
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. x, Month 202x, pp 0–18.
Published online in International Academic Press (www.IAPress.org)

A Lambda Lakehouse Architecture Bridging Streaming and Batch
Intelligence in Volatile and Scalable Financial Data Processing

Maryam MAATALLAH 1,*, Mourad FARISS 2, Hakima ASAIDI 1, Mohamed BELLOUKI 1

1LMASI, FPDN, Mohammed First University, Nador, Morocco
2ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco

Abstract The vast growth of digital financial market data necessitates new kinds of analytical infrastructure which can
process large volumes of data continuously, while maintaining reliability for use over extended periods as part of a long-term
historical processing requirement. Batch based platforms have difficulty meeting both these needs, whereas pure streaming
platforms often sacrifice analytical consistency with respect to their analysis. To address this limitation our paper proposes
a Unified Lambda-Lakehouse Architecture which allows Real-Time and Batch Processing to be performed together in a
single, ACID compliant. Apache Kafka captures live Bitcoin markets and performs the real-time processing via Spark
Structured Streaming, while the periodic storage of historical records and subsequent periodic reprocessing of those records
is accomplished via Amazon S3. Ultimately both the real-time and batch processing paths converge at a Delta Lakehouse;
thereby enabling schema enforcement, versioning, and time-travel queries. The proposed architecture places the emphasis
on combining the Speed Layer, Batch Layer, and Serving Layer into a single operational workflow atop a transactional
Lakehouse foundation. Advanced predictive models including LSTM, GRU, ARNN, and XGBoost are used to forecast
Bitcoin prices at daily, hourly, and minute granularities. Results from experiments indicate that the LSTM model consistently
produced the best results (RMSE = 2383.9, 539.3, 144.9) at the three respective levels.

Keywords Big Data, Lambda Architecture, Lakehouse, Delta Lake, Real-Time Analytics, Bitcoin Forecasting, GRU,
ARNN, LSTM, XGBoost.

DOI: 10.19139/soic-2310-5070-3222

1. Introduction

Cryptocurrency exchanges generate large volumes of streaming data that are volatile, irregular, and rapidly
evolving. At the same time, the rise of high-frequency trading activity has increased the need for data architectures
capable of delivering both real-time insights and reliable historical analysis. Systems built mainly on traditional
batch-processing, such as early Hadoop MapReduce, remain effective for large-scale computations but suffer
from high latency that is incompatible with real-time-sensitive decision-making [1]. Conversely, purely streaming-
oriented architectures excel in immediacy but often struggle to maintain analytical stability or to capture long-term
dependencies within financial time series [2].

To address these limitations, the Lambda Architecture was proposed by Marz and Warren [1, 3] as a hybrid
layer combining the two complementary paradigms of a Speed Layer for the low-latency stream processing
and a Batch Layer for the accurate historical computation. They propose that their outputs would converge in a
Serving Layer, providing unified and query-ready analytics [4, 6]. While useful, the Lambda introduces duplicated

∗Correspondence to: Maryam MAATALLAH (Email: maryam.maatallah.d23@ump.ac.ma). LMASI, FPDN, Mohammed First University,
Nador, Morocco.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 1

processing pipelines and considerable maintenance costs because the batch and speed layers must remain aligned
and reconciled over time [5, 7].

More recent developments in data engineering have provided the Lakehouse model, which provides a
combination of the openness of data lakes and the transactional characteristics of data warehouses. Technologies
such as Delta Lake, Apache Iceberg, and Hudi, provide ACID compliance, schema enforcement and time-travel
queries allowing consistent storage of structured and semi-structured information [8]. In this ecosystem, the
medallion layout has evolved into a standard Lakehouse design pattern for ensuring progressive data refinement
and quality assurance. However, the layered structure is primarily focused on the organization and curation of
the datasets and does not inherently provide a functional integration between streaming workloads and batch-
processing pipelines [9].

This research outlines the Lambda-Lakehouse Architecture an approach that will combine the principles of
the Lambda model and the Lakehouse ecosystem within a single operational architecture. The goal is not to
recreate the Medallion hierarchical structure, which primarily focuses on progressively cleaning and organizing
data, but instead to ensure that batch computations and streaming updates operate in a coordinated fashion using
a transactional Delta Lake core. This system utilizes Apache Kafka and Zookeeper to manage the continuous
ingestion [10, 11]; while Spark Structured Streaming [12] is used for real-time transformations; and Amazon S3
for scalable persistent storage [9]. The resulting data flow is then exposed via a lightweight Flask based web
interface that allows users to monitor activity and visualize results as they evolve, creating a direct link between
ingestion, processing, and analysis. To test how well the system can perform in forecasting tasks, we integrated
deep learning and machine learning models: LSTM, GRU, ARNN, and XGBoost. These models were trained
on Bitcoin price data from 2018-2025 [13], with observations available at daily, hourly, and minute resolutions.
This range of temporal granularity permits the examination of both long-term trends and rapid market fluctuations
[14, 15].

The rest of the paper is structured in the following way: Section 2 provides an overview of earlier work on
hybrid data-processing architectures and financial prediction methods. Section 3 describes the proposed Lambda-
Lakehouse framework and explains how its main components interact. Section 4 outlines the forecasting models
and the evaluation criteria used in the study. Section 5 reports and interprets the experimental results. Finally,
Section 6 summarizes the main contributions and points to possible directions for future work.

2. Related Work

The steady expansion of financial data has encouraged the design of architectures that can handle large historical
datasets while still providing fast analytical responses. Early technologies most notably Hadoop MapReduce and
its ecosystem: HDFS, Hive, Pig, were built with batch processing primarily for batch-oriented workloads, offering
scalability and reliability for massive data analysis [1]. The most significant disadvantage of these systems was that
although they provided scalable and reliable data storage, the delay (latency) involved with each system made it
impossible to use them in environments that require immediate action based on fast-changing market conditions
[2].

To solve some of the problems caused by these systems, Marz & Warren developed the Lambda Architecture
[1, 3] which included a dual-layer architecture. The first layer, called the ”Batch Layer,” would take the entire
historical dataset and run through it at the same time to find out what happened in the past. The second layer, called
the ”Speed Layer,” would take the new data that had just come in and process it right away to make fast decisions
about the current environment. Ultimately, the processed data from both layers would then be fed into a third layer
called the ”Serving Layer” that would provide a consolidated view of all the information for consumers. This
design brought many benefits, such as fault tolerance, scalability, and accurate views of the data in a distributed
computing environment. Many different industries, such as smart farming [6], air-ground surveillance systems [2],
etc., that require fast decision-making combined with deep analysis have used this model. However, in order to
operate effectively, they need to maintain and synchronize both layers, which adds complexity to the operation,
thus increasing the overall cost of operating the system [4, 5, 7]. To reduce the complexity of maintaining and

Stat., Optim. Inf. Comput. Vol. x, Month 202x

2 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

synchronizing the dual-layer model of Lambda, Kreps developed the Kappa Architecture [16], which suggests a
single data stream that can be replayed to recreate previous states of the data whenever needed. This greatly reduced
the amount of labor required to manage the system, as there were only two streams of data to manage. However,
if the problem is dealing with a massive historical data set or a large volume of updates per unit of time (which is
normal for financial markets), the cost of replaying the entire historical data set in order to get current state makes
Kappa much less efficient.

Recently, Lakehouse technology has become increasingly popular because of its ability to combine the flexibility
of data lakes with the reliability typically seen with data warehouses. Technologies like Delta Lake, Apache
Iceberg and Hudi allow for ACID compliant transactions, schema evolution, and time-travel queries enabling both
analytical consistency and scalability [8, 11]. With the rise of Lakehouse technology, the Medallion Architecture
developed by Databricks, where data is organized into Bronze, Silver and Gold, has emerged as a template
for incrementally improving data quality. While successful for structuring and refining datasets, the Medallion
Architecture does not consider the integration of batch and real-time processing pipelines [8, 9].

Research has continued to develop the understanding of Lakehouse systems. Azzabi et al. [17] provided a
comprehensive review of Data Lake systems and explained how the principles of designing these systems have
evolved toward Lakehouse designs. Similarly, Schneider [18] studied the technical basis for modern Lakehouse
and pointed out the major technical demands of modern Lakehouse technology (ACID compliance, metadata
management, and time travel query). Ait Errami [19] described the progression from Data Warehouse and Data
Lake to Lakehouse technology and showed how this progression enables increased elasticity and improved
schema management in large scale analytical workloads. Also, in a similar vein, Tagliabue and Greco [20]
presented reproducible data pipelines built with Bauplan and Nessie, focusing on version control, replicability,
and governance for distributed analytical environments.

Collectively, these papers show that the development of Lakehouse systems is maturing; however, they also
illustrate a persistent shortcoming, there is relatively little research into how batch and streaming pipelines can be
integrated into a single ACID compliant transactional layer specifically designed for financial data applications.
Within the financial industry, other researchers have explored hybrid or cloud-based architectures for forecasting
and trading-related tasks. For example, Fariss et al. [15] compared cloud and on-site environments for Forex
predictions using machine learning methods, and highlighted the need for architectures that support both scalability
and low latency.

Additionally, other researchers have employed Apache Kafka and Spark Streaming to process real-time
market data, demonstrating that these technologies significantly enhance throughput and fault tolerance [10, 11].
Nevertheless, only a small number of frameworks attempt to integrate Lambda’s dual-processing strategy and
the governance characteristics of Lakehouse technology into a single, coherent solution ensuring consistency,
scalability, and reproducibility. Simultaneously, developments in predictive modeling (notably LSTM, GRU, and
XGBoost) have enabled financial forecasting by training models to capture complex, non-linear patterns in time
series data. Studies that link large-scale data pipelines with deep learning forecasting methodologies [14, 15]
have found considerable improvements in both accuracy and system performance. Nonetheless, these studies
generally treat data engineering and prediction as distinct layers and do not propose an integrated architectural
vision connecting them.

3. The Proposed Approach

The traditional data processing paradigm has limitations in regards to speed in high velocity domains (such as
financial analysis) in terms of both the reliability/completeness of results generated through a batch system versus
the timeliness/ability to react quickly required for trading. The architecture proposed here also addresses some of
the same trade-offs identified in the literature; whereas the Kappa Architecture is able to support timely responses
to the business environment, it does so at the cost of being inefficient in the calculation of large portions of historical
data [21]. This limitation has led to the development of hybrid architectures which are attempting to combine the
reliability/completeness of results provided by batch processes with the timeliness to react to changing conditions

Stat., Optim. Inf. Comput. Vol. x, Month 202x

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 3

provided by real-time data streams [2, 5]. The architecture proposed here supports the hybrid model by embedding
the dual path processing capabilities of the Lambda Model [1, 3] into the governance and transactional capabilities
of the Lakehouse Model [8]; in doing so, the architecture provides low latency analytics along with accurate,
scalable, and effective historical data storage, effectively mitigating the limitations previously identified in prior
research.

3.1. Comparison with Current Architectural Models

The Medallion Lakehouse builds its layers on top of each other with the lowest quality (Bronze) being the most raw,
and then cleaning to Silver, and then to curating Gold; whereas this architecture will take a significantly different
approaches by integrating batch and stream processing in a single layer of a transactional Lakehouse. This will
provide coherent and real-time analytics over the full lifecycle of data. Table 1 shows the high-level conceptual
differences between Lambda, Kappa, Medallion Lakehouse and the proposed architecture.

Table 1. Comparison Between Lambda, Kappa, Medallion Lakehouse, and the Proposed Architecture

Architecture Processing Layers Storage Model Historical
Reprocessing

Data Governance

Lambda [1] Batch + Speed + Serv-
ing

Separate (HDFS
+ NoSQL)

Periodic Limited schema con-
trol

Kappa [14, 16] Single unified stream Log replay Continuous (stream
replay)

Weak consistency

Medallion
(Bronze-Silver-
Gold) [8]

Multi-tier (data quality
refinement)

Delta / Parquet Optional Strong schema + lin-
eage

Unified Lambda-
Lakehouse (Pro-
posed)

Batch + Speed + Serv-
ing (integrated)

Delta Lakehouse Automated ACID + schema
enforcement + time
travel

3.2. Layered Architecture Design

The architecture (see Figure 1) has been designed using three processing layers:

• The Speed Layer is responsible for handling high volumes of real-time data processing. Apache Kafka serves
as the central broker, and receives real-time Bitcoin trading feeds from Binance via the Binance WebSocket
API [10, 11]. Spark Structured Streaming processes the feeds immediately and creates short term indicators,
e.g., Simple Moving Average (SMA), Exponential Moving Average (EMA), Relative Strength Index (RSI)
and Average True Range (ATR). In addition, the processing layer assigns a correct timestamp to each message
and places messages into micro-batches to ensure that downstream analytic processing occurs consistently,
and that real-time streaming data flows are synchronized.

• The Batch Layer provides long term analytical depth and provides a stable historical base. All raw and
pre-processed data is stored in Amazon S3, which offers scalable and cost-effective cloud storage options
[15]. Every so often, Spark batch jobs process large parts of the historical repository and provide additional
capabilities such as trend detection, validation and aggregation. As a result of performing periodic batch
recomputation, the historical repository remains current and complete, and does not affect the ongoing
continuous processing occurring in the Speed Layer.

• The Serving Layer unifies the output of both streaming and batch processing using a single environment built
atop Delta Lake. Using the transactional guarantee features, schema consistency and time travel features of
Delta, the Serving Layer will allow analysts to view data at the exact point in historical time as desired [8].
AWS Glue manages metadata centrally, and AWS Athena allows analysts to query S3-based storage, and

Stat., Optim. Inf. Comput. Vol. x, Month 202x

4 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

Delta tables using standard SQL queries. The components of the Serving Layer work together to provide
coherent analytical results and ensure that all real-time updates are consistently aligned with historical
records.

Figure 1. Structure of the Proposed Architecture Showing the Integration of the Batch, Speed, and Serving layers.

The architecture described above in Figure 1 consists of three interdependent layers (Speed, Batch and Serving)
that allow it to support scalable real-time analytics as well as other types of analytics. The speed layer uses Spark
Streaming along with Apache Kafka to rapidly process incoming data streams. The batch layer, which is based
upon Spark and Amazon S3, processes the large amounts of historical data. When both layers have completed
their processing of the data, they combine the data into the serving layer where it is stored using Delta Lake and
AWS Glue. Once in the serving layer, the data may be queried using Athena and will be subject to all the ACID
properties and schema governance associated with those technologies. Thus, through the combination of these
different components of this architecture, users receive the same results regardless of the type of analysis that is
performed and the system maintains the capability of efficiently processing large volumes of both real time and
historical data.

This hybrid architecture has several benefits that distinguish it from prior hybrid architectures. First, the
architecture decreases operational complexity by allowing batch and streaming data processing to take place on the
same foundation of Delta Lake, eliminating the need for separate pipelines and solving the long-standing problem
of synchronizing the results of batch and stream processing. Second, the architecture enhances the consistency
and reliability of the system’s results by utilizing ACID transactions and rigorously enforcing schemas; thereby,
ensuring that the system produces trust worthy data for the entire length of the processing life cycle. Third, by using
cloud-based services (S3, Glue, and Athena), the system can dynamically adjust how much storage and compute
resources are used to process a workload; thus, providing the scalability needed to support varying workloads.
Fourth, the architecture supports analyzing data at multiple levels of granularity (minute, hour, day), consequently,
users can analyze both real-time and historical patterns of data. Fifth, the architecture represents a complete end to
end workflow where ingestion, computation, storage and visualization all occur in a single environment.

4. Predictive Modeling and evaluation metrics

4.1. Methodology and Datasets

The data used in our experiment is based on historical prices of Bitcoin for over seven years that is from January
1, 2018 to May 16, 2025. The three different types of data resolution have been used: the daily dataset with 2,693
entries; the hourly dataset with 64,487 entries; and the minute level dataset with 3,841,850 entries [13]. During
this time the minimum value of the price of Bitcoin was $3,211.72 while the maximum price was $106,143.82
as a result of strong growth of the Bitcoin price and its high volatility. In addition to the date of each record (the
timestamp), we also know all six parameters of each transaction: the opening price of the transaction, the highest
price of the transaction, the lowest price of the transaction, the closing price of the transaction and the trading

Stat., Optim. Inf. Comput. Vol. x, Month 202x

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 5

volume of the transaction. All data used has been previously processed by the Batch Layer in Spark before it
was modeled: first, normalization of the data through Min-Max scaling; second, segmentation of the data into
training (80%) and testing (20%) parts. This processing scheme is consistent with previous research on prediction
of financial time series using deep learning [2, 14, 15].

Table 2. Characteristics of the Bitcoin Price Dataset

Dataset Records Time Resolution Description
Daily 2,693 1 day Long-term trend analysis

Hourly 64,487 1 hour Balanced mid-term dynamics

Minute 3,841,850 1 minute High-frequency volatility

4.2. Predictive Models

Four types of forecasting models were selected to evaluate the performance of the proposed system over multiple
time horizons. These include an LSTM model and a GRU model as two types of Recurrent Neural Networks
that can be used to identify and analyze trends within financial data that are volatile. The GRU model has been
identified as a less resource-intensive option when compared to the LSTM model. The ARNN (autoregressive
neural network), a model that identifies the linear components of financial price movements and captures the non-
linear variations in those movements, was also evaluated. Finally, an XGBoost model was chosen to serve as a
more traditional machine learning baseline. All four models were run separately on the daily, hourly, and minute
datasets; the models were implemented in the same Lakehouse environment to ensure consistency in the evaluation
process.

4.3. Evaluation Metrics

The performance of the forecasting models was assessed using three common error indicators: MAE, RMSE,
and MAPE. These measures were selected because they are easy to interpret and are routinely used in financial
time-series studies to compare predictive accuracy [22].

MAE =
1

n

n∑
t=1

|yt − ŷt| (1)

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)
2 (2)

MAPE =
100

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ (3)

4.4. Multi-Scale Forecasting and Visualization

Bitcoin trading is highly volatile and has shown large increases in speculative trading over two periods: 2021 and in
the beginning of 2023 (see Figure 2). The total number of trades of Bitcoins reached values exceeding 700,000 units
per day; these represent extreme speculative trading in this asset. In 2024 and 2025, the trading volume declined
significantly and is far less liquid than previously indicating a less speculative environment in Bitcoin markets. The
changes in the trading volume show that there are multiple market regimes operating within the Bitcoin markets
which should be taken into consideration when developing predictive modeling techniques.

The next figure (Figure 3) illustrates how the closing price of Bitcoin was distributed throughout the entire study
period. As indicated by the histogram, it was skewed to the right; most of the closing price observations were

Stat., Optim. Inf. Comput. Vol. x, Month 202x

6 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

Figure 2. Bitcoin Trading Volume Over Time.

between $0 and $20,000 during the initial years of 2018-2020. However, after 2020, the closing price observations
shifted upward. From 2021 through 2023, most closing price observations fell within the range of $40,000-$60,000,
and from 2023 through 2025, closing price observations extended well above $100,000. The shifting distribution
of closing prices demonstrates the increasing value of the cryptocurrency, and also the increased volatility of the
cryptocurrency. Additionally, the combination of the distribution of the closing price and the previous volume
trends illustrate that Bitcoin markets fluctuate frequently and greatly. Therefore, such volatility must be addressed
in the development of predictive models, especially predictive models that function at different frequencies i.e.,
daily, hourly, or minute-level frequency.

Figure 3. Distribution of Bitcoin Close Prices.

The following scatter plot demonstrates that most of the data points fall toward the bottom of the trading volume
range (0–100,000) and the price range ($0 – $40,000); however, as trading volume and price increase, fewer and
fewer observations occur. This indicates that the relationship between trading volume and price decreases as both
values approach their upper limits. The visual and statistical representations assist in illustrating the behavior of
the market, the market’s volatility, and the underlying trends of the market that must be evaluated when developing
predictive models and optimizing them for various time resolutions.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 7

Figure 4. Relationship between Volume and Close Price.

These statistics and patterns are a good starting point for creating forecasting models because they indicate the
underlying trends, volatility, and trader behavior that will influence which models are selected or modified for use
at each of the three granularity levels.

Each of the forecasting models developed was outputted using Spark Structured Streaming sinks to a Delta table
so the predictions could be viewed as they were being made. Figures 5- 7 compare the predicted versus the actual
closing prices of Bitcoin over the course of daily, hourly and minute-long intervals.

Figure 5. Comparative Analysis of True and Predicted Daily Bitcoin Closing Prices Using Machine Learning and Deep
Learning Models.

LSTM is clearly the best model for predicting Bitcoin’s daily closing prices (Figure 5), as it closely follows
the overall direction of the market and the sudden spikes in the price of Bitcoin. The GRU model does nearly as
well as LSTM, providing a good balance between smoothness and responsiveness. The ARNN model provides
a reasonable approximation of the real value of Bitcoin, but generally falls behind when there is an increase in

Stat., Optim. Inf. Comput. Vol. x, Month 202x

8 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

volatility. XGBoost generally approximates the longer term trends of the market, but is poor at rapidly responding
to sudden changes in the price of Bitcoin.

Figure 6. Comparative Analysis of Actual and Predicted Hourly Bitcoin Closing Prices Using Machine Learning and Deep
Learning Models.

Both the LSTM and GRU models perform the best in terms of prediction accuracy at the hourly interval
(Figure 6), providing a very close representation of the historical prices of Bitcoin and both capturing short-term
price fluctuations as well as the long-term trends of the market. Although it does not perform as accurately as
LSTM or GRU at the hourly interval, the ARNN model still performs well with only slight deviation from the
historical prices of Bitcoin, although this deviation becomes slightly greater when the market becomes highly
volatile. The XGBoost model provides reasonable predictions, but tends to have larger gaps than either the LSTM
or GRU models during periods of rapid price movement.

The best performing models at the minute interval are the LSTM and GRU models (Figure 7), which are able to
track the historical prices of Bitcoin with significant precision and respond quickly to sudden changes in the price
of Bitcoin while maintaining the relative smoothness of their predictions. The ARNN model also performed well in
terms of predictions, and captured many of the short-lived price movements; however, the accuracy of the ARNN
model dropped off slightly when the market shifted direction rapidly. XGBoost can follow the long-term trends
of the market, but is unable to adjust to the high frequency of volatility and noise present in minute-by-minute
data. Overall, the proposed system has been shown to be well-suited for forecasting across multiple time scales,
combining high frequency stream processing with deep sequence modeling into a single, unified system.

5. Experimental Results and Discussion

5.1. Experimental Setup

The experiments carried out in this study were performed within the Unified Lambda-Lakehouse Architecture
introduced earlier. All computations were run locally on a standard personal computer equipped with an Intel Core
i7-1165G7 (11th generation, 4 cores / 8 threads, 2.80 GHz), 16 GB of RAM. The system operated under Windows
11 (64-bit), an Intel Iris Xe graphics unit, and an NVMe solid-state drive.

All model development and all associated data processing occurred on a virtualized environment which used
Kafka for ongoing ingestion of new data, Spark Structured Streaming for all streaming data processing and Delta

Stat., Optim. Inf. Comput. Vol. x, Month 202x

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 9

Figure 7. Comparative Analysis of Actual and Predicted Minute-Level Bitcoin Closing Prices Using Machine Learning and
Deep Learning Models.

Lake as the unified data repository. All new data processed by this environment will be persisted via Amazon
S3. Using such an environment has allowed for both reproducibility and isolation of each component involved in
this data pipeline. In addition, the neural forecasting models (ARNN, LSTM, and GRU) were implemented using
TensorFlow (version 2.13). Furthermore, XGBoost was implemented separately using the scikit-learn–compatible
API provided by the XGBoost library (version 1.7). A random split of the full set of the Bitcoin dataset time-
series data, at the level of daily, hourly and minutes from 2018 to 2025, resulted in the establishment of a test
size of 20% and a train size of 80%. In order to optimize performance of the neural networks’ hyperparameters,
each model was optimized utilizing early stopping methods and adaptively adjusting the learning rates. The neural
architectures utilized are comprised of two hidden layers that contained 64 units, used the activation function ReLU,
had a dropout of .2 and were trained using the Adam optimizer at a learning rate of .001. Each of these architectures
was then evaluated based upon the standard metric of MAE, RMSE and MAPE as defined by equations (1) to (3).

5.2. Forecasting Results

The LSTM model was able to achieve the smallest error in relation to all time scales analyzed in Table 3; this
is a result of its excellent capabilities in identifying sequential behavior and non-linear relationships that exist
throughout highly volatile markets. The differences in forecasting capability among the models were most evident
at the minute level of analysis, where the price of assets fluctuates the most. The GRU model performed very
similarly to LSTM in terms of accuracy; however, it had slightly larger errors which resulted from GRU’s efficiency
and lower computational requirements. Both ARNN and XGBoost struggled to adapt to changes in the market;
however, they still performed reasonably well. Regardless of the model used, the average absolute percentage error
remained under 2% demonstrating that all models provided stable forecasts that were also extremely accurate.
Figures 5 through 7 show the correlation between the actual and forecasted closing prices of Bitcoin. At the daily
level, both LSTM and GRU modeled the overall trends in the market well, while XGBoost mostly captured the
overall trend in the market. However, when looking at more detailed time resolutions (hourly and minute data)
the forecasted curves generated by LSTM were smooth and much more accurate than those of the other models,
therefore, validating its use for generating high frequency financial forecasts.

Based on the above, the proposed architecture allows for a dynamic model selection strategy based upon the
adaptive selection of the best performing model at each respective temporal granularity. Models can be evaluated

Stat., Optim. Inf. Comput. Vol. x, Month 202x

10 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

Table 3. Models Performance Comparison

Granularity Model RMSE MAE MAPE

Daily

LSTM 2383.90 1725.25 1.86%
GRU 2471.04 1827.14 1.96%
ARNN 2702.31 2205.25 2.47%
XGBoost 3043.51 2538.37 2.98%

Hourly

LSTM 539.29 370.28 0.42%
GRU 648.09 466.03 0.52%
ARNN 691.98 483.65 0.55%
XGBoost 1263.75 902.72 1.07%

Minute

LSTM 144.92 119.68 0.12%
GRU 194.65 138.49 0.14%
ARNN 226.69 196.45 0.20%
XGBoost 275.74 210.63 0.22%

using the rolling performance metric of choice (i.e., RMSE, MAE) and the model that has the highest recent
performance can be selected automatically for future predictions. For example, if a particular temporal granularity
requires a low frequency stream, then tree-based models would be more appropriate. Conversely, for high frequency
streams, recurrent neural network models would be more applicable. The adaptive model selection process can be
added to the serving layer of the proposed architecture and can be updated at regular intervals; therefore, the
proposed architecture will automatically adjust to changes in the input data streams without requiring manual
intervention.

5.3. Unified Architectural Performance Evaluation

In order to adequately assess the operational behavior of the proposed architecture we conducted an analysis of the
architecture’s performance in terms of three main criteria: End-To-End Latency, Batch Processing Efficiency, and
Resource Utilization. The three criteria above are representative of how well the system can produce ”real-time”
prediction models, recalculate historical data, and operate under typical workstation limitations. System-Level
Performance in terms of all evaluation criteria.

The results from the evaluation reported in Table 4 demonstrate that the system responds appropriately across all
types of workload; i.e., 1,000 messages/s yielded a mean latency of 82ms (118ms @p95), and at 50,000 messages/s,
the mean latency was 244ms and 309ms @p95. Similarly, batch processing performance followed this same trend
with the Daily (2.6k rows), Hourly (64k rows), and Minute level datasets (3.8m rows) being recomputed in 2.1s,
6.4s, and 39.8s respectively. In addition to the previously mentioned trends, Resource utilization remained under
control. At 50,000 messages/s, streaming workloads had CPU utilization ranging from 52% to 68% and Memory
utilization ranging from 48% to 62%. Additionally, at the same rate, write-throughput using Delta Lake ranged from
70mb/s to 110 mb/s. It was to be expected that batch jobs would require additional resources than their streaming
counterparts, however the resource utilization for both were below those of a 16 GB workstation. Overall, the
results presented here clearly support the efficiency and stability of the architecture when subjected to common
operating conditions.

5.4. Scalability and Resilience Evaluation

In addition to the performance measurements, we analyzed behavior when the ingestion rate increased and
responses to planned failures. Those two dimensions have been important for demonstrating the reliability of a
streaming/batch combined architecture, as shown in the results listed in Table 4.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 11

Table 4. Experimental Performance Evaluation of the Unified Lambda–Lakehouse Architecture

Metric Category Condition / Scenario Measured Value Interpretation

End-to-End
Latency

1,000 msg/s 82 ms (avg), 118 ms (p95) Real-time responsiveness

10,000 msg/s 139 ms (avg), 177 ms
(p95)

Stable under moderate load

50,000 msg/s 244 ms (avg), 309 ms
(p95)

Supports high-frequency
ingestion

Batch Processing
Time

Daily dataset (2.6K rows) 2.1 s Fast historical reprocessing

Hourly dataset (64K rows) 6.4 s Efficient mid-scale
processing

Minute dataset (3.8M
rows)

39.8 s Complete rebuild in under
one minute

Resource
Utilization

CPU (streaming @ 50K
msg/s)

52–68% Balanced multi-core load

Memory (streaming) 48–62% Stable usage, no swapping

Delta Lake write
throughput

70–110 MB/s Consistent NVMe
performance

CPU (batch jobs) 72–88% Expected under heavy
computation

Memory (batch jobs) 65–78% Fits within 16 GB RAM

Simulated S3 read
throughput

95–140 MB/s Good sequential scan speed

Scalability
Kafka ingestion up to 50K
msg/s

Linear throughput Demonstrates horizontal
scaling

Spark micro-batch
duration

< 400 ms Maintains streaming
responsiveness

Fault
Tolerance

Kafka broker failure Leader re-election:
2.3–3.1 s; no message
loss

Replication ensures
availability

Spark executor failure Checkpoint recovery:
1.4–1.9 s; no lost or
duplicated batches

Streaming continuity
preserved

Delta Lake interrupted
commit

Rollback < 500 ms; no
corrupted files

ACID guarantees consistent
state

• Scalability to Increasing Ingestion Rates: The system was tested at 1000 msgs/sec., 10,000 msgs/sec.,
and 50,000 msgs/sec. in all cases, the average time for spark micro-batches remained below 400 ms and no
backlog accumulation occurred; additionally, the rate of throughput increased nearly linearly with increasing
message ingestion rate indicating that when proper parameters are used to partition data and configure micro-
batch execution, horizontal scaling is achievable.

• Resiliency/Fault Tolerance: We evaluated the following fault-tolerant mechanisms:
Kafka replication: A broker failure resulted in automatic election of a new leader within 2.3 - 3.1 sec., with
no message losses.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

12 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

Spark checkpointing: Streaming was recovered from executor failure in 1.4 - 1.9 sec., without any missing
or duplicate batches.
Delta lake ACID recovery: An interrupted commit was rolled back in less than 500 ms, restoring last valid
snapshot without corrupted files.

These results confirm that the architecture provides continuity, and ensures integrity of the data even if individual
components fail.

5.5. Data Governance and Model Management

The Unified Lambda-Lakehouse Architecture treats data governance as an intrinsic part of providing a reliable
and repeatable platform for streaming and batch data processing. Data governance will be provided by utilizing
Delta Lake’s ability to provide transactional guarantees and version all data sets systematically. Because each new
ingestion or data manipulation creates a new committed state in the Delta transaction logs, the system maintains a
complete history of every modification made to the data set; therefore, at any given point in time, a previous version
of the data set can be accurately reconstructed. Therefore, any analytical study or model training can be replicated
using exactly the same data snapshot that was used when the study/model was initially created and is critical to
enabling audits.

The architecture is designed around a layered Bronze-Silver-Gold data storage model. The Bronze layer holds
raw ingested data in a stable format (Schema S0). The Silver layer cleanses and normalizes the data while holding
onto the original schema. This allows data to be maintained throughout the ingestion and preparation phases. The
Gold layer adds derived features and allows for controlled schema evolution (Schema S1) so that new features
can be added without affecting the downstream applications. A schema validation mechanism prevents invalid or
incomplete data from being stored, while schema evolution ensures that any changes to the structure of the data
will be versioned over time. This will allow models to be safely re-trained as the feature space expands without
losing the ability to reproduce the results historically.

Model management is also closely tied to the data versioning approach described above. Each model is linked
to the specific version of the data from the Delta Lake dataset that was used to train that model. As long as there is
a clear association between the model behavior and the data that was used to train that model, then model behavior
can always be traced back to its source data. While the current implementation of the unified lambda-lakehouse
architecture focuses on versioned model artifacts, the architecture has been designed to support the integration of a
model registry such as MLflow to store hyperparameters, evaluation metrics, and model lifecycle stages. With this
level of integration, the transparency and governance will be extended from data ingestion to model deployment.

5.6. Deployment and Operational Considerations

The Unified Lambda-Lakehouse Architecture has been designed with an emphasis on the ability to deploy this
architecture in practice, as well as its operational feasibility. The experimental analysis was carried out in a
local environment; however, there are no limitations to where it can be deployed, it can be used in either on-
premise, cloud based, or hybrid environments. This design provides for each module to be deployed and operated
independently. Therefore, in addition to the modularity, if a user wishes to use their own resources (e.g., the need
to accommodate specific hardware) it will also allow them to do so.

In addition to accommodating the needs of users to adapt to different infrastructures, the architecture also
supports both container-based deployments as well as scalable resource management solutions. In order to support
the operational requirements of users that require standardization across all systems (i.e., the ability to observe
what is happening in the system at any point), the architecture is also compatible with standard monitoring and
logging mechanisms, allowing for system-wide observation as well as long term maintainability. Additionally, the
unification of the Lakehouse foundation eliminates the operational overhead associated with the duplicate data
and avoids the duplicate processing pipeline. A list of the key operational and deployment considerations for this
architecture are listed in Table 5.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 13

Table 5. Deployment and Operational Aspects of the Unified Lambda–Lakehouse Architecture

Aspect Related Components Operational Considerations

Deployment
flexibility

Kafka, Spark, Delta Lake The architecture can be deployed on-premises, in cloud
environments, or in hybrid settings, as it does not rely on
infrastructure-specific assumptions.

Component
modularity

Kafka, Spark, Delta Lake Each component can be deployed and managed
independently, allowing gradual integration and easier
adaptation to infrastructure constraints.

Container-based
deployment

All components Container technologies facilitate reproducible
deployments, simplify configuration, and improve
portability across different environments.

Resource
management

Spark, Kafka Resource management platforms support workload
distribution, scalability, and fault isolation, especially in
large-scale or dynamic deployments.

Monitoring Streaming and batch
pipelines

Monitoring tools can be used to track ingestion
throughput, processing latency, and system stability
during operation.

Logging and
maintenance

All components Logging mechanisms support debugging, auditing, and
long-term maintenance of the system.

Operational
overhead

Storage and computation
layers

The unified Lakehouse design reduces operational
overhead by limiting data duplication and avoiding
redundant processing pipelines.

5.7. System Achievements and Implementation Insights

Beyond just measuring the accuracy of forecasts, these experiments demonstrated the performance of the proposed
architecture to handle large volumes of streaming as well as batch processing. The use of both the Speed Layer
(built with Spark Structured Streaming and Kafka) and the Batch Layer (using Spark batch jobs and AWS S3),
along with a common, transactional, unified structure for storing data (via the Delta Lake technology), resulted in
a scalable and real-time system with the ability to enforce ACID properties, maintain schema integrity and provide
perfect alignment between real-time and historical data.

In addition to minimizing the delay from when data is ingested to when models are served, this integrated design
provided an environment where all analyses were consistently represented regardless of the time resolution. Lastly,
it provided an environment that was reproducible so large-scale reprocessing and incremental updates could occur
simultaneously without duplicating effort or losing consistency.

To make this system usable for both experts and non-experts alike, a user-friendly interface was built using
the Flask framework. This lightweight web interface is intended to allow users to visualize in real time how they
are interacting with the proposed forecasting system as well as interact with it. The interface supports observing
financial indicators at various scales of time as well as observing the predictions produced by the system.

The interface (as shown in Figures 8– 9) has two sections; one section is live visualizations of Bitcoin’s closing
price as well as four technical indicators: Simple Moving Average (SMA), Exponential Moving Average (EMA),
Relative Strength Index (RSI), and Average True Range (ATR). The second section of the interface contains
summary statistics, a chart that shows a distribution of Buy-Sell, and a Forecasting Module, which allows users to
see what predicted trend may occur for each horizon of minutes, hours, or days.

By creating a front-end interface that is accessible to all users while making the system’s analytical back-end
available to those who have the skills to interpret the output from the back-end, the dashboard provides a way to

Stat., Optim. Inf. Comput. Vol. x, Month 202x

14 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

Figure 8. Price Monitoring with SMA/EMA in Streaming.

Figure 9. Link for Price and Technical Indicators Predictions.

make the system practical for all types of users, while increasing the usability and interpretability of the system’s
results in real world financial applications.

As illustrated in Figures 10– 12, the platform can generate forecasts at the daily, hourly, and minute scale, each
with a 15-step prediction horizon. These outputs highlight the flexibility of the architecture, which can support both
long-term market analysis and high-frequency trading needs. The strong agreement between the predicted curves
and the real price movements shows the reliability of the LSTM and GRU models, especially at the more granular
levels where market volatility tends to be most pronounced.

5.8. Architectural Discussion

The Lambda architecture has a high level of architectural complexity (both in terms of operation and analysis).
It uses two separate pipelines: a speed layer, for low latency, and a batch layer, for higher precision. There
are challenges associated with managing these two layers, including potential for high synchronization costs
(especially in distributed environments), and possible temporary inconsistencies between real-time and batch
computed results. The Kappa architecture simplifies the problem by providing a single streaming layer that can
replay log data; however, it is not ideal for those that need to process large amounts of historical data for extended
periods of time. The proposed approach unites the best features of both worlds: the rich analytical capabilities of the
Lambda model, and the streamlined organizational structure of Lakehouse systems. By adding ACID transactions,
schema control, and time travel capabilities via Delta Lake, the architecture significantly reduces the common

Stat., Optim. Inf. Comput. Vol. x, Month 202x

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 15

Figure 10. Price Predictions: Day-Level, Future Step 15.

Figure 11. Price Predictions: Hour-Level, Future Step 15.

Figure 12. Price Predictions: Minute-Level, Future Step 15.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

16 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

coordination and maintenance problems that occur in Lambda-style systems. Ultimately, the approach provides a
more balanced solution between performance, reliability, and management cost.

While there are many similarities between the proposed architecture and other architectures such as Lambda and
Kappa, the architecture has many implications for robustness and longevity. First, since the architecture utilizes
a single, transactional Lakehouse core, it minimizes the redundancy associated with multiple pipelines (speed vs.
batch) and thus minimizes the likelihood of coordination problems arising when attempting to run both types of
computation at the same time. Second, the design will make it easier to maintain and update the system, and
minimize the likelihood of the kinds of inconsistencies that commonly arise when using multi-layer architectures.
Third, the proposed architecture does not restrict the user to utilize only one type of model or to utilize only
a limited number of temporal resolutions. Rather, the architecture is flexible and enables users to deploy and
evaluate different models based upon their specific needs and the specifics of their data and market conditions.
Given the dynamic nature of financial markets, the ability to adapt to evolving statistical characteristics over time,
and to use models that are well-suited to particular timescales, this flexibility is very desirable. Lastly, due to
the modular design of the ingestion, processing, storage, and serving components, the architecture is very easily
extendable. Therefore, new data feeds, models, or financial instruments can be added to the system without having
to completely redesign the architecture. Thus, the proposed architecture represents a sustainable architecture for
financial analytics systems that have to operate reliably, yet continuously adapt to changes in the nature of the data,
and changes in the analytics requirements.

In conclusion, the experiments demonstrate that the proposed architecture is able to integrate the low-latency
streaming capabilities of real-time processing with the high-accuracy batch analytic capabilities of Delta Lake
into a single scalable system. Furthermore, the deep learning models, especially LSTM, provide high levels of
predictive accuracy, even under extreme volatility in the markets. Integrating real-time processing, unified storage,
and advanced forecasting techniques provides a solid foundation for the development of next generation financial
analytics, and demonstrates the feasibility of developing adaptive, multi-asset forecasting systems that can operate
efficiently in highly volatile market environments.

6. Conclusion and Future Works

The study presents a new unified architecture for addressing limitations of existing big-data architecture designs
in real time applications of financial data analytics by merging the two-tiered nature of the lambda model with
a lake-house architecture to integrate batch and stream operations to a single operational unit, thus providing
both timely, accurate analytics and low latency operation. The architecture integrates several technologies such as
Apache Kafka for high throughput ingestions, Spark Structured Streaming for real-time computations, AWS S3
for scalable storage and Delta Lake for ACID compliant data management and Flask-based to create a lightweight
dashboard for visualization and real-time user interaction to enhance usability and provide real-time monitoring of
the system.

The experimental results utilizing Bitcoin indicated the system was able to perform the entire pipeline from
ingestion to prediction using a unified process. Of the evaluated models, the LSTM network produced the highest
performance at each level of granularity, achieving both low values of root mean squared error (RMSE) and mean
absolute percentage error (MAPE), even when the data exhibited turbulent patterns. Results from the GRU model
were comparable in terms of performance but required less computational power than the LSTM model, and results
from the ARNN and XGBoost models provided useful baseline measures for evaluating trend analysis. The results
indicate that the use of a unified architecture resulted in both increased computational efficiency and consistent data
management while providing a solid foundation for conducting deep-learning driven forecasting under volatile
conditions. Additionally, the study illustrates how advanced predictive models can be paired with modern data
engineering tools to create a single architecture. From a conceptual perspective, the proposed architecture integrates
hybrid architecture models in an ACID governed environment to bridge between the need for real-time streaming
data and the need for historical data analysis. From a practical perspective, the proposed architecture provides a

Stat., Optim. Inf. Comput. Vol. x, Month 202x

M. MAATALLAH, M. FARISS, H. ASAIDI, M. BELLOUKI 17

scalable and reproducible workflow that can be used in various analytical environments that require high frequency
data and reliable predictions.

Future development will focus on extending the scope of the study to additional financial data sets, including
foreign exchange (Forex) and equity markets, in order to validate the generality of the proposed architecture beyond
a single asset class. This extension will enable a systematic evaluation of the framework across markets exhibiting
diverse statistical characteristics, ensuring that its performance is not specific to cryptocurrency data. Furthermore,
the architecture will be enhanced to support multi-asset forecasting, allowing concurrent analysis of cryptocurrency,
Forex, and equity data within a unified processing pipeline. This capability will facilitate the investigation of cross-
market dynamics and inter-asset relationships without requiring modifications to the underlying system design.

In addition to expanding the scope of the study to include additional data sets and developing the system to
support multi-asset forecasting, future work will also focus on improving the adaptability of the predictive layer
through real-time model retraining and concept drift detection. Financial markets are constantly changing and
changes in market regime or data distribution over time can negatively impact the effectiveness of forecasting
models that do not adapt. To mitigate this issue, the proposed architecture can be augmented with mechanisms
to monitor the accuracy of forecast outputs and detect shifts in data distribution during streaming execution.
When significant drift is detected, controlled retraining of the forecasting model can be initiated using the latest
available data in the Lakehouse and continuous inference can be maintained. The use of Delta Lake’s versioning
and reproducibility features allows researchers to validate the new version of the forecasting model against previous
versions prior to deployment, thereby ensuring that the model evolution process is both traceable and reliable.

Concurrently, the predictive layer will be enhanced through the inclusion of transformer-based models such as
the Temporal Fusion Transformer (TFT) and Informer, which have demonstrated the ability to learn long-range
temporal dependencies and improve interpretability relative to traditional recurrent models. Other enhancements
to the predictive layer will include automated alert generation and adaptable model selection strategies to further
evolve the dashboard into a fully interactive decision-support system that can continuously learn and respond to
the changing dynamics of financial markets.

REFERENCES

1. M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja, Lambda architecture for cost-effective batch and speed
big data processing, in Proc. of the IEEE International Conference on Big Data (Big Data), pp. 2785–2792, 2015,
doi: 10.1109/BigData.2015.7364082.

2. M. U. Demirezen and T. S. Navruz, Performance analysis of lambda architecture-based big-data systems on air/ground surveillance
application with ADS-B data, Sensors, vol. 23, no. 17, 2023, doi: 10.3390/s23177580.

3. J. Warren and N. Marz, Big Data: Principles and Best Practices of Scalable Realtime Data Systems, Simon and Schuster, 2015.
4. Z. Hasani, M. Kon-Popovska, and G. Velinov, Lambda architecture for real time big data analytic, in Proc. of ICT Innovations,

pp. 133–143, 2014.
5. M. Gribaudo, M. Iacono, and M. Kiran, A performance modeling framework for lambda architecture based applications, Future

Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, doi: 10.1016/j.future.2017.07.033.
6. M. E. M. El Aissi, S. Benjelloun, Y. Lakhrissi, and S. El Haj Ben Ali, A scalable smart farming big data platform for real-time

and batch processing based on lambda architecture, Journal of System and Management Sciences, vol. 13, no. 2, pp. 17–30, 2023,
doi: 10.33168/JSMS.2023.0202.

7. J. B. Nkamla Penka, S. Mahmoudi, and O. Debauche, A new kappa architecture for IoT data management in smart farming, Procedia
Computer Science, vol. 191, pp. 17–24, 2021, doi: 10.1016/j.procs.2021.07.006.

8. A. A. Harby and F. Zulkernine, Data lakehouse: A survey and experimental study, Information Systems, vol. 127, p. 102460, 2025,
doi: 10.1016/j.is.2024.102460.

9. J. Yasmin, J. A. Wang, Y. Tian, and B. Adams, An empirical study of developers’ challenges in implementing workflows as code: A
case study on Apache Airflow, Journal of Systems and Software, vol. 219, p. 112248, 2025, doi: 10.1016/j.jss.2024.112248.

10. S.-A. Ionescu and A.-O. Radu, Assessment and integration of relational databases, big data, and cloud computing in financial
institutions: Performance comparison, in Proc. of the International Conference on Innovations in Intelligent Systems and Applications
(INISTA), pp. 1–7, 2024, doi: 10.1109/INISTA62901.2024.10683852.

11. T. P. Raptis, C. Cicconetti, and A. Passarella, Efficient topic partitioning of Apache Kafka for high-reliability real-time data streaming
applications, Future Generation Computer Systems, vol. 154, pp. 173–188, 2024, doi: 10.1016/j.future.2023.12.028.

12. J. Gupta Nikhil and Yip, Spark structured streaming: A comprehensive guide, in Databricks Data Intelligence Platform: Unlocking
the GenAI Revolution, Apress, pp. 409–429, 2024, doi: 10.1007/979-8-8688-0444-1 18.

13. N. Anugrah, Bitcoin historical datasets (2018–2024), Kaggle, 2024, doi: 10.34740/KAGGLE/DS/6055749.
14. M. Maatallah, M. Fariss, H. Asaidi, and M. Bellouki, An effective real-time comparative analysis of lambda and kappa

architectures, in Proc. of the International Conference on Circuit, Systems and Communication (ICCSC), pp. 1–6, 2025,

Stat., Optim. Inf. Comput. Vol. x, Month 202x

18 LAMBDA-LAKEHOUSE ARCHITECTURE FOR FINANCIAL DATA PROCESSING

doi: 10.1109/ICCSC66714.2025.11135352.
15. M. Fariss, M. Maatallah, B. B. A. Y. Bay, H. Asaidi, and M. Bellouki, Enhancing forex trading predictions with machine learning:

Cloud and local performance evaluation, in Proc. of the International Conference on Intelligent Computing in Data Sciences (ICDS),
pp. 1–8, 2024, doi: 10.1109/ICDS62089.2024.10756412.

16. J. Kreps, Questioning the lambda architecture, Online article, 2014.
17. S. Azzabi, Z. Alfughi, and A. Ouda, Data lakes: A survey of concepts and architectures, Computers, vol. 13, no. 7, 2024,

doi: 10.3390/computers13070183.
18. J. Schneider, C. Gröger, A. Lutsch, H. Schwarz, and B. Mitschang, The lakehouse: State of the art on concepts and technologies,

SN Computer Science, vol. 5, no. 5, p. 449, 2024.
19. S. Ait Errami, H. Hajji, K. Ait El Kadi, and H. Badir, Spatial big data architecture: From data warehouses and data lakes to the

lakehouse, Journal of Parallel and Distributed Computing, vol. 176, pp. 70–79, 2023, doi: 10.1016/j.jpdc.2023.02.007.
20. J. Tagliabue and C. Greco, Reproducible data science over data lakes: Replayable data pipelines with Bauplan and Nessie,

in Proc. of the Workshop on Data Management for End-to-End Machine Learning (DEEM ’24), ACM, pp. 67–71, 2024,
doi: 10.1145/3650203.3663335.

21. D. Owczarek, Lambda vs. kappa architecture: A guide to choosing the right data processing architecture for your needs, Online
article, 2022.

22. O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, Financial time series forecasting with deep learning: A systematic literature
review: 2005–2019, Applied Soft Computing, vol. 90, p. 106181, 2020. doi: 10.1016/j.asoc.2020.106181.

Stat., Optim. Inf. Comput. Vol. x, Month 202x

	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Comparison with Current Architectural Models
	3.2 Layered Architecture Design

	4 Predictive Modeling and evaluation metrics
	4.1 Methodology and Datasets
	4.2 Predictive Models
	4.3 Evaluation Metrics
	4.4 Multi-Scale Forecasting and Visualization

	5 Experimental Results and Discussion
	5.1 Experimental Setup
	5.2 Forecasting Results
	5.3 Unified Architectural Performance Evaluation
	5.4 Scalability and Resilience Evaluation
	5.5 Data Governance and Model Management
	5.6 Deployment and Operational Considerations
	5.7 System Achievements and Implementation Insights
	5.8 Architectural Discussion

	6 Conclusion and Future Works

