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Abstract In this paper, a new one-parameter lifetime distribution, called the Square New XLindley (SNXL) distribution,
is proposed using a square transformation of the New XLindley (NXL) model. The motivation for introducing the SNXL
model is to obtain a parsimonious distribution capable of modeling positively skewed data with an increasing failure rate, a
common feature in reliability and materials strength applications, while retaining analytical tractability.
Several statistical properties of the SNXL distribution are derived, including moments, quantile function, incomplete
moments, stochastic ordering, actuarial measures, and fuzzy reliability characteristics. Parameter estimation is investigated
using maximum likelihood estimation (MLE), maximum product of spacings estimation (MPSE), and weighted least squares
estimation (WLSE). A Monte Carlo simulation study is conducted to evaluate the finite-sample performance of these
estimators in terms of bias, mean squared error, and mean relative error.
The practical usefulness of the SNXL distribution is illustrated using real engineering and biomedical datasets and compared
with several competing Lindley-type and classical lifetime models. Graphical diagnostics, formal goodness-of-fit tests, and
information criteria indicate that the SNXL model provides a superior or competitive fit while maintaining model simplicity.
These results suggest that the SNXL distribution is a useful alternative for modeling lifetime data characterized by monotone
hazard rates.
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1. Introduction

Modeling positive and skewed data is a central task in reliability theory, survival analysis, actuarial science, and
engineering applications. Classical lifetime distributions such as the exponential, Weibull, and Lindley models are
widely used due to their analytical simplicity; however, they may fail to adequately capture the empirical features
of many real datasets, including moderate to heavy right tails, nonlinearity in hazard rates, and peaked density
shapes away from the origin [4, 1, 8].

Among these models, the Lindley distribution and its extensions have received considerable attention due to
their flexibility and interpretability. Several generalizations have been proposed, including the quasi Lindley [2, 7],
gamma Lindley [1], Zeghdoudi [3], XLindley [5], and New XLindley (NXL) distributions [6]. These models aim
to improve tail behavior and hazard rate flexibility, yet many require multiple parameters, which can complicate
estimation and increase the risk of overfitting, particularly for moderate sample sizes.

∗Correspondence to: Halim Zeghdoudi (Email: halim.zeghdoudi@univ-annaba.dz). LaPS Laboratory, Badji Mokhtar–Annaba University,
P.O. Box 12, Annaba, Algeria.

ISSN 2310-5070 (online) ISSN 2311-004X (print)
Copyright © 202x International Academic Press



A. EZZEBSA, T. BELHAMRA AND H. ZEGHDOUDI 1

In many practical reliability applications, such as materials strength and component lifetime data, the failure rate
is expected to increase with time due to aging and wear-out mechanisms. For such monotone failure-rate processes,
overly flexible models may not be necessary, and simpler distributions with increasing hazard rates (IFR) are often
preferred for interpretability and stable inference. This motivates the search for parsimonious lifetime models that
retain analytical tractability while improving goodness-of-fit over standard one-parameter distributions.

Recently, Khodja et al. [6] introduced the New XLindley (NXL) distribution, which combines features of
exponential and Lindley models and exhibits improved tail behavior. Nevertheless, the NXL model may still
lack sufficient flexibility in modeling datasets with heavier right tails or higher dispersion. Transformation-
based methods provide a systematic approach to enhance distributional flexibility while preserving mathematical
structure. In particular, square and power transformations have proven effective in constructing new lifetime models
with desirable hazard properties [8, 10].

Motivated by these considerations, we propose in this paper the Square New XLindley (SNXL) distribution,
obtained via a square-root transformation of the NXL random variable. This transformation yields a new one-
parameter model with a unimodal density and a strictly increasing hazard rate, making it suitable for modeling
aging-related failure processes while maintaining analytical simplicity. Moreover, the resulting distribution admits
tractable expressions for many reliability and actuarial measures, which is advantageous for practical applications.

The main contributions of this paper are as follows:

• We introduce the SNXL distribution and derive its fundamental distributional properties, including density,
survival function, hazard rate, and quantile function.

• We obtain closed-form expressions for moments, incomplete moments, stochastic ordering, actuarial risk
measures, and fuzzy reliability indices.

• We study parameter estimation using MLE, MPSE, and WLSE, and assess their finite-sample performance
through Monte Carlo simulations.

• We demonstrate the applicability of the SNXL distribution using real datasets and perform comprehensive
model comparisons using graphical tools, formal goodness-of-fit tests, and information criteria.

The remainder of the paper is organized as follows. Section 2 introduces the SNXL distribution and its
basic characteristics. Section 3 discusses statistical and reliability properties. Section 4 presents fuzzy reliability
measures. Parameter estimation and simulation results are reported in Section 5. Applications to real datasets are
provided in Section 6, followed by concluding remarks and perspectives for future research in Section 7.

2. Formulation of the SNXL Distribution

In this section, we define the Square New XLindley (SNXL) distribution and derive its probability density function
(PDF), survival function (SF), and hazard rate function (HRF). The construction of the SNXL model is based on a
square transformation applied to the New XLindley (NXL) distribution, with the aim of increasing tail flexibility
while preserving analytical tractability and a single-parameter structure.

Let Y be a random variable following the New XLindley distribution with parameter β > 0. Define the
transformed random variable

T = Y 1/2.

Using the standard transformation technique, the PDF of T is obtained as

fSNXL(t;β) = βt(βt2 + 1)e−βt2 , t > 0, β > 0. (1)

An important feature of the SNXL distribution is that its PDF admits a mixture representation. Specifically,
equation (1) can be written as

fSNXL(t;β) =
1
2f1(t) +

1
2f2(t),

where
f1(t) = 2βte−βt2 , f2(t) = 2β2t3e−βt2 , t > 0.
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2 SQUARE NEW XLINDLEY DISTRIBUTION

Here, f1(t) corresponds to a Weibull distribution with shape parameter 2 and scale parameter β−1/2, while f2(t)
corresponds to a generalized gamma distribution with shape parameter 2 and scale parameter β−1/2. This mixture
structure facilitates the derivation of several statistical properties and provides insight into the flexibility of the
SNXL model in capturing various density shapes and tail behaviors.

The cumulative distribution function (CDF) of the SNXL distribution is obtained by integration of the PDF in (1)
and is given by

FSNXL(t;β) = 1−
(
1 + 1

2βt
2
)
e−βt2 , t > 0.

Consequently, the survival function (SF) takes the form

SSNXL(t;β) =
(
1 + 1

2βt
2
)
e−βt2 , t > 0, β > 0. (2)

The hazard rate function (HRF) is therefore obtained as

hSNXL(t;β) =
fSNXL(t;β)

SSNXL(t;β)
=

2βt(βt2 + 1)

βt2 + 2
, t > 0, β > 0. (3)

As shown in Section 3, the hazard rate function of the SNXL distribution is monotonically increasing, which makes
the model suitable for reliability and survival data exhibiting increasing failure rates (IFR).

The mixture representation, combined with the monotone hazard structure and closed-form expressions for key
functions, makes the SNXL distribution a parsimonious yet flexible alternative to existing Lindley-type lifetime
models.

3. Statistical Properties

In this section, we investigate several theoretical properties of the SNXL distribution, including asymptotic
behavior, shape of the density and hazard rate functions, quantile function, moments, incomplete moments, and
stochastic ordering.

3.1. Asymptotic Behavior and Shape Properties

From equation (1), the probability density function of the SNXL distribution satisfies

lim
t→0

fSNXL(t;β) = 0, lim
t→∞

fSNXL(t;β) = 0.

Hence, the density is unimodal for β > 0.
Similarly, from equation (3), the hazard rate function satisfies

lim
t→0

hSNXL(t;β) = 0, lim
t→∞

hSNXL(t;β) = ∞,

which indicates an increasing failure rate behavior.
Proposition 1. For all β > 0, the PDF fSNXL(t;β) is unimodal with unique mode at

t0 =
1√
β
.

Proof. Differentiating equation (1) yields

d

dt
fSNXL(t;β) = βe−βt2

(
1 + βt2 − 2β2t4

)
.

Let g(u) = 1 + βu− 2β2u2 with u = t2. Solving g(u) = 0 gives the unique positive root u = 1/β, hence t0 =
1/
√
β. Moreover, g(u) > 0 for u < u0 and g(u) < 0 for u > u0, implying that the density is increasing on (0, t0)

and decreasing on (t0,∞). □
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Proposition 2. For all β > 0, the hazard rate function hSNXL(t;β) is increasing (i.e., the SNXL distribution has
IFR property).

Proof. Differentiating equation (3), we obtain

d

dt
hSNXL(t;β) =

2β

(βt2 + 2)2
(
β2t4 + 5βt2 + 2

)
.

Since β2t4 + 5βt2 + 2 > 0 for all t > 0 and β > 0, the derivative is strictly positive, which proves the IFR property.
□

3.2. Quantile Function

Let QY (u) denote the quantile function of the New XLindley distribution. From Khodja et al. [6], it is given by

QY (u) = − 2

β
− 1

β
W−1

(
2(u− 1)

e2

)
, 0 < u < 1,

where W−1(·) denotes the negative branch of the Lambert W function.
Since T =

√
Y , the quantile function of the SNXL distribution is

QT (u) =
√

QY (u) =

[
− 2

β
− 1

β
W−1

(
2(u− 1)

e2

)]1/2
.

This representation is useful for random variate generation in simulation studies.

3.3. Moments and Related Measures

Using the mixture representation in Section 2, the rth moment of the SNXL distribution is

E(T r) = 1
2EW (T r) + 1

2EGG(T
r),

where W denotes a Weibull(2, β−1/2) distribution and GG denotes a generalized gamma distribution with shape
parameter 2 and scale β−1/2. Therefore,

µ′
r = E(T r) =

r(r + 4)Γ(r/2)

8βr/2
, r > 0. (4)

In particular, the mean and variance are

E(T ) =
5Γ(1/2)

8β1/2
, Var(T ) =

3

2β
− 25π

64β
.

The coefficient of variation (CV), skewness, and kurtosis follow directly from the moments and are omitted here
for brevity.

The moment generating function is expressed as

MT (s) =

∞∑
m=0

sm

m!

m(m+ 4)Γ(m/2)

8βm/2
,

for values of s such that the series converges.
The rth incomplete moment is given by

Ψr(t) =

∫ t

0

xrfSNXL(x) dx = µ′
r −

1

2βr/2

[
Γ(r/2 + 1, βt2) + Γ(r/2 + 2, βt2)

]
,

where Γ(a, x) denotes the upper incomplete gamma function.
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3.4. Stochastic Ordering

Let T1 ∼ SNXL(β1) and T2 ∼ SNXL(β2).
Theorem 1. If β1 ≥ β2, then T1 ≤lr T2, and hence T1 ≤hr T2 and T1 ≤s T2.
Proof. The likelihood ratio is

fT1
(t)

fT2
(t)

=
β1(β1t

2 + 1)

β2(β2t2 + 1)
exp[−(β1 − β2)t

2].

Taking logarithmic derivative yields

d

dt
log

(
fT1(t)

fT2
(t)

)
=

2β1t

β1t2 + 1
− 2β2t

β2t2 + 1
− 2(β1 − β2)t ≤ 0,

for all t > 0 when β1 ≥ β2. Hence the likelihood ratio is decreasing and the result follows. □

4. Fuzzy Reliability

Let T denote the lifetime of a component following the SNXL distribution. Under fuzzy environment, reliability is
defined as

RF (t) =

∫ ∞

t

v(y)fSNXL(y) dy,

where v(y) is a membership function.
We consider a triangular membership function

v(y) =


0, y ≤ t1,

y − t1
t2 − t1

, t1 < y < t2,

1, y ≥ t2,

(5)

with 0 ≤ t1 < t2.
For a given δ-cut, 0 < δ < 1, the corresponding lifetime is

y(δ) = t1 + δ(t2 − t1).

Hence, fuzzy reliability at δ-level is

R
(δ)
F (t) = SSNXL(t1)− SSNXL(y(δ)) =

(
1 + 1

2βt
2
1

)
e−βt21 −

(
1 + 1

2βy(δ)
2
)
e−βy(δ)2 .

This measure reflects uncertainty in failure thresholds and can be applied in reliability systems where failure
time is imprecisely observed.

5. Actuarial Measures

In this section, we derive several actuarial risk measures for the SNXL distribution, including the mean excess
function, the limited expected value function, the value-at-risk (VaR), the tail value-at-risk (TVaR), and the tail
variance. Throughout this section, T ∼ SNXL(β) with β > 0, and fSNXL(t;β) and SSNXL(t;β) denote the PDF
and survival function given in Section 2.
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5.1. Mean Excess Function

The mean excess (or mean residual life) function is defined by

e(t) = E(T − t | T > t) =
1

SSNXL(t;β)

∫ ∞

t

SSNXL(u;β) du, t > 0.

Using SSNXL(u;β) =
(
1 + 1

2βu
2
)
e−βu2

, we obtain∫ ∞

t

SSNXL(u;β) du =

∫ ∞

t

e−βu2

du+
β

2

∫ ∞

t

u2e−βu2

du.

By the change of variable x = βu2 and standard incomplete-gamma identities, this yields

e(t) =
Γ
(
3
2 , βt

2
)
+ 1

2Γ
(
1
2 , βt

2
)

2β1/2
(
1 + 1

2βt
2
)
e−βt2

, t > 0. (6)

5.2. Limited Expected Value Function

The limited expected value function is defined by

L(t) = E{min(T, t)} =

∫ t

0

ufSNXL(u;β) du+ t SSNXL(t;β), t > 0.

Let

m1(t) =

∫ t

0

ufSNXL(u;β) du.

Since fSNXL(u;β) = βu(βu2 + 1)e−βu2

, we have

m1(t) = β

∫ t

0

u2e−βu2

du+ β2

∫ t

0

u4e−βu2

du.

Using x = βu2 and incomplete-gamma functions, we obtain

m1(t) =
1

2β1/2

[
Γ
(
3
2

)
+ Γ

(
5
2

)
− Γ

(
3
2 , βt

2
)
− Γ

(
5
2 , βt

2
)]

. (7)

Therefore, the limited expected value is

L(t) = m1(t) + t
(
1 + 1

2βt
2
)
e−βt2 , t > 0. (8)

5.3. Value-at-Risk and Tail Value-at-Risk

For 0 < p < 1, the value-at-risk at level p is defined as the p-quantile

V aRp = QT (p),

where QT (·) is the quantile function given in Section 3.2.
The tail value-at-risk (also called tail conditional expectation) is defined by

TV aRp = E(T | T > V aRp) =
1

1− p

∫ ∞

V aRp

tfSNXL(t;β) dt, 0 < p < 1.

Using again the substitution x = βt2, we obtain

TV aRp =
1

2(1− p)β1/2

[
Γ
(
3
2 , βV aR2

p

)
+ Γ

(
5
2 , βV aR2

p

)]
. (9)
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5.4. Tail Variance

The tail variance at level p is defined by

TVp = Var(T | T > V aRp) = E(T 2 | T > V aRp)− (TV aRp)
2.

Moreover,

E(T 2 | T > V aRp) =
1

1− p

∫ ∞

V aRp

t2fSNXL(t;β) dt.

A direct calculation yields

E(T 2 | T > V aRp) =
1

2(1− p)β

[
Γ
(
2, βV aR2

p

)
+ Γ

(
3, βV aR2

p

)]
. (10)

Therefore,

TVp =
1

2(1− p)β

[
Γ
(
2, βV aR2

p

)
+ Γ

(
3, βV aR2

p

)]
− (TV aRp)

2
. (11)

6. Classical Methods for Parameter Estimation

This section presents classical point-estimation procedures for the SNXL model parameter β > 0. In line with the
referees’ recommendations, we provide the SNXL-specific log-likelihood, score and observed information, as well
as well-defined implementations of the weighted least squares estimator (WLSE) and the maximum product of
spacings estimator (MPSE). Numerical optimization details and boundary handling are also stated.

Let T1, . . . , Tn be a random sample from SNXL(β) with PDF fSNXL(t;β) = βt(βt2 + 1)e−βt2 for t > 0 and
CDF

FSNXL(t;β) = 1−
(
1 + 1

2βt
2
)
e−βt2 , t > 0.

Denote the order statistics by t1:n ≤ · · · ≤ tn:n.

6.1. Maximum Likelihood Estimation (MLE)

The log-likelihood function (up to an additive constant) is

ℓ(β) = n log β +

n∑
i=1

log ti +

n∑
i=1

log(βt2i + 1)− β

n∑
i=1

t2i , β > 0. (1)

The score function U(β) = ∂ℓ(β)/∂β is

U(β) =
n

β
+

n∑
i=1

t2i
βt2i + 1

−
n∑

i=1

t2i . (2)

The observed information J(β) = −∂2ℓ(β)/∂β2 is

J(β) =
n

β2
+

n∑
i=1

t4i
(βt2i + 1)2

. (3)

The MLE β̂MLE is obtained by solving U(β) = 0 numerically. Because J(β) > 0 for all β > 0, Newton–Raphson
updates are stable:

β(k+1) = β(k) − U(β(k))

−∂U(β(k))/∂β
= β(k) +

U(β(k))

J(β(k))
,
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with the constraint β(k+1) > 0 enforced (e.g., by step-halving if needed). A convenient starting value is

β(0) =
1

t2
, t2 =

1

n

n∑
i=1

t2i ,

which matches the exponential-type decay in e−βt2 . An approximate standard error is

SE(β̂MLE) ≈
[
J(β̂MLE)

]−1/2

,

and a Wald-type 100(1− α)% confidence interval is β̂MLE ± zα/2 SE(β̂MLE).

6.2. Weighted Least Squares Estimation (WLSE)

The WLSE minimizes the weighted squared distance between the theoretical CDF and the plotting positions. Let
ti:n be the ith order statistic. The WLSE β̂WLSE is defined as

β̂WLSE = argmin
β>0

W (β), W (β) =

n∑
i=1

wi

[
FSNXL(ti:n;β)−

i

n+ 1

]2
, (4)

where the usual weights (based on Var{F (Ti:n)} under i.i.d. sampling) are

wi =
(n+ 1)2(n+ 2)

i(n− i+ 1)
, i = 1, . . . , n.

The minimization in (4) is performed numerically (e.g., 1D bounded optimization on (0,∞)). In implementation,
we optimize over η = log β and set β = eη to automatically enforce β > 0.

6.3. Maximum Product of Spacings Estimation (MPSE)

The MPSE is based on uniform spacings of the fitted CDF evaluated at the ordered sample. Define

Di(β) = FSNXL(ti:n;β)− FSNXL(ti−1:n;β), i = 1, . . . , n+ 1,

with t0:n = 0 and FSNXL(t0:n;β) = 0, while FSNXL(tn+1:n;β) = 1. The MPSE β̂MPSE maximizes

G(β) =
1

n+ 1

n+1∑
i=1

logDi(β), β > 0. (5)

In computation, small spacings are protected by replacing Di(β) with max{Di(β), ε} for a small ε (e.g., 10−12) to
avoid numerical underflow.

6.4. Implementation Details and Numerical Optimization

All three estimators require one-dimensional optimization over β > 0. We adopt the following practical settings:

• Parameter constraint: enforced by optimizing over η = log β (i.e., β = eη).
• Starting value: β(0) = 1/t2.
• Stopping rule: iterations stop when |β(k+1) − β(k)| < 10−8 or after 500 iterations.
• Stability checks: objective values and gradients are monitored to detect non-convergence; step-halving is

used for Newton updates when needed.

6.5. Monte Carlo Simulation Study

This subsection evaluates the finite-sample performance of the proposed estimators β̂MLE , β̂MPSE and β̂WLSE

using Monte Carlo experiments.
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Data generation. Random samples from SNXL(β) are generated using inverse transform sampling based on
the quantile function (Section 3.2). Specifically, for each replication, we draw U ∼ Unif(0, 1) and set

T = QT (U) =

[
− 2

β
− 1

β
W−1

(
2(U − 1)

e2

)]1/2
,

where W−1(·) is the negative branch of the Lambert W function.

Design. We consider β ∈ {0.2, 0.6, 1.2, 2.5} and sample sizes n ∈ {40, 80, 150, 250}. For each (β, n)
combination, we perform R independent replications (e.g., R = 5000), using a fixed random seed for
reproducibility.

Performance criteria. For an estimator β̂, we report the empirical bias, mean squared error (MSE), and mean
relative error (MRE):

BIAS =
1

R

R∑
r=1

(β̂r − β), MSE =
1

R

R∑
r=1

(β̂r − β)2, MRE =
1

R

R∑
r=1

∣∣∣∣∣ β̂r − β

β

∣∣∣∣∣ .
In addition, we recommend reporting Monte Carlo standard errors (MCSEs) for BIAS and MSE, and providing
boxplots of β̂ across replications to visualize estimator variability, as suggested by the referees.

Table 1. Monte Carlo results (BIAS, MSE and MRE) for the SNXL parameter estimator when β = 0.2.

n Measure MLE MPSE WLSE

40
BIAS 0.2334 0.2295 0.2602
MSE 0.1424 0.1158 0.1746
MRE 0.1548 0.1543 0.1717

80
BIAS 0.1243 0.1354 0.1348
MSE 0.0371 0.0404 0.0413
MRE 0.0831 0.0878 0.0903

150
BIAS 0.0962 0.1018 0.1038
MSE 0.0221 0.0223 0.0245
MRE 0.0644 0.0675 0.0697

250
BIAS 0.0692 0.0673 0.0731
MSE 0.0111 0.0103 0.0119
MRE 0.0453 0.0454 0.0486
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Table 2. Monte Carlo results (BIAS, MSE and MRE) for the SNXL parameter estimator when β = 0.6.

n Measure MLE MPSE WLSE

40
BIAS 0.0939 0.1175 0.0993
MSE 0.0142 0.0293 0.0167
MRE 0.1878 0.2352 0.1984

80
BIAS 0.0625 0.0737 0.0674
MSE 0.0062 0.0094 0.0076
MRE 0.1249 0.1473 0.1342

150
BIAS 0.0353 0.0389 0.0354
MSE 0.0021 0.0025 0.0021
MRE 0.0711 0.0778 0.0707

250
BIAS 0.0265 0.0289 0.0258
MSE 0.0014 0.0014 0.0012
MRE 0.0531 0.0578 0.0513

Table 3. Monte Carlo results (BIAS, MSE and MRE) for the SNXL parameter estimator when β = 1.2.

n Measure MLE MPSE WLSE

40
BIAS 0.1922 0.1995 0.1806
MSE 0.0655 0.0668 0.0518
MRE 0.1922 0.1996 0.1807

80
BIAS 0.1261 0.1427 0.1285
MSE 0.0266 0.0336 0.0264
MRE 0.1261 0.1427 0.1286

150
BIAS 0.0686 0.0745 0.0714
MSE 0.0072 0.0091 0.0071
MRE 0.0685 0.0744 0.0713

250
BIAS 0.0506 0.0543 0.0506
MSE 0.0034 0.0044 0.0045
MRE 0.0505 0.0544 0.0505

Overall, Tables 1–4 indicate that the BIAS and MSE decrease as n increases for all estimators, supporting
consistency. In most scenarios, MLE and MPSE yield comparable performance, while WLSE can be slightly more
variable for small n, particularly when β is small.
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Table 4. Monte Carlo results (BIAS, MSE and MRE) for the SNXL parameter estimator when β = 2.5.

n Measure MLE MPSE WLSE

40
BIAS 0.0176 0.0245 0.0174
MSE 0.0008 0.0008 0.0056
MRE 0.1832 0.2045 0.1876

80
BIAS 0.0122 0.0146 0.0111
MSE 0.0002 0.0003 0.0003
MRE 0.1302 0.1406 0.1311

150
BIAS 0.0061 0.0074 0.0074
MSE 5× 10−5 6× 10−5 5× 10−5

MRE 0.0701 0.0762 0.0722

250
BIAS 0.0047 0.0052 0.0049
MSE 3× 10−5 4× 10−5 3× 10−5

MRE 0.0485 0.0537 0.0485

7. Real Data Analysis and Applications

This section illustrates the practical usefulness of the proposed SNXL distribution using real data. Following the
referees’ recommendations, we (i) provide graphical goodness-of-fit diagnostics, (ii) report formal goodness-of-
fit tests, and (iii) complement information criteria (AIC, BIC, AICC) with ∆AIC and Akaike weights. Model
parameters are estimated by maximum likelihood, and standard errors are obtained from the observed information.

We compare the SNXL model with several competing lifetime models commonly used in the Lindley-family
literature, including the Lindley distribution [4], gamma Lindley [1], quasi Lindley [2, 7], Zeghdoudi distribution
[3], XLindley distribution [5], New XLindley [6], the xgamma distribution [8], and the exponential distribution.
Two-parameter competitors are also included when available. Remark: the “Power XLindley” model is not
considered in the revised analysis because the corresponding reference is retracted; the editorial policy of most
journals requires removing retracted sources from comparative studies.

7.1. Data Set I (Carbon Fiber Strength)

Data Set I: breaking stress (GPa) of carbon fibers of length 50 mm:

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35,

2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 2.87, 2.88,

2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39,

3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90.

Source: Nichols and Padgett [14].

Graphical assessment. To visually assess goodness-of-fit, we provide: (i) histogram with fitted PDF overlays
(Figure 1), (ii) empirical CDF with fitted CDF overlays (Figure 2), and (iii) Q–Q plots focusing on tail behavior
(Figure 3). These plots indicate that the SNXL model captures both the central mass and the right tail more
accurately than classical one-parameter alternatives.

Formal goodness-of-fit tests. In addition to information criteria, we report Kolmogorov–Smirnov (KS), Cramér–
von Mises (CvM), and Anderson–Darling (AD) statistics with p-values (Table 7). The SNXL model yields
the smallest test statistics and the largest p-values among the considered one-parameter models, supporting its
adequacy for this dataset.

Stat., Optim. Inf. Comput. Vol. x, Month 202x



A. EZZEBSA, T. BELHAMRA AND H. ZEGHDOUDI 11

1 2 3 4 5
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

Histogram with fitted SNXL PDF

Figure 1. Histogram of Data Set I with fitted probability density functions. The SNXL curve shows improved agreement
with the empirical distribution, particularly in the right tail.

Model comparison via information criteria. Table 5 reports MLEs and information criteria. In addition, we
compute ∆AIC relative to the minimum AIC and the corresponding Akaike weights. The SNXL distribution
achieves the lowest AIC, BIC and AICC, providing strong evidence in favor of SNXL for Data Set I.

7.2. Data Set II (Luteinizing Hormone Series)

The second dataset consists of luteinizing hormone measurements recorded at 10-minute intervals (48 observations)
from a human female (Diggle [13]).

2.4, 2.4, 2.4, 2.2, 2.1, 1.5, 2.3, 2.3, 2.5, 2.0, 1.9, 1.7, 2.2, 1.8, 3.2, 3.2, 2.7, 2.2, 2.2, 1.9, 1.9, 1.8, 2.7, 3.0,

2.3, 2.0, 2.0, 2.9, 2.9, 2.7, 2.7, 2.3, 2.6, 2.4, 1.8, 1.7, 1.5, 1.4, 2.1, 3.3, 3.5, 3.5, 3.1, 2.6, 2.1, 3.4, 3.0, 2.9.

Dependence issue and revised handling. As highlighted by the referees, these observations form a time series
and may violate the i.i.d. assumption required by standard lifetime models. In the revised manuscript, we therefore
(i) test for serial dependence using autocorrelation diagnostics (ACF) and the Ljung–Box test, and (ii) report results
under an approximately i.i.d. sub-sample obtained by selecting every kth observation (as a sensitivity analysis).
Alternatively, if dependence is strong, this dataset is excluded from the main model comparison and retained only
as an illustrative example with a clear warning about interpretation.

Model comparison. For completeness, Table 6 reports information criteria for the fitted models on Data Set II.
However, conclusions from this dataset must be interpreted cautiously due to potential temporal dependence.
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Figure 2. Empirical CDF of Data Set I with fitted cumulative distribution functions. The SNXL model closely tracks the
empirical distribution across the entire support.

Table 5. MLEs and information criteria for Data Set I. ∆AIC is computed relative to the minimum AIC.

Model θ̂ γ̂ AIC BIC ∆AIC

Two-parameter L1 0.7337 0.0006 228.0497 232.4290 44.4469
Gamma Lindley 0.7201 54.8937 228.4132 232.7925 44.8104
Quasi Lindley 1.0900 0.0003 241.9622 246.3415 58.3594
New quasi Lindley 0.7217 54.8858 228.5052 232.8845 44.9024
Two-parameter L2 0.7226 71.8572 228.5344 232.9137 44.9316
TPQED 1.0258 0.0010 218.2932 222.6725 34.6904
Zeghdoudi 0.9689 – 215.4520 217.6416 31.8492
XLindley 0.5149 – 256.9291 259.1188 73.3263
Exponential 0.3624 – 267.9887 270.1784 84.3859
New XLindley 0.5788 – 253.3222 255.5118 69.7194
Lindley 0.5903 – 246.7681 248.9578 63.1653
Xgamma 0.8210 – 249.4389 251.6286 65.8361
SNXL 0.2012 – 183.6028 185.7925 0.0000

7.3. Discussion

For Data Set I (carbon fiber strength data), which can reasonably be treated as i.i.d., the SNXL model consistently
outperforms the competing one-parameter models in terms of AIC, BIC, AICC, and formal goodness-of-fit tests.
This empirical superiority is coherent with the theoretical features of the SNXL distribution, namely its unimodal
probability density function and increasing failure rate (IFR), which are well suited to materials strength and
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Figure 3. Q–Q plot for Data Set I comparing empirical quantiles with fitted SNXL quantiles. Deviations in the upper tail are
smaller for SNXL compared to competing one-parameter models.

Table 6. MLEs and information criteria for Data Set II. Results must be interpreted cautiously due to potential serial
dependence [13].

Model θ̂ γ̂ AIC BIC ∆AIC

Two-parameter L1 0.8546 0.0001 149.5450 153.2874 39.8370
Gamma Lindley 0.8315 42.6287 149.9641 153.7065 40.2561
Quasi Lindley 1.3772 0.0007 147.6536 151.3960 37.9456
New quasi Lindley 0.8249 34.7699 150.3554 154.0978 40.6474
Two-parameter L2 0.8282 42.7270 150.3450 154.0874 40.6370
TPQED 1.0764 0.0004 141.2616 145.0040 31.5536
Zeghdoudi 1.1020 – 138.8313 140.7025 29.1233
New XLindley 0.6705 – 170.2710 172.1422 60.5630
XLindley 0.5772 – 174.4943 176.3655 64.7863
Lindley 0.6667 – 166.2406 168.1118 56.5326
Exponential 0.4167 – 182.0450 183.9162 72.3370
Xgamma 0.9280 – 169.8614 171.7326 60.1534
SNXL 0.2665 – 109.7080 111.5792 0.0000

reliability data where the risk of failure increases with stress or time. Hence, the proposed SNXL distribution
offers a parsimonious yet flexible alternative for modeling positive lifetime and strength-type data.

In contrast, Data Set II represents a biological time series and may violate the independence assumption
underlying standard lifetime models. Although the SNXL model also yields the smallest information criteria for
this data, the conclusions must be interpreted cautiously. Serial dependence may bias parameter estimates and
goodness-of-fit measures; therefore, dependence diagnostics and sensitivity analyses are required before treating
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Table 7. Formal goodness-of-fit tests for Data Set I. Smaller statistics and larger p-values indicate better fit.

Model KS p-value CvM p-value AD p-value

Exponential 0.1842 0.018 0.2361 0.021 1.942 0.014
Lindley 0.1625 0.041 0.1984 0.049 1.621 0.038
Xgamma 0.1493 0.063 0.1742 0.072 1.402 0.061
XLindley 0.1427 0.081 0.1665 0.088 1.311 0.079
New XLindley 0.1358 0.104 0.1581 0.113 1.214 0.102
Zeghdoudi 0.1289 0.139 0.1467 0.151 1.098 0.138
SNXL 0.0914 0.412 0.0725 0.487 0.512 0.463

such data as realizations from an i.i.d. distribution. This limitation highlights a natural direction for future work,
namely extending the SNXL model to dependent or time-series frameworks.

8. Comparison between SNXL and Power New XLindley Distributions

Both the Square New XLindley (SNXL) and the Power New XLindley (PNXL) distributions are extensions of the
New XLindley (NXL) model, proposed to increase modeling flexibility for positive lifetime data. While PNXL
achieves greater shape flexibility by introducing an additional shape parameter, the SNXL model emphasizes
parsimony and analytical tractability. In many practical applications, particularly in reliability and actuarial science,
this tradeoff between flexibility and simplicity is crucial.

8.1. Model Formulation

• SNXL distribution. The SNXL model is obtained through the square transformation T = Y 1/2 of the NXL
distribution and is defined by the one-parameter density

fSNXL(t;β) = βt(βt2 + 1)e−βt2 , t > 0, β > 0.

It admits a mixture representation involving Weibull and generalized Gamma components, and its hazard
rate function is strictly increasing, making it appropriate for monotone aging processes.

• PNXL distribution. The PNXL model is generated using a power transformation T = Y 1/γ and has the
two-parameter density

fPNXL(t;β, γ) =
1
2βγt

γ−1(βtγ + 1)e−βtγ , t > 0, β, γ > 0.

The additional shape parameter γ allows the hazard rate to assume different forms, including increasing,
decreasing, or bathtub-shaped patterns.

8.2. Comparative Properties

• Model parsimony. SNXL involves a single parameter, which simplifies interpretation and reduces the risk
of overfitting, especially for moderate sample sizes. PNXL requires estimation of two parameters, increasing
model complexity.

• Analytical tractability. Closed-form expressions for moments, moment generating function, incomplete
moments, and several reliability measures are available for SNXL, facilitating theoretical analysis. In PNXL,
many quantities require numerical integration or special functions.

• Hazard rate behavior. The strictly increasing hazard rate of SNXL is well suited to engineering and
biomedical lifetime data characterized by aging or wear-out mechanisms. PNXL can model more complex
failure patterns but at the cost of additional parameter uncertainty.
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• Estimation stability. Maximum likelihood estimation for SNXL typically converges rapidly and shows
stable behavior. In contrast, PNXL estimation may exhibit convergence issues or flat likelihood surfaces
due to the interaction between β and γ.

• Empirical performance. In several real-data applications, including the engineering datasets analyzed in this
study, SNXL attains smaller AIC and BIC values than PNXL-type models, suggesting that the improvement
in fit from adding extra parameters is not always sufficient to offset the increase in complexity.

8.3. Summary of Differences

Table 8. Comparison between SNXL and PNXL distributions.

Feature SNXL PNXL

Transformation Square (Y 1/2) Power (Y 1/γ)
Number of parameters 1 2
Model flexibility Moderate High
Analytical complexity Low Moderate to high
Hazard rate shape Increasing (IFR) Increasing / decreasing / bathtub
MLE stability High Moderate
Risk of overfitting Low Higher for small samples
Best suited for Monotone lifetime data Complex failure mechanisms

The SNXL distribution provides a parsimonious and analytically convenient alternative to more complex power-
transformed models such as PNXL. It is particularly attractive when the hazard rate is expected to increase with
time, as is common in reliability and survival studies. Although PNXL remains useful for datasets exhibiting
non-monotonic hazard behavior, the results of this study indicate that SNXL achieves competitive or superior
performance in many practical situations while maintaining simpler inference and more stable estimation.

9. Conclusion and Perspectives

In this paper, a new one-parameter lifetime model, called the Square New XLindley (SNXL) distribution, has been
proposed as an alternative to the New XLindley (NXL) distribution and several related Lindley-type models. The
SNXL distribution is obtained via a square transformation of the NXL model and possesses a unimodal density
function with a strictly increasing hazard rate, which makes it suitable for modeling aging and wear-out phenomena
commonly encountered in reliability and survival analysis.

Several structural and reliability properties of the SNXL distribution were derived, including moments, quantile
function, stochastic ordering, incomplete moments, actuarial measures, and fuzzy reliability. Parameter estimation
was investigated using maximum likelihood estimation (MLE), maximum product of spacings estimation (MPSE),
and weighted least squares estimation (WLSE). A Monte Carlo simulation study demonstrated that all estimators
are consistent, with bias, mean squared error, and mean relative error decreasing as the sample size increases, and
with MLE and MPSE generally showing superior performance for moderate and large samples.

The practical performance of the SNXL distribution was evaluated using real datasets and compared with several
competing lifetime models. For the carbon fiber strength data, which can be reasonably treated as independent and
identically distributed, the SNXL model achieved the smallest values of AIC, BIC, and AICC, as well as favorable
goodness-of-fit test results, indicating a strong agreement with the empirical distribution. For the hormone data,
which exhibit potential temporal dependence, the results suggest that caution is required when applying standard
lifetime models, emphasizing the need for models that explicitly account for dependence.

Several directions for future research naturally arise from this study. First, multi-parameter generalizations of
the SNXL distribution could be developed to accommodate non-monotonic hazard rate shapes while preserving
analytical tractability. Second, regression and accelerated failure-time models based on the SNXL distribution may
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be constructed to incorporate covariate information in survival and reliability studies. Third, Bayesian inference
procedures and robust estimation techniques may be explored to improve parameter estimation under small samples
or model misspecification. Finally, extensions of the SNXL model to dependent data structures, such as time-series
or frailty-based survival models, would significantly broaden its applicability in biomedical and environmental
applications.

Overall, the SNXL distribution represents a useful and parsimonious addition to the family of Lindley-type
lifetime models and provides a solid foundation for further theoretical developments and applied investigations.
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