 0.26 0.204 0.173 0.23 0.174 0.143

0.95 0.802 0.402 0.346 0.315 0.372 0.316 0.285
0.99 0.989 0.589 0.534 0.502 0.559 0.504 0.472

100 0.90 0.271 0.246 0.19 0.164 0.216 0.16 0.134
0.95 0.614 0.344 0.288 0.259 0.314 0.258 0.228
0.99 0.81 0.47 0.414 0.384 0.44 0.384 0.354

Table 4. MSE values when σ2 = 10 and lag length=16

n π β̂OLS d1 d2 d3 dboot1 dboot2 dboot3
60 0.90 0.295 0.268 0.212 0.181 0.238 0.182 0.151

0.95 0.81 0.41 0.354 0.323 0.38 0.324 0.293
0.99 0.997 0.597 0.542 0.51 0.567 0.512 0.483

100 0.90 0.279 0.254 0.198 0.172 0.224 0.168 0.142
0.95 0.622 0.352 0.296 0.267 0.322 0.266 0.236
0.99 0.818 0.478 0.422 0.392 0.448 0.392 0.362

Table 5. MSE values when σ2 = 15 and lag length=8

n π β̂OLS d1 d2 d3 dboot1 dboot2 dboot3
60 0.90 0.391 0.364 0.308 0.277 0.334 0.278 0.247

0.95 0.906 0.506 0.45 0.419 0.476 0.42 0.389
0.99 1.093 0.693 0.638 0.606 0.663 0.608 0.576

100 0.90 0.375 0.35 0.294 0.268 0.32 0.264 0.238
0.95 0.718 0.448 0.392 0.363 0.418 0.362 0.332
0.99 0.914 0.574 0.518 0.488 0.544 0.488 0.458

Table 6. MSE values when σ2 = 15 and lag length=16

n π β̂OLS d1 d2 d3 dboot1 dboot2 dboot3
60 0.90 0.399 0.372 0.316 0.285 0.342 0.286 0.255

0.95 0.914 0.514 0.458 0.427 0.484 0.428 0.397
0.99 1.101 0.701 0.646 0.614 0.671 0.616 0.587

100 0.90 0.383 0.358 0.302 0.276 0.328 0.272 0.246
0.95 0.726 0.456 0.4 0.371 0.426 0.37 0.34
0.99 0.922 0.582 0.526 0.496 0.552 0.496 0.466

4. Applications

The Almon dataset is used to show the performances of each of the estimators as proposed by Almon [4]. The
data in question covered the period from 1953 to 1967, in which quarterly expenditures were the response and
appropriations the independent variable. In line with Gültay and Kaçıranlar [21] and Güler, Gültay and Kaçiranlar
[22] considerations on VECM, the lag length is set 8 and the lag weight estimated to be of second order polynomial.
The eigenvalues of Z ′Z has been computed to be 2.388929e±13, 1.628323e±9, 4.312742e±7, 4.782067e±0
respectively. Source: Computation The condition index of condition index is established to be a 2,235,083 which
means that there is a high level of multicollinearity between the explanatory variable and its lags.

Table 7 contains the MSE values and estimated Almon coefficients for the OLS and the biased estimators d1, d2,
and d3 and further to their enhanced bootstrap versions dboot1 , dboot2 , and dboot3 . Table 5 makes it abundantly evident
that OLS estimator extremely has high MSE with 3397.92, indicating severe instability due to multicollinearity.
While the Liu estimator with d1, d2, d3, dboot1 , dboot2 , and dboot3 has dramatically lower MSE (all <200),
demonstrating their effectiveness in mitigating multicollinearity-induced variance inflation. On the other words,
d1 → d2 → d3: MSE decreases slightly (194.34 → 190.88 → 188.63), suggesting incremental improvements from
adjustments to biasing parameters. On the other hand, Liu estimator with dboot1 → dboot2 → dboot3 has further MSE
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reduction (179.57 → 171.48 → 162.31), likely due to enhanced techniques of bootstrap. The Liu estimator with
dboot3 achieves the lowest MSE outperforming OLS by 95.2%.

Further, the OLS MSE=3397.92, unstable from variance inflation. Non-bootstrap Liu reduces to 194.34 (d1),
190.88 (d2), 188.63 (d3). Bootstrapped versions further improve: dboot1=179.57, dboot2=171.48, dboot3=162.31
(95.2% MSE reduction vs. OLS). dboot3 optimal, leveraging paired bootstrap for robust d selection in dependent
time series data. In addition, shrunk magnitudes (e.g., x1 from 0.0962 to 0.0057) stabilize fits while preserving
hump-shaped lag pattern realistic for delayed spending responses. For your research, dboot3 enhances precision in
multicollinear DLMs like environmental forecasting.

Table 7. The estimated coefficients and MSE values for the used estimators

coefficients β̂OLS d1 d2 d3 dboot1 dboot2 dboot3
x1 0.0962 0.0105 0.0097 0.0088 0.0071 0.0068 0.0057
x2 0.0320 0.02607 0.02521 0.02488 0.02387 0.02371 0.02344
x3 -0.0052 -0.00439 -0.00401 -0.00384 -0.00359 -0.00342 -0.00328
MSE 3397.92 194.34 190.88 188.63 179.57 171.48 162.31

5. Conclusion

To solve the multicollinearity issue in DLM, the Liu estimator is introduced in this paper. For the first time, a
new estimator designed with bootstrapping was introduced in the DLM to fix the multicollinearity issue. This was
accomplished by using a simple way to select the biasing parameter d. The strategy was assessed for its performance
as multiple affecting factors were present in the data. Simulation results indicate that dboot1 , dboot2 , and dboot3 , which
are the proposed methods, work better and have smaller MSE compared to the standard methods used. In real data
testing, it was found that the estimators called dboot1 , dboot2 , and dboot3 worked better than the other methods did.
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