

Image Recovery from Presence of Salt-and-Pepper Noise using Robust Conjugate Gradient Method

Ayad Abdulaziz Mahmood ¹, Saif A. Hussein ², Dr. Basim A. Hassan ^{3,*}

¹Department of Statistics and Information Techniques Technical, College of Management, Mosul, Northern Technical University

²Department of Mathematic, College of Computers Sciences and Mathematics, University of Mosul, IRAQ

³Salladdin in Education Directorate, Tikrit, IRAQ

Abstract Conjugate gradient techniques concentrate on the conjugate of the coefficient. In this research, we provide a novel coefficient conjugate gradient method to remove impulsive noise from images using the Taylor series. We have presented an intriguing conjugate gradient approach and a search strategy based on the new coefficient conjugate. Under certain conditions, we show that the proposed method converges globally. Our numerical findings show that this method works well for picture restoration.

Keywords Optimization, Robust conjugate gradient, Reducing impulse noise

AMS 2010 subject classifications 65K05, 65F10, 90C06

DOI: 10.19139/soic-2310-5070-3213

1. Introduction

The noisy pixel cleaning model is one of many complex optimization issues in engineering and management that can really be reduced to optimization problems and solved:

$$f_\alpha(\Gamma) = \sum_{(\check{i}, j) \in \Omega} \left[\left| \Gamma_{\check{i}, j} - \Gamma_{\check{i}, j}^* \right| + \frac{\beta}{2} (2 \times Z_{\check{i}, j}^1 + Z_{\check{i}, j}^2) \right]. \quad (1)$$

where $Z_{\check{i}, j}^1 = 2 \sum_{(\Gamma, \Gamma) \in \check{i}, j \cap c} \phi_\alpha(\Gamma_{\check{i}, j} - \Gamma_{\Gamma, \Gamma})$, $Z_{\check{i}, j}^2 = \sum_{(\Gamma, \Gamma) \in \check{i}, j \cap c} \phi_\alpha(\Gamma_{\check{i}, j} - \Gamma_{\Gamma, \Gamma})$, see [1, 2, 22]. Image restoration uses, $\Gamma_{\check{i}, j} = \left[\Gamma_{\check{i}, j} \right]_{(\check{i}, j) \in \Omega}$ is the picture's pixel value at position (\check{i}, j) , $\Gamma_{\check{i}, j}^*$ is a column direction of length $|N|$ ordered lexicographically, $\phi_\alpha = \sqrt{\alpha + \Gamma^2}$ is the edge-preserving potential function with parameter $\alpha > 0$, and β is the parameter under the right circumstances [2, 21]. The work plan is depicted in the flowchart that follows:

*Correspondence to: Dr. Basim A. Hassan (Email: basimah@uomosul.edu.iq). Department of Mathematic, College of Computers Sciences and Mathematics, University of Mosul, IRAQ.

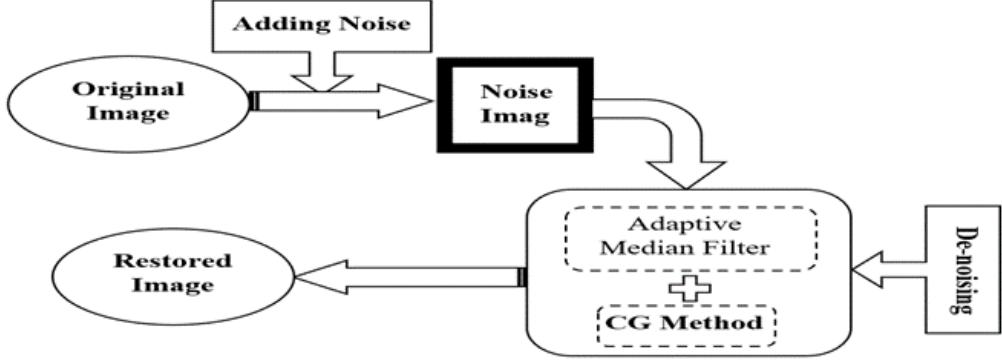


Figure 1. Our experiment's block diagram

Conjugate gradient methods are a good match for optimization issues since they can be readily repeated and need little memory:

$$f(\Gamma^*) = \min_{x \in R^N} f(\Gamma). \quad (2)$$

see [3], where f is a smooth model. In this paper, different types of problems are solved using the nonlinear conjugate gradient technique:

$$\Gamma_{k+1} = \Gamma_k + \alpha_k d_k. \quad (3)$$

Using α_k as a step length, this yields the following search direction [12]:

$$d_{k+1} = -g_{k+1} + \beta_k d_k \quad (4)$$

where robust coefficient is denoted by β_k , (see [4, 5]. The global convergence properties of convolutional gradient algorithms are noteworthy. The best convergence results were obtained using the method suggested by Fletcher and Reeves (FR) [6]. However, one of the best-performing CG algorithms, the Hestenes-Stiefel (HS) technique, failed to satisfy the requirement for global convergence in classical line search [7]. For example, protocols:

$$\beta_k^{HS} = \frac{y_k^T g_{k+1}}{d_k^T y_k}, \quad \beta_k^{FR} = \frac{\|g_{k+1}\|^2}{\|g_k\|^2} \quad (5)$$

where $y_k = g_{k+1} - g_k$. In-depth research materials describing modern computer graphics techniques with impressive results may be found in [8]. One of the elements supporting the validity of the Hestenes-Stiefel formula is its ability to satisfy the conjugacy conditions. This is one of the elements that lends the formula's validity the highest level of confidence. As a direct result, it becomes an extremely practical mathematical instrument. You may use these many methods to speed up the Newton technique. The quasi-Newton approach in (4) can be approximated using d_{k+1} in accordance with the quasi-Newton direction principle, yielding the outcome that is most comparable to the other options. A parameter β_k that consequently:

$$-Q_{k+1}^{-1} g_{k+1} = -g_{k+1} + \beta_k s_k. \quad (6)$$

Nazareth [16] states that Q_{k+1} is a Hessian matrix. This most recent work aims to provide a globally convergent descent search approach [14]. Techniques that are full of ideas, like [9, 10, 17, 18], work well in theory and in practice. The numerical findings show that the novel strategy [1] is more effective than the optimisation method [11]. The step size in [3, 15] is determined by:

$$\alpha_k = -\frac{g_k^T d_k}{d_k^T G d_k} \quad (7)$$

In light of this, we made the decision to test a few more improvements, believing that if they worked, they may improve the numerical performance. Once the conjugate gradient parameter of robust conjugate gradient was determined, the need of the modifications was assessed using a Taylor series.

2. Deriving a new parameter

The Taylor series is a key idea in determining the new conjugate gradient parameter. By expanding the function around the current iterate, the gradient can be articulated as:

$$f(\Gamma) = f(\Gamma_{k+1}) - g_{k+1}^T \S_k + \frac{1}{2} \S_k^T Q(\Gamma_{k+1}) \S_k \quad (8)$$

and:

$$g_{k+1} = g_k + Q(\Gamma_k) \S_k \quad (9)$$

Employing the relations delineated in equations (8) and (9), the second-order curvature information can be approximated as:

$$\S_k^T Q(\Gamma_k) \S_k = 1/2 y_k^T \S_k + (f_{k+1} - f_k) - g_k^T \S_k \quad (10)$$

From this preliminary expression, a more concise and computationally advantageous form can be derived, which isolates the curvature in terms of the gradient projection along \S_k :

$$\S_k^T Q(\Gamma_k) \S_k = (g_k^T \S_k)^2 / (2 y_k^T \S_k + 2(f_k - f_{k+1}) + 2 g_k^T \S_k) \quad (11)$$

Through suitable algebraic manipulation, the resultant expression culminates in a matrix formulation of the form:

$$Q(\Gamma_k) = \frac{(g_k^T \S_k)^2 / (1/2 y_k^T \S_k + (f_{k+1} - f_k) - g_k^T \S_k)}{\S_k^T \S_k} I_n \quad (12)$$

where I_n is the identity matrix. By substituting equations (6) and (12), we arrive at the following compact relation:

$$\beta_k^{BBP} = \left(1 - \frac{\S_k^T \S_k}{(g_k^T \S_k)^2 / (1/2 y_k^T \S_k + (f_{k+1} - f_k) - g_k^T \S_k)} \right) \frac{g_{k+1}^T y_k}{\S_k^T y_k} \quad (13)$$

which serves as the foundation of the proposed modification.

The BBP Algorithm.

For the sake of simplicity, the proposed methodology is designated as the BBP method, which integrates the newly derived parameter into the classical conjugate gradient framework:

Stage 1. suppose $\Gamma_0 \in R^n$, let $k = 0$.

Stage 2. If $\|g_k\| \leq \epsilon$ stop.

Stage 3. In [19, 20]. Compute the α_k using Wolfe conditions:

$$\begin{aligned} f(\Gamma_k + \alpha_k \S_k) &\leq f(\Gamma_k) + \delta \alpha_k g_k^T \S_k, \\ \S_k^T g(\Gamma_k + \alpha_k \S_k) &\geq \sigma \S_k^T g_k. \end{aligned}$$

Stage 4. Update the parameter β_k using equation (13) and compute the next iterate $\Gamma_{k+1} = \Gamma_k + \alpha_k \S_k$.

Stage 5. Determine new search direction $\S_{k+1} = -g_{k+1} + \beta_k \S_k$.

Stage 6. Let $k = k + 1$, go to 2.

3. Convergence property

The following presumptions are used to determine the BBP algorithm's global convergence:

- i. The iterates remain in a bounded set $\Psi = \{\Gamma \in R^n : f(\Gamma) \leq f(\Gamma_0)\}$

ii. Lipschitz Gradient, there exists $L > 0$ as:

$$\|g(\Gamma) - g(\Gamma')\| \leq L\|\Gamma - \Gamma'\|, \forall \Gamma, \Gamma' \in R^n \quad (14)$$

In this case, the establishment of a stable connection is conditioned on the satisfaction of certain functional assumptions $\Gamma \geq 0$, as mentioned in $\|\nabla f(x)\| \leq \Gamma$, see [1, 7].

Determine the potential uses for the descent condition by analysing the theorem.

Theorem 1

he BBP algorithm produces search directions that are descent directions, i.e, ${}^T_{k+1}g_{k+1} \leq 0$.

Proof

Assume, by induction, we have ${}_0 = -g_0$, which yields $g_0^T {}_0 = -\|g_0\|^2 < 0$. By inference, we assume that for some iteration k , it holds that ${}^T_k g_k \leq 0$. When equation (5) is multiplied by g_{k+1} , the result is:

$${}^T_{k+1}g_{k+1} = -g_{k+1}^T g_{k+1} + \left(1 - \frac{{}^T_k g_k}{{}^T_k g_k / (1/2 {}^T_k y_k + (f_{k+1} - f_k) - g_k^T y_k)} \right) \frac{{}^T_k g_{k+1}}{{}^T_k y_k} {}^T_k g_{k+1} \quad (15)$$

We may infer from equations (9) and (11) that:

$${}^T_k y_k = (g_k^T y_k)^2 / (2y_k^T y_k + 2(f_k - f_{k+1}) + 2g_k^T y_k) \quad (16)$$

We obtain ${}^T_k y_k \leq L {}^T_k g_{k+1}$ and ${}^T_k y_k \leq L {}^T_k g_k$ by applying the Lipschitz continuity condition to the gradient. These boundaries can be substituted into the preceding equation to obtain:

$${}^T_{k+1}g_{k+1} \leq -\|g_{k+1}\|^2 + \left(\frac{L {}^T_k g_k - {}^T_k g_k}{{}^T_k y_k} \right) \frac{L({}^T_k g_{k+1})^2}{{}^T_k y_k} \quad (17)$$

The second term is insignificant since L and α_k^2 are both small enough, so:

$${}^T_{k+1}g_{k+1} \leq 0 \quad (18)$$

Therefore, ${}_{k+1}$ is a descent direction. \square

In accordance with Dai et al. [8], the convergence features of any conjugate gradient approach utilising the Wolfe-conditions may be expressed as follows.

Lemma 1

Examine the conjugate gradient approach, which is described by equation (16). Under the following circumstances, the produced search direction $d_{k+1} = -g_{k+1} + \beta_k {}^T_k g_k$, is guaranteed to be a downward direction by using the strong Wolfe line search:

$$\sum_{k>1} \frac{1}{\|{}_{k+1}\|^2} = \infty \quad (19)$$

Then:

$$\lim_{k \rightarrow \infty} (\inf \|g_{k+1}\|) = 0 \quad (20)$$

The convergence property may be proved using Lemma 1, which offers a theoretical basis for the findings presented in [4, 8, 13].

Theorem 2

Assume that $\Gamma > 0$ is a constant and that $\{g_{k+1}\}$ is the gradient sequence produced by the BBP algorithm. This way,

$$(\nabla f(\Gamma) - \nabla f(\Gamma'))^T \geq \Gamma \|\Gamma - \Gamma'\|^2, \forall \Gamma, \Gamma' \in R^n \quad (21)$$

The sequence then fulfils:

$$\lim_{k \rightarrow \infty} (\inf \|g_{k+1}\|) = 0 \quad (22)$$

Proof

Using equations (5) and (13), it follows that the update formulas yield:

$$\|g_{k+1}\| = \|g_k\| + \left| (1 - \omega) \frac{g_{k+1}^T y_k}{\$_k^T y_k} \right| \|\$_k\| \quad (23)$$

where $\omega = (g_k^T \$_k)^2 / (1/2 y_k^T \$_k + (f_{k+1} - f_k) - g_k^T \$_k)$. To make use of Cauchy's inequality,

$$\|g_{k+1}\| \leq \|g_k\| + |(1 - \omega)| \frac{\|g_{k+1}\| \|y_k\|}{\|\$_k\| \|y_k\|} \|\$_k\| \leq (2 - \omega) \|g_{k+1}\| \quad (24)$$

As a result, $\|\nabla f(x)\| \leq \Gamma$ gives us:

$$\sum_{k \geq 1} \frac{1}{\|g_k\|^2} \geq \left(\frac{1}{2 - \omega} \right) \frac{1}{\Gamma} \sum_{k \geq 1} 1 = \infty \quad (25)$$

Lemma 1 leads us to the conclusion that $\liminf_{k \rightarrow \infty} \|g_k\| = 0$. \square

4. Numerical Results

The effectiveness of the BBP algorithm in reducing salt-and-pepper impulse noise is assessed in this work. Table 1, which also shows the research procedure and the first test photographs, summarises several algorithm settings and methodologies. On a personal computer, MATLAB 2015a was used for all calculations. Comparisons between the FR technique and the BBP-based approaches are made. The primary goal is to identify practical methods for cutting carbon emissions, and the Signal-to-Noise Ratio (PSNR) is used to measure:

$$PSNR = 10 \log_{10} \frac{255^2}{\frac{1}{MN} \sum_{i,j} (\Gamma_{i,j}^r - \Gamma_{i,j}^*)^2} \quad (26)$$

where $\Gamma_{i,j}^r$ and $\Gamma_{i,j}^*$ represent the pixel values of the original and restored images, respectively. Both algorithms must meet certain convergence requirements in order to stop running:

$$\frac{|f(\Gamma_k) - f(\Gamma_{k-1})|}{|f(\Gamma_k)|} \leq 10^{-4} \text{ and } \|f(\Gamma_k)\| \leq 10^{-4} (1 + |f(\Gamma_k)|) \quad (27)$$

Both algorithms need the satisfaction of certain convergence conditions in order to stop running. The results of the trials are shown in Table 1, which includes the number of function evaluations (NF), iterations (NI), and Peak Signal-to-Noise Ratio (PSNR). Several research have looked at this subject from different angles [23, 24, 25, 26, 27, 28] in an effort to support the investigation's underlying theoretical framework. Recent advancements have been observed in the domain of Quasi-Newton methods, as evidenced by the citations [29, 30, 31, 32].

Table 1. Performance Results of FR and BBP Methods.

Image	Noise	FR-Method			BBP-Method		
		NI	NF	PSNR (dB)	NI	NF	PSNR (dB)
Le	50%	82.0	153.0	30.5529	55.0	111.0	30.6783
	70%	81.0	155.0	27.4824	52.0	104.0	27.2918
	90%	108.0	211.0	22.8583	52.0	104.0	22.8430
Ho	50%	52.0	53.0	30.6845	37.0	75.0	34.9332
	70%	63.0	116.0	31.2564	34.0	68.0	31.2440
	90%	111.0	214.0	25.2870	48.0	96.0	25.0390
El	50%	35.0	36.0	33.9129	27.0	53.0	33.8902
	70%	38.0	39.0	31.8640	30.0	59.0	31.8778
	90%	65.0	114.0	28.2019	40.0	79.0	28.2288
c512	50%	59.0	87.0	35.5359	28.0	55.0	35.1534
	70%	78.0	142.0	30.6259	31.0	61.0	30.7814
	90%	121.0	236.0	24.3962	40.0	79.0	24.8811

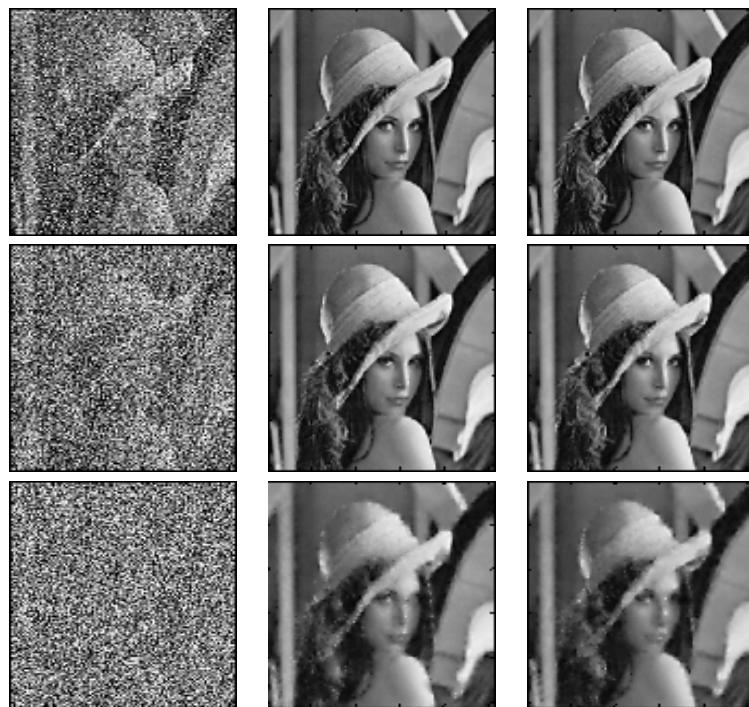


Figure 2. Fallouts of the FR and BBP algorithms for the 256x256 Lena picture are shown

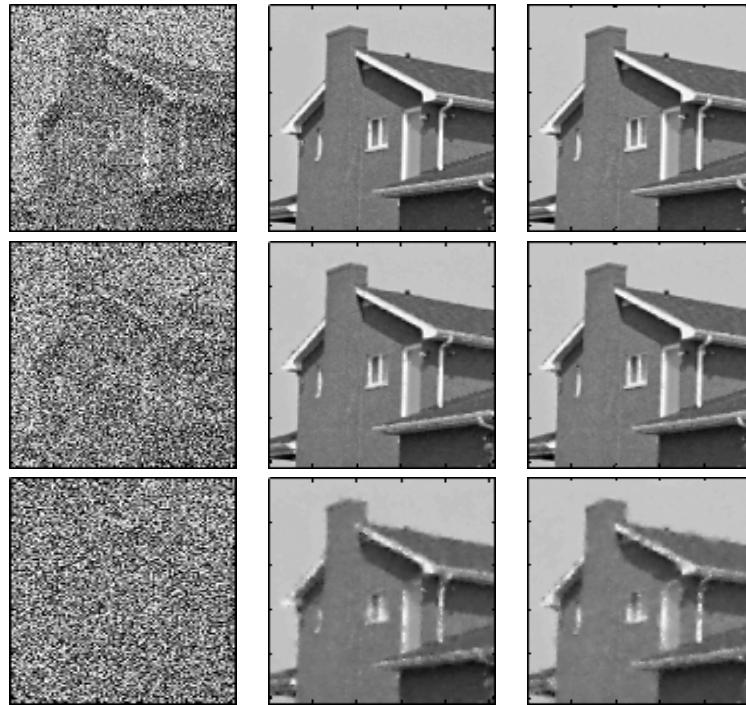


Figure 3. Fallouts of the FR and BBP algorithms for the 256×256 House picture are shown

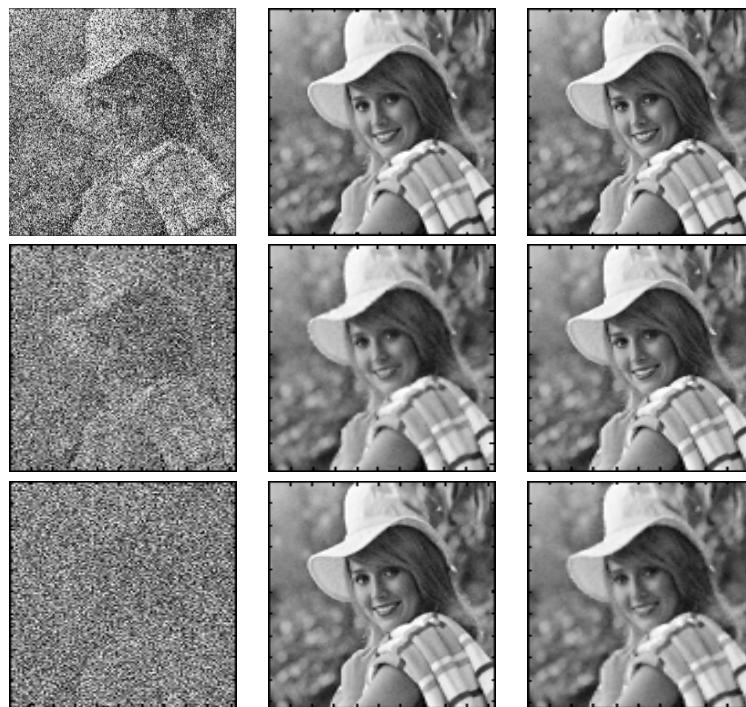


Figure 4. Fallouts of the FR and BBP algorithms for the 256×256 Elaine picture are shown

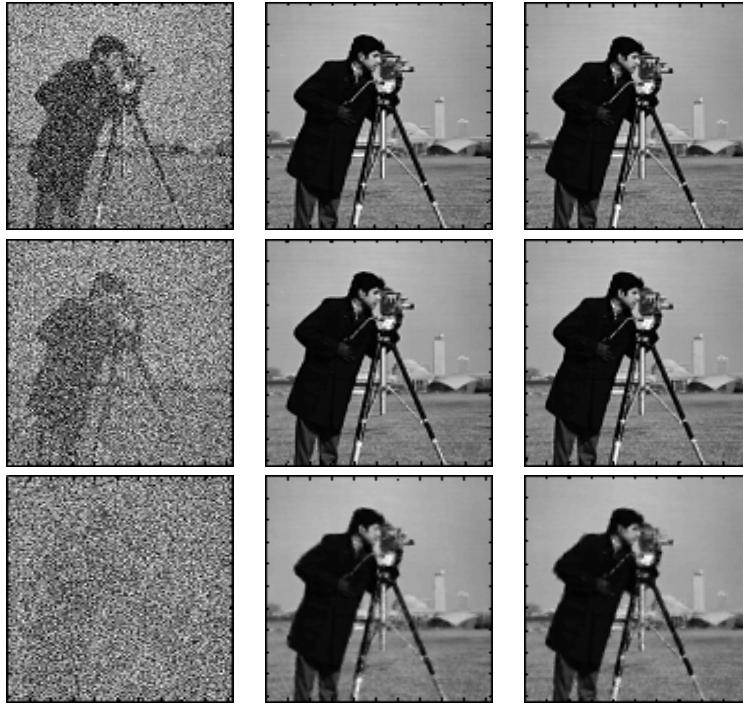


Figure 5. Fallouts of the FR and BBP algorithms for the 256×256 Cameraman picture are shown

5. Conclusions

In conclusion, we have combined the BBP approach with robust conjugate gradient equation. We were able to ascertain its worldwide convergence by employing the line search parameters. The results of the simulations have shown that BBP has the capability to drastically reduce the amount of function computations and iterations while keeping image quality.

REFERENCES

1. Basim A. Hassan and Maysoon M. Aziz, *Computational Experience with Modified Coefficients Conjugate Gradient for Image Restoration*, European Journal of Pure and Applied Mathematics, Vol. 16, No. 2, 2023, pp. 975–982.
2. Basim A. Hassan and Haneen A. Alashoor, *On image restoration problems using new conjugate gradient methods*, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 29, No. 3, March 2023, pp. 1438–1445.
3. Basim A. Hassan and Hameed M. Sadiq, *A new formula on the conjugate gradient method for removing impulse noise images*, Bulletin of the South Ural State University, Series Mathematical Modelling, Programming & Computer Software (Bulletin SUSU MMCS), Vol. 15, No. 4, 2022, pp. 123–130.
4. Basim A. Hassan and Hameed M. Sadiq, *Efficient New Conjugate Gradient Methods for Removing Impulse Noise Images*, European Journal of Pure and Applied Mathematics, Vol. 15, No. 4, 2022, pp. 2011–2021.
5. Basim A. Hassan and Haneen A. Alashoor, *A New Type Coefficient Conjugate on the Gradient Methods for Impulse Noise Removal in Images*, European Journal of Pure and Applied Mathematics, Vol. 15, No. 4, 2022, pp. 2043–2053.
6. Basim A. Hassan and Ali Ahmed A. Abdullah, *Improvement of conjugate gradient methods for removing impulse noise images*, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 29, No. 1, 2023, pp. 245–251.
7. Dai, Y. H. and Yuan, Y., *A nonlinear conjugate gradient method with a strong global convergence property*, SIAM Journal on Optimization, 1999, pp. 177–182.
8. Dai, Y. H., Han, J. Y., Liu, G. H., Sun, D. F., Yin, X., and Yuan, Y., *Convergence properties of nonlinear conjugate gradient methods*, SIAM Journal on Optimization, Vol. 10, 1999, pp. 348–358.
9. Fletcher, R. and Reeves, C. M., *Function minimization by conjugate gradients*, Computer Journal, Vol. 7, 1964, pp. 149–154.
10. Fletcher, R., *Practical Methods of Optimization (2nd Edition)*, John Wiley and Sons, New York, 1989.

11. Yuan G., Wei Z., and Lu X., *Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search*, Applied Mathematical Modelling, Vol. 47, 2018, pp. 811–825.
12. Hestenes, M. R. and Stiefel, E., *Methods of conjugate gradients for solving linear systems*, Journal of Research of the National Bureau of Standards, Vol. 49, 1952, pp. 409–436.
13. Hawraz N. Jabba and Basim A. Hassan, *Two-versions of descent conjugate gradient methods for large-scale unconstrained optimization*, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 22, No. 3, 2021, pp. 1643–1649.
14. Liu, Y. and Storey, C., *Efficient generalized conjugate gradients algorithms – Part 1: Theory*, Journal of Optimization Theory and Applications, Vol. 69, 1991, pp. 129–137.
15. Nocedal, J. and Wright, S. J., *Numerical Optimization*, Springer Series in Operations Research, Springer Verlag, New York, 2006.
16. Nazareth, L., *A relationship between BFGS and conjugate gradient algorithm and its implementation for new algorithms*, SIAM Journal on Numerical Analysis, Vol. 61, 1979, pp. 794–800.
17. Polak, E. and Ribiere, G., *Note sur la convergence de directions conjuguées*, Revue Française d’Informatique et de Recherche Opérationnelle, Vol. 16, 1969, pp. 35–43.
18. Wu, C. Y. and Chen, G. Q., *New type of conjugate gradient algorithms for unconstrained optimization problems*, Journal of System Engineering and Electronics, Vol. 21, No. 6, 2010, pp. 1000–1007.
19. Wolfe, P., *Convergence conditions for ascent methods*, SIAM Review, Vol. 11, 1969, pp. 226–235.
20. Wolfe, P., *Convergence conditions for ascent methods. II: Some corrections*, SIAM Review, Vol. 13, 1971, pp. 185–188.
21. Wei, X., Junhong, R., Xiao, Z., Zhi, L., and Yueyong, L., *A new DY conjugate gradient method and applications to image denoising*, IEICE Transactions on Information and Systems, No. 12, 2018, pp. 2984–2990.
22. Yu, G., Huang, J., and Zhou, Y., *A descent spectral conjugate gradient method for impulse noise removal*, Applied Mathematics Letters, Vol. 23, 2010, pp. 555–560.
23. Jasim, A.M., Subhi, Y.J., Hassan, B.A., On new secant-method for minimum functions of one variable, Journal of Interdisciplinary Mathematics, 2025, 28(1), pp. 291–296.
24. Jabbar, H.N., Subhi, Y.J., Hussein, H.N., Hassan, B.A., Solving single variable functions using a new secant method, Journal of Interdisciplinary Mathematics, 2025, 28(1), pp. 245–251.
25. Hassan, B.A., “A modified quasi-Newton methods for unconstrained optimization,” Italian Journal of Pure and Applied Mathematics, no. 42, 2019.
26. Hassan, B.A., F. Alfarag, and S. Djordjevic, “New step sizes of the gradient methods for unconstrained optimization problem,” Italian Journal of Pure and Applied Mathematics, 2021.
27. Ameen, T., Khalid, M., Abdulqahar, A.W. and Tariq, A., 2021, December, Exploiting Visual Content for Travel Location Recommendation. In 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET) (pp. 1-6). IEEE. DOI: 10.1109/ICECET52533.2021.9698444
28. Ameen, T. and Ali, A.A., 2022, Graph Attention Network for Movie Recommendation, International Journal of Intelligent Engineering & Systems, 15(3). DOI: 10.22266/ijies2022.0630.49
29. Hassan, B. A. and Sulaiman, R. M., “A new class of self-scaling for quasi-Newton method based on the quadratic model,” *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 21, no. 3, pp. 1830–1836, 2021. doi: 10.11591/ijeecs.v21.i3.pp1830-1836.
30. Hassan, B. A., “A modified quasi-Newton methods for unconstrained optimization,” *Italian Journal of Pure and Applied Mathematics*, no. 42, 2019.
31. Hassan, B. A. and Kahya, M. A. A., “A new class of quasi-Newton updating formulas for unconstrained optimization,” *Journal of Interdisciplinary Mathematics*, vol. 24, no. 8, pp. 2355–2366, 2022.
32. Hassan, B. A., Alfarag, F., Ibrahim, A., and Abubakar, A., “An improved quasi-Newton equation on the quasi-Newton methods for unconstrained optimizations,” *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 22, no. 2, pp. 389–397. doi: 10.11591/ijeecs.v22.i2.