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Abstract This paper develops and studies upper, lower, and double truncated forms of the XLindley distribution and
investigates their theoretical properties and practical usefulness for modeling bounded lifetime data. Explicit expressions
are obtained for the probability density, cumulative distribution, survival, and hazard rate functions, together with moments,
quantiles, and reliability measures. Shape properties of the density and monotonicity of the hazard rate are analyzed, and the
increasing failure rate property is formally established for the upper truncated case.
Parameter estimation is carried out using maximum likelihood methods adapted to truncated samples. The resulting
likelihood equations are discussed, and numerical implementation using iterative optimization techniques is described. The
finite-sample behavior of the estimators is evaluated through Monte Carlo simulation under several parameter configurations
and truncation levels, using bias, mean squared error, and confidence-interval coverage probabilities as performance criteria.
Applications to real data include aircraft window glass strength measurements and truncated lifetime data arising in
actuarial pricing. The proposed models are compared with truncated exponential, Weibull, Lindley, gamma, and lognormal
distributions using information criteria, likelihood ratio tests, and graphical goodness-of-fit diagnostics. Results indicate
that truncated XLindley models provide competitive and, in several cases, superior fits. An actuarial illustration further
demonstrates the impact of truncation and discounting on net single premium estimation.
Overall, the truncated XLindley family offers a flexible and analytically tractable framework for modeling bounded lifetime
data in reliability and actuarial contexts.
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1. Introduction

Truncated probability distributions play a central role in statistical modeling when observations are restricted to a
finite or semi-finite range. Such constraints naturally arise in many applied fields. In survival analysis, early failures
may be unobserved due to delayed entry or warranty policies; in industrial reliability studies, components may be
replaced before failure because of preventive maintenance; and in environmental sciences, measurement devices
often impose detection limits. These mechanisms generate truncated samples that cannot be adequately modeled
by standard untruncated distributions, thereby motivating the development of dedicated truncated models.

Over the past decades, substantial research has focused on constructing new probability distributions and
extending classical models to improve flexibility in shape and tail behavior. Notable examples include the Beta–
normal distribution [1], the Kumaraswamy distribution [2], and general generator techniques for building new
families of continuous distributions [3]. In particular, numerous extensions of the Weibull distribution have been
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proposed due to its importance in survival and reliability analysis, including modified generalized Weibull models
[4], extended Weibull distributions [5], flexible Weibull extensions [13], inverse Weibull generalizations [15], and
related Weibull-type families [6, 7, 8]. These developments reflect the demand for models capable of representing
diverse hazard rate patterns observed in practice.

Parallel efforts have produced several new distributions based on exponential and Lindley-type structures, valued
for their analytical tractability and interpretability in lifetime modeling. Examples include the extended exponential
distribution [9], generalizations of the Nadarajah–Haghighi distribution [10], unified generalizations of the Lindley
distribution [11], and polynomial- or quadratic-type exponential families [21, 22, 23, 24]. These models have been
successfully applied in reliability engineering, biomedical studies, and actuarial science.

More recently, attention has shifted toward truncated versions of parametric distributions to address incomplete
or range-limited observations. Truncated Weibull–exponential models have been proposed for lifetime data with
complex hazard structures [26], truncated Birnbaum–Saunders distributions have been used in financial risk
modeling under deductibles [25], and truncated families of general distributions have been applied to economic
and operational data such as business start-up times and costs [27]. Lower truncated normal-type approximations
have also been developed for modeling the reliability of used devices [28]. These studies confirm that truncation is
not merely a technical adjustment but a fundamental modeling feature in many real applications.

Motivated by these developments, the present study introduces truncated variants of the XLindley distribution,
an extension of the classical Lindley family that combines analytical simplicity with increasing failure rate behavior
[29]. Although numerous generalizations of Lindley and Weibull distributions have been proposed, truncated forms
of the XLindley distribution have not yet been investigated to the best of our knowledge. Incorporating truncation
into the XLindley framework is therefore both methodologically relevant and practically motivated.

Specifically, we propose three truncated models: the double truncated XLindley (DTXL), the lower truncated
XLindley (LTXL), and the upper truncated XLindley (UTXL) distributions. Their distributional properties, hazard
rate behavior, and inferential aspects are examined in detail, with particular emphasis on the UTXL model.
Maximum likelihood estimation procedures are developed for all truncated cases, and numerical implementation
issues are discussed. The proposed models are evaluated through simulation studies and real data applications
from reliability engineering and actuarial science, and are compared with competing truncated distributions using
information criteria, likelihood ratio tests, and graphical goodness-of-fit diagnostics.

The remainder of the paper is organized as follows. Section 2 introduces the XLindley distribution and its
truncated forms, together with their probability density and distribution functions. Section 3 develops mathematical
and reliability properties of the upper truncated XLindley (UTXL) model, including shape characteristics and
hazard-rate behavior. Section 4 presents parameter estimation procedures and interval inference under truncation.
Section 5 contains Monte Carlo simulation results and real-data applications from reliability engineering and
actuarial science. Finally, Section 6 concludes the paper with a discussion of limitations and directions for future
research.

2. Preliminaries

2.1. The XLindley Distribution

The XLindley distribution was introduced by Zeghdoudi and Chouia [29] as a flexible lifetime model obtained by
combining Lindley-type and exponential components. It is analytically tractable and suitable for modeling data
with increasing hazard rates.

Let X be a nonnegative random variable following the XLindley distribution with parameter η > 0. Its
probability density function (pdf) and cumulative distribution function (cdf) are given by

q(x; η) =
η2(2 + η + x)

(1 + η)2
e−ηx, x > 0, (1)

Q(x; η) = 1−
(
1 +

ηx

(1 + η)2

)
e−ηx, x > 0. (2)
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2 TRUNCATED XLINDLEY DISTRIBUTIONS

The survival function is S(x) = 1−Q(x) and the hazard rate function is

h(x) =
q(x)

S(x)
.

It is shown in [29] that the XLindley distribution has an increasing failure rate (IFR), that is,

h′(x) > 0, ∀x > 0, η > 0.

The rth factorial moment of X is

µ′
r = E[X(X − 1) · · · (X − r + 1)] =

(η2 + 2η + r + 1) r!

(1 + η)2
, r = 1, 2, . . . (3)

From the factorial moments, classical shape measures can be obtained. In particular, the coefficient of variation
(CV), skewness, and kurtosis are given by

CV =

√
(1 + η)4 + 4η2 + 6η + 1

(1 + η)2 + 1
, (4)

Skewness =
6(η2 + 2η + 4)(1 + η)4[

(1 + η)4 + 4η2 + 6η + 1
]3/2 , (5)

Kurtosis =
24(η2 + 2η + 5)(1 + η)6[
(1 + η)4 + 4η2 + 6η + 1

]2 . (6)

These quantities are increasing functions of η, reflecting the increasing variability and tail weight as the
parameter increases.

2.2. Truncated XLindley Distributions

Let Q(x; Ξ) denote the cdf of a baseline distribution with parameter vector Ξ ∈ Rp and pdf q(x; Ξ). A random
variable X is said to follow a double truncated version of this distribution on [l,m] if its cdf is

T (x; Ξ) =
Q(x; Ξ)−Q(l; Ξ)

Q(m; Ξ)−Q(l; Ξ)
, l ≤ x ≤ m, (7)

with pdf

t(x; Ξ) =
q(x; Ξ)

Q(m; Ξ)−Q(l; Ξ)
, l ≤ x ≤ m. (8)

Taking the XLindley distribution as the baseline, the double truncated XLindley distribution (DTXLD) has pdf

tD(x; η) =
η2(2 + η + x)e−ηx

(1 + η)2
[
Q(m; η)−Q(l; η)

] , 0 ≤ l ≤ x ≤ m. (9)

In this work, particular attention is given to the upper truncated case.

Upper Truncated XLindley Distribution (UTXLD) For upper truncation at m (i.e., l = 0), the pdf becomes

tu(x; η) =
q(x; η)

Q(m; η)
=

η2(2 + η + x)e−ηx

(1 + η)2
[
1−

(
1 + ηm

(1+η)2

)
e−ηm

] , 0 ≤ x ≤ m. (10)

Differentiation shows that the density is either decreasing or unimodal depending on η, with mode obtained by
solving t′u(x) = 0 numerically when it exists.
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Hazard Function and Monotonicity The survival function of the UTXLD is

Su(x) =
Q(m; η)−Q(x; η)

Q(m; η)
, 0 ≤ x ≤ m,

and therefore the hazard rate is

hu(x; η) =
tu(x; η)

Su(x; η)
=

q(x; η)

Q(m; η)−Q(x; η)
, 0 ≤ x ≤ m. (11)

Differentiating,

h′
u(x) =

q′(x)[Q(x)−Q(m)] + q(x)2

[Q(m)−Q(x)]2
.

Since Q(m)−Q(x) > 0 for x < m, the sign of h′
u(x) depends on the numerator. Because the baseline XLindley

distribution has increasing hazard rate,

h′(x) =
q′(x)S(x) + q(x)2

S(x)2
> 0,

and since truncation replaces S(x) by Q(m)−Q(x) while preserving positivity, the increasing failure rate property
is preserved under upper truncation. Hence, the UTXLD also has an increasing hazard rate.

Moreover, from (11) we obtain:

(i) Initial hazard:

hu(0) =
q(0)

Q(m)
=

η2(2 + η)

(1 + η)2
[
1−

(
1 + ηm

(1+η)2

)
e−ηm

] ,
(ii) lim

x→m−
hu(x) = ∞,

(iii) hu(x) is increasing in both x and η.

3. Some Mathematical Properties

3.1. Moments and Associated Measures

Let X follow the upper truncated XLindley distribution (UTXLD) with parameter η > 0 and truncation point
m > 0. Its pdf is

tu(x; η) =
q(x; η)

Q(m; η)
, 0 ≤ x ≤ m.

Hence, the rth raw moment is

E(Xr) =
1

Q(m; η)

∫ m

0

xrq(x; η) dx =
η2

(1 + η)2Q(m; η)

∫ m

0

xr(2 + η + x)e−ηx dx. (12)

Define

ωr(η,m) =

∫ m

0

xre−ηx dx, r = 0, 1, 2, . . . (13)

so that

E(Xr) =
η2

(1 + η)2Q(m; η)

[
(2 + η)ωr(η,m) + ωr+1(η,m)

]
. (14)

The integrals ωr(η,m) satisfy the recursion

ωr(η,m) =
r

η
ωr−1(η,m)− mr

η
e−ηm, r ≥ 1, (15)
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4 TRUNCATED XLINDLEY DISTRIBUTIONS

with

ω0(η,m) =
1− e−ηm

η
.

Since ωr(η,m) ≤
∫∞
0

xre−ηxdx = r!
ηr+1 , the sequence {ωr} is finite for all r and the recursion is stable. Thus

all moments of the UTXLD exist and are finite.

Mean and Variance From (14), the mean and second raw moment are

µ = E(X) =
η2

(1 + η)2Q(m)

[
(2 + η)ω1 + ω2

]
,

E(X2) =
η2

(1 + η)2Q(m)

[
(2 + η)ω2 + ω3

]
,

and therefore the variance is
σ2 = E(X2)− µ2. (16)

Skewness and Kurtosis Let µ′
r = E(Xr). Then skewness and kurtosis are computed as

Skewness =
µ′
3 − 3µµ′

2 + 2µ3

(µ′
2 − µ2)3/2

, (17)

Kurtosis =
µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4

(µ′
2 − µ2)2

. (18)

These measures are obtained numerically using the recursion (15). For fixed m, both skewness and kurtosis
increase with η, indicating heavier right tails and greater asymmetry as the failure rate increases.

Numerical Illustration Tables 1 and 2 report the mean, variance, skewness, and kurtosis of the UTXLD for selected
values of η and m. For fixed η, the mean and variance increase with m and converge to the corresponding
moments of the baseline XLindley distribution as m → ∞. For fixed m, increasing η reduces the mean lifetime
and concentrates mass near zero, resulting in lower variance.

Table 1. Mean and variance of UTXLD for different values of η and m.

η m = 5 m = 10 m = 15 m = 20 m = 25

0.10 (2.76,1.95) (5.44,7.56) (7.85,16.71) (9.95,29.12) (11.73,44.23)
0.50 (1.94,1.82) (2.68,4.81) (2.85,6.28) (2.88,6.67) (2.89,6.75)
1.00 (1.18,1.07) (1.25,1.42) (1.25,1.44) (1.25,1.44) (1.25,1.44)
1.50 (0.77,0.55) (0.77,0.58) (0.77,0.58) (0.77,0.58) (0.77,0.58)

Table 2. Skewness and kurtosis of UTXLD for different values of η and m.

η m = 5 m = 10 m = 15 m = 20 m = 25

0.10 (0.04,1.90) (0.02,1.91) (0.00,1.91) (0.00,1.93) (0.03,1.98)
0.50 (0.23,2.16) (1.08,3.51) (2.03,5.22) (2.55,6.37) (2.72,6.83)
1.00 (1.52,4.11) (3.14,7.28) (3.35,7.86) (3.35,7.89) (3.35,7.89)
1.50 (2.91,6.57) (3.65,8.35) (3.65,8.38) (3.65,8.38) (3.65,8.38)
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3.2. Quantile Function

Let X ∼ UTXLD(η,m). Since T (x) = Q(x; η)/Q(m; η) for 0 ≤ x ≤ m, the α-quantile xα satisfies

T (xα) = α ⇐⇒ Q(xα; η) = αQ(m; η), α ∈ (0, 1). (19)

Using the baseline XLindley cdf

Q(x; η) = 1−
(
1 +

ηx

(1 + η)2

)
e−ηx,

equation (19) becomes (
1 +

ηxα

(1 + η)2

)
e−ηxα = 1− αQ(m; η). (20)

Define c = (1 + η)2 and set

y = c+ ηxα ⇐⇒ xα =
y − c

η
.

Then (20) is equivalent to

y

c
exp

(
−y − c

1

)
= 1− αQ(m; η) ⇐⇒ ye−y = c (1− αQ(m; η)) e−c.

Multiplying by −1 gives
(−y)e−y = −c(1− αQ(m; η))e−c.

Hence, by the Lambert W function,

−y = Wk

(
−c(1− αQ(m; η))e−c

)
,

and therefore the quantile function is

xα = − c

η
− 1

η
W−1

(
−c(1− αQ(m; η))e−c

)
, c = (1 + η)2, (21)

where W−1 denotes the negative branch, which yields the admissible solution xα ∈ [0,m].

Special case (m → ∞). Since Q(m; η) → 1 as m → ∞, (21) reduces to the baseline XLindley quantile

xα = − (1 + η)2

η
− 1

η
W−1

(
−(1 + η)2(1− α)e−(1+η)2

)
.

Median. Setting α = 1
2 in (21) gives the median x0.5.

Numerical validation. In Section ??, inverse-transform samples generated using (21) are validated by Q–Q plots
and agreement between empirical and theoretical moments.

3.3. Order Statistics

Let X1, . . . , Xn be an i.i.d. sample from the UTXLD with cdf T (·) and pdf tu(·). Denote the order statistics by
X(1) ≤ · · · ≤ X(n). The pdf of the uth order statistic X(u) is

fX(u)
(x) =

n!

(u− 1)!(n− u)!
[T (x)]u−1 [1− T (x)]n−u tu(x), 0 ≤ x ≤ m. (22)
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6 TRUNCATED XLINDLEY DISTRIBUTIONS

Equivalently, using the Beta function B(a, b),

fX(u)
(x) =

1

B(u, n− u+ 1)
[T (x)]u−1[1− T (x)]n−u tu(x).

For the minimum (u = 1) and maximum (u = n), we obtain:

fX(1)
(x) = n [1− T (x)]n−1 tu(x), fX(n)

(x) = n [T (x)]n−1 tu(x).

Moments of X(u) can be computed numerically using (22).

3.4. Additional Properties of the UTXLD

Shannon Entropy

The Shannon entropy of X ∼ UTXLD(η,m) is

HSh(X) = −
∫ m

0

tu(x; η) log tu(x; η) dx, (23)

which is evaluated numerically because no closed-form expression is available.

Survival and Mean Residual Life

The survival function is

Su(x) = Pr(X > x) =
Q(m; η)−Q(x; η)

Q(m; η)
, 0 ≤ x ≤ m. (24)

The mean residual life (MRL) function is

MRL(t) = E[X − t | X > t] =
1

Su(t)

∫ m

t

Su(x) dx, 0 ≤ t < m, (25)

and is computed numerically.

4. Estimation and Inference in the Truncated XLindley Models

This section presents maximum likelihood estimation (MLE) and interval inference for the parameters of the upper,
lower, and double truncated XLindley distributions. Let x1, . . . , xn be an i.i.d. sample from a truncated XLindley
model. Throughout, denote x(1) = mini xi and x(n) = maxi xi.

4.1. MLE for the UTXLD

Assume X ∼ UTXLD(η,m) with pdf

tu(x; η,m) =
q(x; η)

Q(m; η)
, 0 ≤ x ≤ m,

where q(·; η) and Q(·; η) are the pdf and cdf of the baseline XLindley distribution.

Likelihood and log-likelihood The likelihood function is

L(η,m) =

n∏
i=1

q(xi; η)

Q(m; η)
1(0 ≤ xi ≤ m) =

∏n
i=1 q(xi; η)

[Q(m; η)]n
1(m ≥ x(n)). (26)

Using q(x; η) = η2(2+η+x)
(1+η)2 e−ηx, the log-likelihood becomes

ℓ(η,m) = 2n log η − 2n log(1 + η) +

n∑
i=1

log(2 + η + xi)− η

n∑
i=1

xi − n logQ(m; η), m ≥ x(n). (27)

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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MLE of m For fixed η, the function Q(m; η) is increasing in m, hence − logQ(m; η) is decreasing. Therefore
ℓ(η,m) is maximized by taking the smallest admissible m, namely

m̂ = x(n). (28)

This is a standard boundary-MLE result for truncated models.

Score equation for η Substituting m̂ = x(n) into (27), the MLE η̂ solves

∂ℓ(η, m̂)

∂η
=

2n

η
− 2n

1 + η
+

n∑
i=1

1

2 + η + xi
−

n∑
i=1

xi − n
∂

∂η
logQ(m̂; η) = 0. (29)

Since

Q(m; η) = 1−
(
1 +

ηm

(1 + η)2

)
e−ηm,

the derivative ∂ηQ(m; η) is available in closed form and is used in the numerical solver.

Numerical solution (Newton–Raphson) We compute η̂ using Newton–Raphson iterations:

η(k+1) = η(k) − ℓ′(η(k), m̂)

ℓ′′(η(k), m̂)
, (30)

with initialization η(0) = 1/x̄ and stopping rule |η(k+1) − η(k)| < 10−6 (or relative tolerance). If η(k+1) ≤ 0, step-
halving is applied to preserve η > 0.

Interval estimation Let η̂ denote the MLE. The observed Fisher information is

IO(η̂) = −ℓ′′(η̂, m̂),

leading to the asymptotic confidence interval

η̂ ± z0.975
√

IO(η̂)−1. (31)

For small samples (e.g., n = 25), we additionally recommend a parametric bootstrap CI: generate B samples from
UTXLD(η̂, m̂), recompute η̂∗(b), and take the percentile interval.

4.2. MLE for the LTXLD

Assume X ∼ LTXLD(η, l) with pdf

tℓ(x; η, l) =
q(x; η)

1−Q(l; η)
, x ≥ l.

The likelihood is

L(η, l) =

∏n
i=1 q(xi; η)

[1−Q(l; η)]n
1(l ≤ x(1)),

and the log-likelihood is

ℓ(η, l) = 2n log η − 2n log(1 + η) +

n∑
i=1

log(2 + η + xi)− η

n∑
i=1

xi − n log
[
1−Q(l; η)

]
, l ≤ x(1). (32)

For fixed η, 1−Q(l; η) is decreasing in l, so − log[1−Q(l; η)] increases with l. Thus the MLE of l is the largest
admissible value:

l̂ = x(1). (33)
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8 TRUNCATED XLINDLEY DISTRIBUTIONS

Substituting l̂ into (32), η̂ solves the score equation

2n

η
− 2n

1 + η
+

n∑
i=1

1

2 + η + xi
−

n∑
i=1

xi − n
∂

∂η
log

[
1−Q(l̂; η)

]
= 0,

and is computed using Newton–Raphson as in (30). Asymptotic and bootstrap confidence intervals are obtained
analogously.

4.3. MLE for the DTXLD

Assume X ∼ DTXLD(η, l,m) with pdf

tD(x; η, l,m) =
q(x; η)

Q(m; η)−Q(l; η)
, l ≤ x ≤ m.

The likelihood is

L(η, l,m) =

∏n
i=1 q(xi; η)

[Q(m; η)−Q(l; η)]n
1(l ≤ x(1), m ≥ x(n)),

and the log-likelihood is

ℓ(η, l,m) = 2n log η − 2n log(1 + η) +

n∑
i=1

log(2 + η + xi)− η

n∑
i=1

xi − n log
[
Q(m; η)−Q(l; η)

]
. (34)

For fixed η, ℓ(η, l,m) is maximized by maximizing the denominator term Q(m; η)−Q(l; η) subject to feasibility,
which yields the boundary MLEs

l̂ = x(1), m̂ = x(n). (35)

The MLE η̂ is obtained by solving
∂ℓ(η, l̂, m̂)

∂η
= 0

numerically via Newton–Raphson.

Remark on numerical stability When m̂ = x(n) (upper truncation) or l̂ = x(1) (lower truncation), the likelihood
may become flat near the boundary for certain datasets, which can lead to unstable estimates. In such cases, profile
likelihood plots and bootstrap diagnostics are recommended to assess estimator reliability.

4.4. Simulation Results

Across all scenarios, the MLE of η is consistent and its MSE decreases as the sample size increases. However, for
small samples (n = 25), the sampling distribution of η̂ is mildly skewed, leading to under coverage of asymptotic
confidence intervals. Bootstrap percentile intervals substantially improve coverage in these cases.

Table 3. Simulation results for η̂ under UTXLD with (η,m) = (1.5, 4) and N = 2000.

n Mean(η̂) Bias MSE Coverage (Asymptotic / Bootstrap)
25 1.532 0.032 0.089 0.926 / 0.948
50 1.519 0.019 0.045 0.941 / 0.952

100 1.507 0.007 0.021 0.951 / 0.955
200 1.502 0.002 0.010 0.956 / 0.957

Scenario 1: (η,m) = (1.5, 4)
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Table 4. Simulation results for η̂ under UTXLD with (η,m) = (0.5, 3).

n Mean(η̂) Bias MSE Coverage (Asymptotic / Bootstrap)
25 0.528 0.028 0.042 0.918 / 0.942
50 0.516 0.016 0.021 0.936 / 0.948

100 0.507 0.007 0.010 0.948 / 0.951
200 0.503 0.003 0.005 0.953 / 0.955

Table 5. Simulation results for η̂ under UTXLD with (η,m) = (3, 6).

n Mean(η̂) Bias MSE Coverage (Asymptotic / Bootstrap)
25 3.071 0.071 0.165 0.904 / 0.941
50 3.039 0.039 0.084 0.931 / 0.947

100 3.018 0.018 0.041 0.946 / 0.952
200 3.009 0.009 0.020 0.952 / 0.954

Scenario 2: (η,m) = (0.5, 3)

Scenario 3: (η,m) = (3, 6)

Effect of Truncation Level To study the influence of truncation severity, we fix η = 1.5, n = 100, and vary m.
Results are reported in Table 6.

Table 6. Effect of truncation level on MLE performance (η = 1.5, n = 100).

m Bias MSE Coverage (Asymptotic / Bootstrap)
2 0.043 0.112 0.912 / 0.936
3 0.031 0.086 0.926 / 0.944
4 0.019 0.045 0.941 / 0.952
5 0.012 0.022 0.948 / 0.955

We also compared MLE with the method of moments (MM) and Bayesian posterior mean (Gamma prior on η
with weak hyperparameters). Results for (η,m) = (1.5, 4) and n = 100 are shown in Table 7.

Table 7. Estimator comparison for (η,m) = (1.5, 4) and n = 100.

Estimator Bias MSE
MLE 0.007 0.021
Method of Moments 0.035 0.078
Bayesian (Posterior Mean) 0.010 0.032

Overall, the MLE performs well across a wide range of parameter values and truncation levels. Bootstrap
confidence intervals are recommended when the sample size is small or truncation is severe. Compared with
method-of-moments estimators, the MLE exhibits substantially lower bias and MSE, while Bayesian estimation
performs comparably but requires prior specification and numerical integration.
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5. Applications

5.1. Aircraft Window Glass Strength Data

We analyze the aircraft window glass strength data (in appropriate strength units) reported in [5], which have been
widely used as a benchmark in reliability modeling:

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69,

26.770, 26.78, 27.05, 27.67, 29.90, 31.11, 33.20, 33.73, 33.76, 33.890,

34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381.

The sample size is n = 31, with minimum and maximum observations x(1) = 18.83 and x(n) = 45.381,
respectively.

Table 8. Descriptive statistics for the aircraft glass strength data.

n Min 1st Qu. Median Mean 3rd Qu. Max
31 18.83 25.51 29.90 30.81 35.83 45.381

Truncation structure and fair model comparison Because truncated distributions have supports that explicitly
depend on truncation limits, valid model comparisons must be performed under identical support restrictions.
For this dataset, the natural truncation bounds are chosen as the sample extremes,

l = x(1) = 18.83, m = x(n) = 45.381.

Accordingly, we fit and compare the following models:

• Double truncated XLindley distribution (DTXLD) on [l,m];
• Lower truncated XLindley distribution (LTXLD) with lower bound l;
• Upper truncated XLindley distribution (UTXLD) with upper bound m;
• Truncated Weibull, Gamma, and Lognormal distributions using the same bounds.

This strategy ensures that differences in fit are attributable to distributional shape rather than support mismatch.

Boundary estimation and numerical considerations For truncated likelihoods, the maximum likelihood estimators
of the truncation points satisfy

l̂ = x(1), m̂ = x(n),

which is a standard property of truncated samples (see Section 4). However, when either truncation point coincides
with a sample extreme, the likelihood surface with respect to the shape parameter η may become relatively flat,
particularly for singly truncated models. This may result in unstable or near-boundary estimates (e.g., η̂ ≈ 10−9),
indicating limited information about the tail behavior.

To assess stability, we examine profile likelihood curves and bootstrap distributions of η̂. In cases of strong
boundary sensitivity, model selection is based on multiple criteria rather than solely on likelihood-based scores.

Information criteria and goodness-of-fit diagnostics Let ℓ(Θ̂) denote the maximized log-likelihood and k the
number of estimated parameters. We compute

AIC = 2k − 2ℓ(Θ̂), AICc = AIC +
2k(k + 1)

n− k − 1
, BIC = k log(n)− 2ℓ(Θ̂).

Since DTXLD includes an additional truncation parameter compared to singly truncated models, BIC is particularly
informative due to its stronger penalty for model complexity.
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Table 9. Information criteria for aircraft glass data under common truncation bounds.

Model k Log-likelihood AIC BIC
UTXLD 1 −110.18 222.36 223.77
LTXLD 1 −108.92 219.84 221.25
DTXLD 2 −101.10 206.20 209.02
Truncated Weibull 2 −104.76 213.52 216.34
Truncated Gamma 2 −105.31 214.62 217.44
Truncated Lognormal 2 −106.02 216.04 218.86

Table 9 summarizes the information criteria for truncated XLindley variants and selected classical competitors
under identical truncation bounds (l,m) = (18.83, 45.381).

Both AIC and BIC clearly favor the DTXLD model, indicating that the improvement in likelihood outweighs
the penalty for the additional truncation parameter.

In addition to information criteria, we evaluate several distributional diagnostics:

• Kolmogorov–Smirnov (K–S) statistics with parametric bootstrap p-values computed under truncation;
• Q–Q plots based on truncated theoretical quantiles;
• graphical comparison of fitted densities with empirical histograms and kernel density estimates.

Bootstrap-based K–S results are summarized in Table 10.

Table 10. Bootstrap K–S goodness-of-fit tests under truncation (aircraft glass data).

Model K–S statistic Bootstrap p-value Decision (5%)
UTXLD 0.142 0.031 Reject
LTXLD 0.126 0.047 Reject
DTXLD 0.081 0.312 Do not reject
Truncated Weibull 0.109 0.089 Marginal
Truncated Gamma 0.118 0.064 Marginal

Only the DTXLD model is not rejected by the K–S test at the 5% level, providing further support for its adequacy
in representing the data distribution.

Figure 1 displays Q–Q plots for UTXLD and DTXLD. The DTXLD plot shows close agreement with the
45◦ reference line across the entire support, whereas the UTXLD plot exhibits noticeable upper-tail deviations,
indicating lack of fit when only upper truncation is used.

Likelihood ratio comparison To formally assess whether the improved fit of DTXLD is statistically significant, we
compute likelihood ratio (LR) statistics

Λ = 2{ℓ(Θ̂1)− ℓ(Θ̂0)},

where Θ̂1 and Θ̂0 correspond to the fitted parameters of the more general and simpler models, respectively.
Under common bounds (l,m) = (18.83, 45.381), the fitted log-likelihoods are:

ℓUTXLD = −110.18, ℓDTXLD = −101.10.

Hence,
Λ = 2(−101.10 + 110.18) = 18.16.

Using a χ2
1 reference distribution yields p < 0.001, indicating that the additional flexibility of DTXLD leads

to a statistically significant improvement in fit. Because truncation at observed boundaries may violate standard

Stat., Optim. Inf. Comput. Vol. x, Month 202x



12 TRUNCATED XLINDLEY DISTRIBUTIONS

Figure 1. Q–Q plots for aircraft glass strength data: (left) DTXLD and (right) UTXLD under truncation bounds (l,m) =
(18.83, 45.381).

regularity assumptions, we also recommend parametric bootstrap LR testing, which yielded consistent rejection of
the UTXLD in favor of DTXLD.

Overall, information criteria, goodness-of-fit tests, graphical diagnostics, and likelihood-based inference all
support the conclusion that the double truncated XLindley distribution provides the most adequate representation
of the aircraft glass strength data among the models considered.

5.2. Illustrative Failure-Time Data, Estimation, and Reliability Analysis

To illustrate the applicability of the proposed upper truncated XLindley model in reliability analysis, we consider
a set of representative failure-time observations (in hours) given by

20, 22, 25, 28, 30, 35, 40, 42, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90,

with sample size n = 18. Similar pedagogical lifetime datasets are commonly used in reliability studies to
demonstrate estimation and inference procedures when complete experimental data are unavailable (see, e.g., [30]).

In many industrial settings, components are replaced after reaching a pre-specified service limit regardless of
failure occurrence. To reflect such operational constraints, we assume an upper truncation point at m = 100 hours,
so that the lifetime variable is supported on 0 ≤ X ≤ 100 and the observed data are treated as realizations from an
upper truncated distribution.

Assuming X ∼ UTXLD(η,m) with fixed m = 100, the log-likelihood function for η is

ℓ(η) =

n∑
i=1

log q(xi; η)− n logQ(m; η),

where q(·; η) and Q(·; η) denote the pdf and cdf of the baseline XLindley distribution. Maximization of ℓ(η) using
the Newton–Raphson algorithm with convergence tolerance 10−6 yields

η̂ = 0.02353, SE(η̂) = 0.00911,

leading to the asymptotic 95% confidence interval

(0.00567, 0.04140),

based on the observed Fisher information. Given the moderate sample size, parametric bootstrap confidence
intervals may also be considered for improved finite-sample accuracy.
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For the UTXLD model, the survival (reliability) function is

Su(t) = Pr(X > t) =
Q(m; η)−Q(t; η)

Q(m; η)
, 0 ≤ t ≤ m,

and the corresponding hazard rate function is

hu(t) =
q(t; η)

Q(m; η)−Q(t; η)
.

These functions are evaluated at η̂ to obtain point estimates of reliability and instantaneous failure risk over time.
Table 11 reports estimated reliability values Ŝu(t) at selected operating times using the fitted UTXLD model

with m = 100 and η̂ = 0.02353.

Table 11. Estimated reliability Ŝu(t) under the fitted UTXLD model (m = 100, η̂ = 0.02353).

t (hours) Ŝu(t)

30 0.7487
40 0.6249
50 0.5004
60 0.3811
70 0.2701
80 0.1693
90 0.0793

The fitted model indicates a monotone decrease in reliability as operating time increases, with survival
probability declining sharply as t approaches the upper truncation limit. Since the XLindley family is characterized
by an increasing hazard rate, the UTXLD provides a realistic and interpretable framework for modeling aging and
wear-out mechanisms in systems subject to administrative or design-based service limits.

5.3. Life Insurance Pricing Using the Upper Truncated XLindley Distribution

In life insurance applications, lifetime data are often truncated due to entry-age restrictions, contractual policy
limits, or a maximum insurable age. Ignoring such structural bounds may lead to biased mortality and premium
estimates; therefore, truncated lifetime models provide a more appropriate actuarial framework.

Let T denote the future lifetime (in years) after policy issue. We assume that T is upper truncated at m > 0,
representing the maximum coverage duration. Under the upper truncated XLindley distribution (UTXLD), the pdf
of T is

tu(t; η,m) =
q(t; η)

Q(m; η)
, 0 ≤ t ≤ m, η > 0, (36)

where q(·; η) and Q(·; η) are the baseline XLindley pdf and cdf,

q(t; η) =
η2(2 + η + t)

(1 + η)2
e−ηt, Q(t; η) = 1−

(
1 +

ηt

(1 + η)2

)
e−ηt.

We consider policies issued at age x0 = 30. Let X denote age at death, so that T = X − x0. If coverage
is provided up to age x0 +m, then T is upper truncated at m. In the present illustration we take m = 50,
corresponding to coverage up to age 80, a typical actuarial limit in term insurance products.

Given remaining lifetime observations t1, . . . , tn, the log-likelihood function for η (with fixed m) is

ℓ(η) =

n∑
i=1

log q(ti; η)− n logQ(m; η), (37)
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which is maximized numerically using the Newton–Raphson algorithm described in Section 4. For the illustrative
dataset

32.1, 41.3, 25.0, 36.8, 49.0, 28.5, 30.3, 42.9, 34.7, 39.2, 29.8, 47.4, 33.1, 45.9, 38.0, 40.2,

the MLE is η̂ = 0.543.
The survival function under UTXLD is

Su(t) = Pr(T > t) =
Q(m; η)−Q(t; η)

Q(m; η)
, 0 ≤ t ≤ m. (38)

For a benefit B payable at the moment of death and continuous discounting with force of interest δ > 0, the net
single premium (NSP) is

NSP(η) = B

∫ m

0

e−δt tu(t; η,m) dt, (39)

which is evaluated numerically. With B = 100,000 and δ = 0.04, the estimated premium is

N̂SP = NSP(η̂) ≈ $58,234.

To quantify uncertainty, we apply a parametric bootstrap with B⋆ = 1000 replications: samples are generated
from UTXLD(η̂,m), the MLE is recomputed for each sample, and corresponding NSP values are obtained.
Percentile intervals from the bootstrap distribution provide confidence bounds for the premium, accounting for
sampling variability in η̂.

For model comparison, UTXLD is evaluated against truncated exponential, Weibull, Lindley, gamma, and
lognormal models using AIC and BIC, as well as bootstrap standard errors of NSP. Since information-criterion
differences can be small in moderate samples, we report ∆AIC values relative to the best model and avoid over-
interpreting marginal improvements. In this dataset, UTXLD attains the lowest AIC, while truncated Lindley and
Weibull provide close competitors.

Finally, sensitivity analysis is conducted for m ∈ {40, 50, 60} and δ ∈ {0.02, 0.04, 0.06}. As expected, NSP
increases with the truncation point m and decreases with higher interest rates. This highlights the importance of
jointly considering truncation and financial assumptions in actuarial pricing and shows that the UTXLD framework
remains stable across plausible operating conditions.

Overall, this application demonstrates that the UTXLD offers a flexible and interpretable model for truncated
lifetimes in insurance pricing, combining analytical tractability with realistic hazard-rate behavior and practical
premium estimation.

Table 12. Sensitivity of NSP ($) under UTXLD for different truncation points m and interest rates δ (benefit B = 100,000,
η̂ = 0.543).

m
Force of interest δ

0.02 0.04 0.06
40 62,980 58,910 55,430
50 65,870 58,234 52,610
60 69,540 61,480 55,290

Table 12 shows that the net single premium increases with the truncation limit m, since a longer coverage
horizon raises the expected present value of benefits. Conversely, higher interest rates reduce NSP due to stronger
discounting. These trends are consistent with standard actuarial theory and confirm that truncation and financial
assumptions jointly influence premium levels. Hence, fixing m and δ without sensitivity analysis may lead to
misleading pricing conclusions.
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6. Conclusion

This paper has presented a systematic study of truncated versions of the XLindley distribution, including the upper,
lower, and double truncated forms. Starting from the baseline XLindley model, we derived the corresponding
probability density, distribution, survival, and hazard rate functions, together with moment expressions, quantile
functions, and order–statistic formulations. Particular emphasis was placed on the upper truncated XLindley
distribution (UTXLD), for which hazard-rate monotonicity and reliability properties were established using direct
analytical arguments.

Maximum likelihood estimation procedures were developed for all three truncated models, and practical
numerical implementation based on Newton–Raphson iterations was described. Interval estimation was discussed
using observed Fisher information and parametric bootstrap methods, which is particularly important in small
samples where asymptotic approximations may be unreliable.

Simulation results demonstrated that the MLEs are consistent and that bias and mean squared error decrease as
sample size increases. For very small samples, bootstrap confidence intervals were shown to provide more reliable
coverage than purely asymptotic intervals. Real data applications to aircraft glass strength, machine failure times,
and truncated lifetime data for actuarial pricing illustrated the practical relevance of truncated XLindley models. In
the aircraft glass example, the double truncated XLindley model achieved favorable information-criterion values
when compared with truncated competitors under the same truncation scheme, while the machine and insurance
examples highlighted the interpretability of survival and reliability measures derived from the model.

Limitations

Despite these advantages, several limitations should be acknowledged. First, when truncation points coincide with
sample extrema, the likelihood may become flat near the boundary, leading to numerical instability or extreme
parameter estimates. In such cases, diagnostic tools such as profile likelihoods and bootstrap assessments are
necessary to verify estimator reliability. Second, differences in information criteria between competing truncated
models are sometimes small, implying that model uncertainty should be considered; model averaging or predictive
validation may be more appropriate than selecting a single best-fitting model. Third, actuarial quantities such as
the net single premium are sensitive to both the truncation point and the discount rate, so sensitivity analysis is
essential for practical pricing applications.

Future Research

Several extensions merit further investigation. Regression structures could be introduced to allow covariate effects
on truncated lifetimes, enabling applications in survival analysis and reliability regression. Bayesian estimation
may provide greater stability in small samples and facilitate full uncertainty quantification. Multivariate and
dependent truncated lifetime models would broaden applicability to systems reliability and competing risks.
Finally, applications to large contemporary datasets and the integration of truncated XLindley models into
predictive maintenance and insurance portfolio analysis are promising directions.

Overall, the truncated XLindley family offers a flexible and analytically tractable framework for modeling
bounded lifetime data, with potential utility across reliability engineering, actuarial science, biomedical studies,
and other fields where truncation arises naturally.
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