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Abstract Uncertainty modeling underpins decision-making across diverse domains, and numerous frameworks—such
as Fuzzy Sets, Rough Sets, Hesitant Fuzzy Sets, and Plithogenic Sets—have been developed to capture different facets
of imprecision. Hyperfuzzy Sets and their recursive generalization, SuperHyperfuzzy Sets, assign set-valued membership
degrees at multiple hierarchical levels to represent uncertainty more richly. The Linear Diophantine Fuzzy Set further
refines this approach by imposing weighted linear Diophantine constraints on membership and non-membership grades.
In this paper, we define two new constructs—the Linear Diophantine Hyperfuzzy Set and the Linear Diophantine
SuperHyperfuzzy Set—by integrating Diophantine constraints with hyperfuzzy and superhyperfuzzy frameworks, and we
present a concise application example. A Linear Diophantine HyperFuzzy Set assigns each element set-valued membership
and nonmembership grades, constrained by a linear Diophantine relation. A (m,n)−Linear Diophantine SuperHyperFuzzy
Set assigns each element set-valued membership and nonmembership grades, constrained by a linear Diophantine relation.
We also examine the algorithms associated with these notions. These extensions offer a more structured, hierarchical means
of applying Linear Diophantine Fuzzy Set methodology in practical uncertain environments.

Keywords Fuzzy set, HyperFuzzy Set, SuperHyperFuzzy Set, Linear Diophantine Fuzzy Set

AMS 2010 subject classifications 03E72

DOI: 10.19139/soic-2310-5070-3258

1. Introduction

1.1. Fuzzy, HyperFuzzy, and SuperHyperFuzzy Sets

In classical set theory, objects that share a given property are collected into a set, and membership is strictly binary:
an element either belongs to the set or it does not[1]. When one tries to model vague boundaries, partial truth, or
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pieces of evidence that are incomplete or even conflicting, such crisp sets are too rigid to capture the full spectrum of
real-world uncertainty. To overcome this limitation in a systematic manner, many kinds of uncertain set formalisms
have been introduced[2, 3]. In the fuzzy-set framework, each element of a universe U is assigned a membership
grade in [0, 1], so that belonging to a set becomes a gradual notion rather than an all-or-nothing decision[4]. Typical
generalizations include pythagorean fuzzy sets [5, 6], neutrosophic sets[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
bipolar fuzzy sets[19], bipolar neutrosophic sets[20], neutrosophic soft sets[21], neutrosophic resolving sets[?],
pentapartitioned neutrosophic sets[22], heptapartitioned neutrosophic sets[23], hesitant neutrosophic sets[24],
complex neutrosophic sets[25, 26, 27, 28, 29], shadowed sets[30], plithogenic sets[31, 32, 33, 34], double-valued
neutrosophic sets[35, 36], and intuitionistic fuzzy sets[37]. These fuzzy-type models and their variants have been
studied extensively and successfully applied in decision making, machine learning, and many areas of computer
science.

Hyperfuzzy sets refine this picture by assigning to each element a nonempty subset of [0, 1], representing several
plausible membership degrees and hence uncertainty about the membership value itself[38, 39]. In an even more
structured, hierarchical setting, an (m,n)-superhyperfuzzy set associates each nonempty m-level subset of U with
a family of nonempty n-level sets of membership grades, thereby encoding multiple layers of uncertainty within
a single unified framework[40, 41]. For convenience, Table 1 summarizes the main viewpoints behind Uncertain,
HyperUncertain, and SuperHyperUncertain Sets.

Table 1. Summary of Uncertain, HyperUncertain, and SuperHyperUncertain Sets.

Notion Underlying domain Core idea Typical instances / references

Uncertain Set S (or a model-dependent
subfamily of P(S))

Attach to elements or subsets some
representation of uncertainty, such as graded
membership, parameters, lower/upper
approximations, neutrosophic triples, or
contradiction-aware degrees.

Fuzzy Sets[4]; Soft Sets[21];
Neutrosophic Sets[42];
Plithogenic Sets[43].

HyperUncertain Set P(S) Treat uncertainty directly on the powerset;
evaluations on P(S) become set-valued,
capturing hesitation, multiple compatible
grades, and richer patterns of appurtenance.

HyperFuzzy[44, 45];
HyperNeutrosophic[46],
HyperSoft[47].

SuperHyperUncertain
Set

P n(S), n ≥ 1 Lift the uncertainty semantics to iterated
powersets, so that hierarchical and multi-level
uncertainty over multi-ary inputs/outputs can be
modeled across the different layers of P n(S).

SuperHyperFuzzy, SuperHyper-
Vague, SuperHyperNeutrosophic,
and related models[48, 49].

Note. P(S) denotes the powerset of S, and P n(S) the n-fold iterated powerset (n ≥ 1). The n-fold iterated powerset of S is obtained by
applying the powerset operator n times: P1(S) = P(S).

Several notions are closely connected to SuperHyperFuzzy sets, including Type-n fuzzy sets (such as Type-2
and Type-3 fuzzy sets), n-dimensional or multidimensional fuzzy sets, and interval-valued fuzzy sets. A concise
comparison of these models appears in Table 2. Type-n fuzzy sets[50], n-dimensional/multidimensional fuzzy
sets[51, 52], and interval-valued fuzzy sets [53] are all foundational components of fuzzy theory, have broad
applicability, and have been extensively studied in the literature.

1.2. Linear Diophantine fuzzy set

Within this fuzzy landscape, a Linear Diophantine fuzzy set provides an additional algebraic constraint: each
element is equipped with a membership and a nonmembership degree whose weighted sum satisfies a prescribed
linear Diophantine relation[55, 56, 57]. Related concepts include Spherical Linear Diophantine Fuzzy Sets[58, 56],
Linear Diophantine Neutrosophic Sets[59], and q-rung orthopair fuzzy sets [60, 61, 62]. Linear Diophantine fuzzy
sets integrate algebraic constraints with uncertainty, enabling structured decision models, consistency checks, and
richer parameterized reasoning capabilities. For reference, Table 3 provides a brief comparison of the Fuzzy Set
and the Linear Diophantine Fuzzy Set.
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Table 2. Comparison of SuperHyperFuzzy, Type-n, n-dimensional/multidimensional, and interval-valued fuzzy sets.

Notion Membership mapping Value structure Relation / remark

SuperHyperFuzzy Set [40] µ̃m,n : P∗
m(U)→

P(Pn([0, 1])) \ {∅}
Each m-level subset of U
is mapped to a nonempty
family of n-level sets of
grades in [0, 1].

Provides hierarchical, set-valued member-
ship on iterated powersets; extends hyper-
fuzzy sets and models multi-layer uncer-
tainty on groups of elements.

Type-n Fuzzy Set [50, 54] µ(n) : X →
F(n−1)([0, 1]), where
F(k)([0, 1]) denotes type-k
fuzzy sets on [0, 1]

The membership of x ∈
X is a type-(n− 1) fuzzy
set on [0, 1], defined recur-
sively from type-1 fuzzy
sets.

For n = 1 one recovers an ordinary fuzzy
set; for n = 2 a general type-2 fuzzy set.
Uncertainty is encoded via (n− 1) nested
fuzzy layers over [0, 1].

n-Dimensional / Multidi-
mensional Fuzzy Set [51,
52]

ν : X → J∞([0, 1]),
where J∞([0, 1]) =⋃

k≥1 Jk([0, 1]) and
ν(x) = (z1, . . . , zk(x))
with 0 ≤ z1 ≤ · · · ≤
zk(x) ≤ 1

Each element carries a
finite, ordered tuple of
membership grades (with
element-dependent length),
representing several
evaluation levels of a single
attribute.

Extends n-dimensional fuzzy sets by allow-
ing variable tuple length per element; yields
vector-valued memberships.

Interval-valued Fuzzy Set
[53]

µIV : X → {[a, b] ⊆
[0, 1] | 0 ≤ a ≤ b ≤ 1}

Each element is assigned a
closed interval of admissi-
ble membership grades in
[0, 1].

Can be seen as a special type-2 fuzzy set
where the secondary membership is 1 on
a single interval and 0 outside; provides
lower and upper bounds without additional
hierarchical layers.

Table 3. Brief comparison of Fuzzy Set and Linear Diophantine Fuzzy Set

Aspect Fuzzy Set Linear Diophantine Fuzzy Set
Membership
representation

Each x has µ(x) ∈ [0, 1]. Each x has AD(x), SD(x) ∈ [0, 1].

Additional parameters No global parameters. Uses fixed weights (α, β) with 0 ≤
α+ β ≤ 1.

Core constraint Only 0 ≤ µ(x) ≤ 1. Requires 0 ≤ αAD(x) + βSD(x) ≤
1.

Hesitation / indeterminacy Often omitted or 1− µ(x). πD(x) = 1− (αAD(x) + βSD(x)).

Modeling focus Graded membership for vague con-
cepts.

Structured balance of support and
opposition.

1.3. Our Contributions

Although fuzzy, hyperfuzzy, and superhyperfuzzy sets have been widely analyzed, the systematic combination of
these structures with the Linear Diophantine fuzzy–set paradigm has, to the best of our knowledge, not yet been
investigated. Because hyperfuzzy and superhyperfuzzy sets are important in that they allow clear representation of
concepts with multi-level uncertainty, it is meaningful to extend the Linear Diophantine fuzzy set to the hyperfuzzy
and superhyperfuzzy settings as well, and we believe that these extensions likewise have the potential to represent
concepts with multi-level uncertainty.

In this paper, we close this gap by introducing two new notions: the Linear Diophantine Hyperfuzzy Set and the
Linear Diophantine SuperHyperfuzzy Set. Both are obtained by embedding Diophantine–type linear constraints
into the hyperfuzzy and superhyperfuzzy settings, respectively. We also present a compact application example
to demonstrate how these constructions can be used to model complex, hierarchically organized uncertainty in
practical decision scenarios. For reference, Table 4 provides a concise comparison of Linear Diophantine Fuzzy,
HyperFuzzy, and SuperHyperFuzzy Sets.
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Table 4. Linear Diophantine Fuzzy, HyperFuzzy, and SuperHyperFuzzy Sets (brief overview).

Notion Domain / mapping Brief description

Linear Diophantine Fuzzy Set
(LDFS)

x ∈ Q 7→ (AD(x), SD(x)) ∈ [0, 1]2 Single membership and nonmembership degrees with 0 ≤
αAD(x) + βSD(x) ≤ 1. Residual hesitation 1− (αAD +
βSD).

Linear Diophantine
HyperFuzzy Set (LDHFS)

x ∈ U 7→ (µ̃(x), ν̃(x)),
µ̃(x), ν̃(x) ⊆ [0, 1] nonempty

Set–valued membership and nonmembership.
For all u ∈ µ̃(x), v ∈ ν̃(x), 0 ≤ αu+ βv ≤ 1.

(m,n)-Linear Diophantine
SuperHyperFuzzy Set

A ∈ P∗
m(U) 7→

(µ̃m,n(A), ν̃m,n(A)), values in
P(Pn([0, 1])) \ {∅}

Hierarchical (multi-level) set–valued member-
ship/nonmembership. For all s ∈ flatn(u), t ∈ flatn(v),
0 ≤ αs+ βt ≤ 1.

The proposed construction enforces Diophantine consistency across all hierarchical hyperfuzzy levels. This
allows global feasibility checks and a tunable trade-off between membership and nonmembership, yielding sharper
and more structurally constrained decision models than those obtained from Diophantine fuzzy or (separately
defined) (super)hyperfuzzy frameworks. Moreover, it can encode a global policy requiring that, across different
levels (panels, scenarios, expert groups), the balance between support and opposition must remain within a
prescribed range. From a decision-making viewpoint, at a suitable stage of the hierarchical aggregation one can
switch between risk-averse and risk-seeking strategies by adjusting α and β.

1.4. Structure of This Paper

This subsection outlines the structure of the paper. Section 2 presents the preliminaries, introducing the required
background on Fuzzy, Hyperfuzzy, and SuperHyperfuzzy Sets, as well as the definitions of Linear Diophantine
Fuzzy Sets. Section 3 develops the concepts of the Linear Diophantine HyperFuzzy Set and the (m,n)-Linear
Diophantine SuperHyperFuzzy Set. Section 4 provides the concluding remarks of the paper.

2. Preliminaries: SuperHyperFuzzy Sets and Linear Diophantine Fuzzy Sets

In this section, we summarize the key definitions and notation used throughout this paper. Unless otherwise
specified, all sets are assumed finite.

2.1. Fuzzy, Hyperfuzzy, and SuperHyperfuzzy Sets

The definitions of Fuzzy, Hyperfuzzy, and SuperHyperfuzzy Sets are presented below.

Definition 2.1 (Fuzzy Set). [4] A fuzzy set F on a universe U is specified by a membership function

µF : U −→ [0, 1],

so that each element x ∈ U is assigned a degree of membership µF (x).

Definition 2.2 (Fuzzy Relation). [63] Let F be a fuzzy set on U . A fuzzy relation R on U is a map

R : U × U −→ [0, 1],

satisfying
R(x, y) ≤ min{µF (x), µF (y)} for all x, y ∈ U.
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Definition 2.3 (Hyperfuzzy Set). [38] A hyperfuzzy set F̃ on U is given by a function

µ̃ : U −→ P([0, 1]) \ {∅},

where for each x ∈ U , the nonempty subset µ̃(x) ⊆ [0, 1] represents all possible membership grades of x.

We provide below a brief overview of the iterated powerset and the superhyperfuzzy set.

Definition 2.4 (Iterated Powerset). [64, 65] For each integer n ≥ 1, the n-fold iterated powerset of U is defined by

P1(U) = P(U), Pn+1(U) = P
(
Pn(U)

)
.

If one wishes to exclude the empty set at each iteration, replace P with

P∗(X) = P(X) \ {∅}.

Definition 2.5 ((m,n)-SuperHyperfuzzy Set). [40] Fix integers m,n ≥ 0. Define

P∗
m(U) = (P∗ ◦ · · · ◦ P∗︸ ︷︷ ︸

m times

)(U), P∗
n([0, 1]) = (P∗ ◦ · · · ◦ P∗︸ ︷︷ ︸

n times

)([0, 1]),

where P∗(X) = P(X) \ {∅}. An (m,n)-superhyperfuzzy set on U is a mapping

µ̃m,n : P∗
m(U) −→ P

(
Pn([0, 1])

)
\ {∅},

which assigns each nonempty m-level subset of U a nonempty family of n-level membership-value sets, thereby
capturing hierarchical uncertainty.

Example 2.6 (Multi-Expert Product Reliability Assessment). We demonstrate an (m,n)-SuperHyperfuzzy set with
m = 1, n = 2 in the context of assessing product reliability by two independent expert panels. Let

U = {Smartphone, Laptop, Headphones}, m = 1, n = 2.

Recall that
P∗
1 (U) = P(U) \ {∅},

so in particular the singletons {Smartphone}, {Laptop}, {Headphones} all lie in P∗
1 (U). Moreover,

P∗
2 ([0, 1]) =

{
S ⊆ P([0, 1]) \ {∅} | S ̸= ∅

}
,

whose elements are nonempty families of nonempty sets of membership grades.

For each product x ∈ U we now specify two elements

H1(x), H2(x) ∈ P∗
2 ([0, 1]),

representing the hyper-membership information supplied by Expert Panel 1 and Expert Panel 2, respectively.
Concretely, we set

H1(Smartphone) =
{
{0.80, 0.85, 0.90}

}
, H2(Smartphone) =

{
{0.75, 0.82}

}
,

H1(Laptop) =
{
{0.65, 0.70, 0.75}

}
, H2(Laptop) =

{
{0.60, 0.68}

}
,

H1(Headphones) =
{
{0.50, 0.55, 0.60}

}
, H2(Headphones) =

{
{0.45, 0.52}

}
.

Each inner set (for instance {0.80, 0.85, 0.90}) collects the possible normalized reliability grades reported by
different sub-surveys within a single panel, while the outer braces form a (here singleton) family of such grade-sets.
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We define the mapping
µ̃1,2 : P∗

1 (U) −→ P
(
P2([0, 1])

)
\ {∅}

by
µ̃1,2

(
{Smartphone}

)
=
{
H1(Smartphone), H2(Smartphone)

}
,

µ̃1,2

(
{Laptop}

)
=
{
H1(Laptop), H2(Laptop)

}
,

µ̃1,2

(
{Headphones}

)
=
{
H1(Headphones), H2(Headphones)

}
.

Thus for each singleton {x} ∈ P∗
1 (U), the value µ̃1,2({x}) is a nonempty subset of P2([0, 1]), whose elements

H1(x), H2(x) encode, at the second level, the hyper-membership information provided by the two panels.

Consequently,
D̃ =

{(
{x}, µ̃1,2({x})

) ∣∣ x ∈ U
}

forms a (1, 2)-SuperHyperfuzzy set capturing two levels of hierarchical uncertainty: one level for the choice of
product (m = 1), and one level for the expert-panel structure and its internal survey variability (n = 2).

2.2. Linear Diophantine Fuzzy Set

A Linear Diophantine Fuzzy Set assigns to each element a membership and a nonmembership grade whose
weighted sum satisfies a specified linear Diophantine equation [55, 56, 57, 66]. The definitions and a brief
illustrative example are given below.

Definition 2.7 (Linear Diophantine Fuzzy Set). [55, 56] Let Q be a nonempty universe. Fix reference parameters
α, β ∈ [0, 1] with

0 ≤ α+ β ≤ 1.

A linear Diophantine fuzzy set (LDFS) D̃ on Q is a collection of triples

D̃ =
{ (

x, ⟨AD(x), SD(x)⟩, ⟨α, β⟩
) ∣∣ x ∈ Q

}
,

where

• AD, SD : Q→ [0, 1] assign to each x ∈ Q its membership grade AD(x) and non-membership grade SD(x),
and

• these must satisfy
0 ≤ αAD(x) + β SD(x) ≤ 1, ∀x ∈ Q.

The residual (hesitation) degree is then

πD(x) = 1−
(
αAD(x) + β SD(x)

)
.

We often abbreviate each triple
(
x, (AD(x), SD(x)), (α, β)

)
simply as the linear Diophantine fuzzy number〈

AD(x), SD(x)
〉
(α,β)

.

3. Main Results: Linear Diophantine HyperFuzzy Set and Linear Diophantine SuperHyperFuzzy Set

This paper presents the main findings concerning the Linear Diophantine HyperFuzzy Set and the Linear
Diophantine SuperHyperFuzzy Set.
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6 LINEAR DIOPHANTINE HYPERFUZZY SET AND SUPERHYPERFUZZY SET

3.1. Linear Diophantine HyperFuzzy Set

A Linear Diophantine HyperFuzzy Set assigns each element set-valued membership and nonmembership grades,
constrained by a linear Diophantine relation.

Definition 3.1 (Linear Diophantine HyperFuzzy Set). Let U be a nonempty universe. Fix real weights α, β ∈ [0, 1]
with

α+ β ≤ 1.

A Linear Diophantine HyperFuzzy Set (LDHFS) D̃ on U with parameters (α, β) is given by two set-valued
mappings

µ̃, ν̃ : U −→ P([0, 1]) \ {∅},

called the hyper-membership and hyper-nonmembership functions, respectively, such that for every x ∈ U and for
all u ∈ µ̃(x), v ∈ ν̃(x) we have the Linear Diophantine condition

0 ≤ αu + β v ≤ 1.

The associated hyper-hesitation set π̃ is defined by

π̃(x) =
{
1− (αu+ β v)

∣∣ u ∈ µ̃(x), v ∈ ν̃(x)
}
, x ∈ U.

Example 3.2 (Credit Risk Assessment). Consider three loan applicants evaluated by three models and two expert
committees. Let

U = {Ayuka, Masahiro, Carol}, (α, β) = (0.6, 0.3).

For each x ∈ U :

• µ̃(x) ⊆ [0, 1] is the set of possible creditworthiness grades from three sources.

• ν̃(x) ⊆ [0, 1] is the set of possible default-risk grades from two experts.

• All u ∈ µ̃(x), v ∈ ν̃(x) must satisfy 0 ≤ 0.6u+ 0.3 v ≤ 1.

Suppose the assessments are:

µ̃(Ayuka) = {0.80, 0.85, 0.90}, ν̃(Ayuka) = {0.10, 0.15},
µ̃(Masahiro) = {0.60, 0.65, 0.70}, ν̃(Masahiro) = {0.25, 0.30},

µ̃(Carol) = {0.40, 0.50}, ν̃(Carol) = {0.40, 0.45, 0.50}.

For example, for Ayuka with u = 0.85 and v = 0.15:

0.6× 0.85 + 0.3× 0.15 = 0.51 (lies in [0, 1]).

The hyper-hesitation set is

π̃(x) = { 1− (0.6u+ 0.3 v) | u ∈ µ̃(x), v ∈ ν̃(x)}.

Hence the LDHFS D̃ is {
(x, µ̃(x), ν̃(x), π̃(x))

∣∣ x ∈ {Ayuka,Masahiro,Carol}
}
.

This example captures multiple credit-scoring opinions (hyper-membership), expert default-risk judgments (hyper-
nonmembership), and the residual uncertainty (hyper-hesitation) in a coherent LDHFS framework.
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Theorem 3.3 (Generalization of LDFS and HyperFuzzy Set)
Every Linear Diophantine Fuzzy Set and every HyperFuzzy Set can be obtained as a special case of an LDHFS:

(i) (LDFS case) If for each x ∈ U the sets µ̃(x) and ν̃(x) are singletons, µ̃(x) = {AD(x)}, ν̃(x) = {SD(x)},
then D̃ reduces to the usual Linear Diophantine Fuzzy Set

{
(x,AD(x), SD(x))

}
.

(ii) (HyperFuzzy case) If we choose α = 1, β = 0, and set ν̃(x) = {0} for all x, then the only nontrivial data is
the mapping µ̃ : U → P([0, 1]) \ {∅}, recovering exactly a HyperFuzzy Set.

Proof

(i) Under the singleton assumption µ̃(x) = {AD(x)}, ν̃(x) = {SD(x)}, the Linear Diophantine condition

0 ≤ αu+ β v = αAD(x) + β SD(x) ≤ 1
(
u = AD(x), v = SD(x)

)
is exactly the feasibility requirement for a Linear Diophantine Fuzzy Set. The hyper-hesitation set π̃(x) =
{1− (αAD(x) + βSD(x))} collapses to the single hesitation degree of the LDFS. Hence D̃ coincides with
the standard LDFS.

(ii) If α = 1 and β = 0, then for any µ̃(x) ⊆ [0, 1] nonempty and ν̃(x) = {0}, the condition

0 ≤ 1 · u+ 0 · v = u ≤ 1 ∀u ∈ µ̃(x)

holds automatically. The mapping µ̃ alone carries all uncertainty information, exactly as in a HyperFuzzy
Set. The auxiliary sets ν̃(x) and π̃(x) play no substantive role. Thus D̃ restricts to a HyperFuzzy Set.

3.2. (m,n)−Linear Diophantine SuperHyperFuzzy Set

A (m,n)−Linear Diophantine SuperHyperFuzzy Set assigns each element set-valued membership and
nonmembership grades, constrained by a linear Diophantine relation.

Notation 3.4
Define the flattening operator flatn : Pn([0, 1])→ P([0, 1]) recursively by

flat0(x) = {x}, flatk+1(S) =
⋃
T∈S

flatk(T ).

Definition 3.5 ((m,n)-Linear Diophantine SuperHyperfuzzy Set). Let U be a nonempty universe. Fix integers
m,n ≥ 0 and weights α, β ∈ [0, 1] with α+ β ≤ 1. Recall P∗

m(U) and P∗
n([0, 1]) from Definition 2.5. An

(m,n)-linear Diophantine superhyperfuzzy set on U is a pair of mappings

µ̃m,n, ν̃m,n : P∗
m(U) −→ P

(
Pn([0, 1])

)
\ {∅},

called the hyper-membership and hyper-nonmembership functions, such that for every A ∈ P∗
m(U), every u ∈

µ̃m,n(A), every v ∈ ν̃m,n(A), and every s ∈ flatn(u), t ∈ flatn(v), the following linear Diophantine condition
holds:

0 ≤ α s + β t ≤ 1.

The associated hyper-hesitation set π̃m,n : P∗
m(U)→ P([0, 1]) is defined by

π̃m,n(A) =
{
1−

(
α s+ β t

) ∣∣ u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v)
}
.
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Remark 3.6. Classical HyperFuzzy and SuperHyperFuzzy sets allow the membership and nonmembership
hypergrades to vary largely independently, so that any pair (s, t) ∈ [0, 1]2 is, in principle, admissible. The Linear
Diophantine condition

0 ≤ αs+ βt ≤ 1

couples these components through the weights (α, β) and is intended to encode a global trade–off between support
and opposition that can be tuned from domain knowledge or calibration. In the normalized setting adopted here
(with α+ β ≤ 1 and s, t ∈ [0, 1]), this inequality is automatically satisfied; we nevertheless make it explicit so that
the same Diophantine template can be used in more general, non–normalized variants where it genuinely rules out
infeasible (s, t)–combinations and thereby adds structure beyond standard HyperFuzzy/SuperHyperFuzzy models.

For illustration, consider a non-normalized variant in which membership and nonmembership grades lie in
an interval [0, L] with L > 1, while we still impose 0 ≤ αu+ βv ≤ 1. Suppose L = 2, (α, β) = (1, 1), and a
candidate pair (u, v) = (1.8, 0.6) arises in some assessment. Then αu+ βv = 2.4 > 1, so this pair is rejected by
the Diophantine constraint. In this way, the constraint rules out jointly extreme support–opposition combinations
and enforces a global budget on admissible uncertainty patterns.

Several concrete examples are presented below.

Example 3.7 (Hierarchical Credit-Risk Evaluation). Consider two loan applicants:

U = {Ayuka, Masahiro}, m = 1, n = 2, (α, β) = (0.6, 0.3).

Then
P∗
1 (U) =

{
{Ayuka}, {Masahiro}

}
, P∗

2 ([0, 1]) =
{
S ⊆ P([0, 1]) \ {∅} | S ̸= ∅

}
.

We define two set–valued mappings µ̃1,2, ν̃1,2 : P∗
1 (U)→ P

(
P2([0, 1])

)
\ {∅} by, for each x ∈ {Ayuka,Masahiro},

µ̃1,2({x}) =
{
{ 0.80, 0.85}, { 0.78, 0.82}

}
,

ν̃1,2({x}) =
{
{ 0.10, 0.15}, { 0.12, 0.18}

}
.

Here each inner set is a sub-expert’s fuzzy grade, and the outer family groups two expert committees.

By Definition 3.5, for any u ∈ µ̃1,2({x}), v ∈ ν̃1,2({x}) and any s ∈ flat2(u), t ∈ flat2(v), the Linear
Diophantine constraint

0 ≤ α s+ β t = 0.6 s+ 0.3 t ≤ 1

must hold. For instance, taking u = {0.85, 0.80}, v = {0.18, 0.12}, and s = 0.85, t = 0.18, we get

0.6 · 0.85 + 0.3 · 0.18 = 0.51 + 0.054 = 0.564 ∈ [0, 1].

The associated hyper-hesitation set is

π̃1,2({x}) =
{
1− (0.6 s+ 0.3 t)

∣∣ s ∈ flat2(u), t ∈ flat2(v)
}
.

Thus the pair
(
µ̃1,2, ν̃1,2

)
defines a (1, 2)-Linear Diophantine SuperHyperfuzzy Set capturing two hierarchical

levels of expert uncertainty under weighted membership vs. nonmembership constraints.

Example 3.8 (Project Portfolio Risk–Reward Evaluation). Consider a company evaluating portfolios of two
projects chosen from

U = {Project A, Project B, Project C}, m = 2, n = 2, (α, β) = (0.7, 0.2).

Then
P∗
2 (U) =

{
{A,B}, {A,C}, {B,C}

}
.
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For each pair A ∈ P∗
2 (U), two independent expert panels estimate the success probability (hyper-membership) and

two risk committees estimate the failure risk (hyper-nonmembership). We set

µ̃2,2(A) =
{
U1(A), U2(A)

}
, ν̃2,2(A) =

{
V1(A), V2(A)

}
,

where each Ui(A) ⊆ [0, 1] and Vj(A) ⊆ [0, 1] are nonempty.

Case {A,B}:
U1({A,B}) = {0.80, 0.85}, V1({A,B}) = {0.10, 0.15},
U2({A,B}) = {0.75, 0.78}, V2({A,B}) = {0.12, 0.18}.

Here:

• Panel 1 forecasts success rates of 0.80 or 0.85.

• Panel 2 forecasts success rates of 0.75 or 0.78.

• Committee 1 assesses risk at 0.10 or 0.15.

• Committee 2 assesses risk at 0.12 or 0.18.

For each u ∈ Ui({A,B}), v ∈ Vj({A,B}), and each s ∈ flat2(u) = u, t ∈ flat2(v) = v, we verify the Linear
Diophantine condition:

0 ≤ 0.7 s+ 0.2 t ≤ 1.

For example, taking s = 0.85 and t = 0.18 gives

0.7 · 0.85 + 0.2 · 0.18 = 0.595 + 0.036 = 0.631 ∈ [0, 1].

The associated hyper-hesitation set is

π̃2,2({A,B}) =
{
1− (0.7 s+ 0.2 t)

∣∣ s ∈ Ui({A,B}), t ∈ Vj({A,B})
}
,

which concretely contains values such as 1− (0.7 · 0.85 + 0.2 · 0.18) = 0.369, etc.

Other pairs: One similarly defines

U1({A,C}) = {0.82, 0.88}, V1({A,C}) = {0.08, 0.12},
U2({A,C}) = {0.78, 0.81}, V2({A,C}) = {0.10, 0.14},

U1({B,C}) = {0.70, 0.75}, V1({B,C}) = {0.15, 0.20},
U2({B,C}) = {0.68, 0.72}, V2({B,C}) = {0.18, 0.22}.

Each case satisfies 0 ≤ 0.7 s+ 0.2 t ≤ 1, and one computes π̃2,2(A) accordingly.

Therefore, the pair
(
µ̃2,2, ν̃2,2

)
defines a (2, 2)-Linear Diophantine SuperHyperfuzzy Set on U , modeling

hierarchical success and risk estimates for every two-project portfolio under weighted Diophantine constraints.

Example 3.9 (Team Formation Performance–Risk Assessment). A company has four specialists U =
{E1, E2, E3, E4}. It must form teams of three for a high-impact project, balancing predicted performance against
interpersonal risk. We set

m = 3, n = 2, (α, β) = (0.5, 0.4),
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so
P∗
3 (U) =

{
{E1, E2, E3}, {E1, E2, E4}, {E1, E3, E4}, {E2, E3, E4}

}
.

Two management panels estimate each team’s performance (hyper-membership) and two HR committees estimate
conflict risk (hyper-nonmembership). Define

µ̃3,2(T ) = {M1(T ), M2(T )}, ν̃3,2(T ) = {V1(T ), V2(T )}, T ∈ P∗
3 (U),

where each Mi(T ), Vj(T ) ⊆ [0, 1].

Team {E1, E2, E3}:

M1({E1, E2, E3}) = {0.80, 0.82}, V1({E1, E2, E3}) = {0.10, 0.12},
M2({E1, E2, E3}) = {0.78, 0.80}, V2({E1, E2, E3}) = {0.15, 0.18}.

For any u ∈Mi(T ), v ∈ Vj(T ), and s ∈ flat2(u) = u, t ∈ flat2(v) = v, the Linear Diophantine condition

0 ≤ 0.5 s+ 0.4 t ≤ 1

holds. For example, s = 0.82, t = 0.18 gives

0.5 · 0.82 + 0.4 · 0.18 = 0.41 + 0.072 = 0.482 ∈ [0, 1].

The hyper-hesitation set is

π̃3,2({E1, E2, E3}) = { 1− (0.5 s+ 0.4 t) | s ∈Mi, t ∈ Vj},

which concretely includes values like 1− (0.5 · 0.82 + 0.4 · 0.18) = 0.518.

Team {E1, E2, E4}:

M1({E1, E2, E4}) = {0.75, 0.78}, V1({E1, E2, E4}) = {0.12, 0.14},
M2({E1, E2, E4}) = {0.73, 0.76}, V2({E1, E2, E4}) = {0.16, 0.20}.

Team {E1, E3, E4}:

M1({E1, E3, E4}) = {0.82, 0.85}, V1({E1, E3, E4}) = {0.08, 0.10},
M2({E1, E3, E4}) = {0.80, 0.83}, V2({E1, E3, E4}) = {0.13, 0.17}.

Team {E2, E3, E4}:

M1({E2, E3, E4}) = {0.70, 0.72}, V1({E2, E3, E4}) = {0.18, 0.22},
M2({E2, E3, E4}) = {0.68, 0.71}, V2({E2, E3, E4}) = {0.20, 0.24}.

Thus
(µ̃3,2, ν̃3,2)

defines a (3, 2)-Linear Diophantine SuperHyperfuzzy Set modeling hierarchical team-performance and conflict-
risk estimates under weighted Diophantine constraints.
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Theorem 3.10 (Generalization of LDFS, LDHFS, and (m,n)-SHF Set)
Let D̃ = (µ̃m,n, ν̃m,n) be an (m,n)-Linear Diophantine SuperHyperfuzzy Set on U . Then:

(i) (LDFS) If m = n = 0 and for each x ∈ U , both µ̃0,0(x) and ν̃0,0(x) are singletons {AD(x)}, {SD(x)}, then
D̃ reduces to the Linear Diophantine Fuzzy Set of Definition 3.5.

(ii) (LDHFS) If m = n = 0, α = 1, β = 0, and ν̃0,0(x) = {0} for all x ∈ U , then the essential data of D̃ is exactly
a HyperFuzzy Set as in Definition 2.3.

(iii) ((m,n)-SHF Set) If β = 0 and for each A ∈ P∗
m(U), the set ν̃m,n(A) is chosen to be the trivial n-fold nested

zero { {. . . {0} . . . }}, then the only nontrivial mapping is µ̃m,n, so D̃ reduces to the (m,n)-SuperHyperfuzzy
Set of Definition 2.5.

Proof
Recall that, by the definition of an (m,n)-Linear Diophantine SuperHyperfuzzy Set, we have

µ̃m,n, ν̃m,n : P∗
m(U) −→ P

(
Pn([0, 1])

)
\ {∅},

and for every A ∈ P∗
m(U), for every

u ∈ µ̃m,n(A), v ∈ ν̃m,n(A),

and every
s ∈ ♭n(u), t ∈ ♭n(v),

the Linear Diophantine inequality
0 ≤ αs+ βt ≤ 1 (1)

holds. Here ♭n : Pn([0, 1])→ P([0, 1]) is the flattening operator defined recursively by

♭0(x) = {x}, ♭k+1(S) =
⋃
T∈S

♭k(T ).

We treat each item separately.

(i) LDFS case.

Assume m = n = 0 and that for each x ∈ U the images are singletons

µ̃0,0(x) = {AD(x)}, ν̃0,0(x) = {SD(x)}.

By the convention for iterated nonempty powersets, when m = 0 we have

P∗
0 (U) = U, P∗

0 ([0, 1]) = [0, 1],

and for the flattening operator
♭0(z) = {z} for every z ∈ [0, 1].

Fix any x ∈ U . By assumption there is a unique

u ∈ µ̃0,0(x) and v ∈ ν̃0,0(x),
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namely u = AD(x), v = SD(x). The only possible choices of (s, t) ∈ ♭0(u)× ♭0(v) are

s = u = AD(x), t = v = SD(x),

because
♭0(u) = {u}, ♭0(v) = {v}.

Substituting these into the Diophantine constraint (1), we obtain

0 ≤ αs+ βt ≤ 1 ⇐⇒ 0 ≤ αAD(x) + βSD(x) ≤ 1.

Thus the pair of functions
AD, SD : U −→ [0, 1]

satisfies the basic LDFS feasibility condition

0 ≤ αAD(x) + βSD(x) ≤ 1 for all x ∈ U.

Next, the associated hyper-hesitation mapping in the (0, 0)-case is

π̃0,0(x) =
{
1− (αs+ βt)

∣∣u ∈ µ̃0,0(x), v ∈ ν̃0,0(x), s ∈ ♭0(u), t ∈ ♭0(v)
}
.

Again there is only one admissible quadruple

(u, v, s, t) = (AD(x), SD(x), AD(x), SD(x)),

hence
π̃0,0(x) =

{
1− (αAD(x) + βSD(x))

}
.

If we denote the (scalar) hesitation degree by

πD(x) := 1− (αAD(x) + βSD(x)),

then the data {
(x, ⟨AD(x), SD(x)⟩, (α, β), πD(x)) | x ∈ U

}
coincide with the Linear Diophantine Fuzzy Set of Definition 2.1 (up to the harmless identification of the universe
with U ). Therefore D̃ reduces to an LDFS, proving (i).

(ii) LDHFS / HyperFuzzy case.

Assume now m = n = 0, α = 1, β = 0, and

ν̃0,0(x) = {0} for all x ∈ U.

Again P∗
0 (U) = U , P∗

0 ([0, 1]) = [0, 1] and ♭0(z) = {z}.

Fix x ∈ U and take any u ∈ µ̃0,0(x), so u ∈ [0, 1]. Because ν̃0,0(x) = {0}, its unique element is

v = 0 ∈ [0, 1].

The only choices for s and t in ♭0(u)× ♭0(v) are

s = u, t = v = 0.
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Plugging these into (1) with α = 1, β = 0, we get

0 ≤ αs+ βt ≤ 1 ⇐⇒ 0 ≤ 1 · u+ 0 · 0 ≤ 1,

that is,
0 ≤ u ≤ 1.

Since this holds for every u ∈ µ̃0,0(x), we conclude that

µ̃0,0(x) ⊆ [0, 1] and µ̃0,0(x) ̸= ∅

for all x ∈ U . Therefore the mapping

x 7−→ µ̃0,0(x) ∈ P([0, 1]) \ {∅}

is exactly a hyper-membership function in the sense of Definition 2.3, i.e. it defines a HyperFuzzy Set on U .

The nonmembership sets are fixed as
ν̃0,0(x) = {0},

and the induced hyper-hesitation sets are

π̃0,0(x) =
{
1− (αs+ βt) | s ∈ µ̃0,0(x), t ∈ ♭0(0)

}
=
{
1− s | s ∈ µ̃0,0(x)

}
,

which are completely determined by µ̃0,0 and contain no additional independent information.

Hence, up to forgetting these trivial nonmembership and hesitation components, the data of D̃ coincide with the
HyperFuzzy Set given by the mapping

x 7−→ µ̃0,0(x).

This establishes that, in this parameter regime, D̃ corresponds exactly to a HyperFuzzy Set as in Definition 2.3,
proving (ii).

(iii) (m,n)-SHF case.

Now let m,n ≥ 0 be arbitrary and assume β = 0. Suppose moreover that for each A ∈ P∗
m(U) the hyper-

nonmembership value ν̃m,n(A) is the “trivial n-fold nested zero”

ν̃m,n(A) = {zn},

where we define
z0 := 0 ∈ [0, 1], zk+1 := {zk} (k = 0, 1, . . . , n− 1).

By construction, zn ∈ Pn([0, 1]).

We first show that every element of ♭n(zn) is equal to 0. We proceed by induction on n.

Base case n = 0. Here z0 = 0 ∈ [0, 1] and by definition

♭0(z0) = {z0} = {0}.

Induction step. Assume for some k ≥ 0 that

♭k(zk) = {0}.
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For n = k + 1 we have zk+1 = {zk}, and therefore

♭k+1(zk+1) = ♭k+1({zk}) =
⋃

T∈{zk}

♭k(T ) = ♭k(zk) = {0}.

Thus ♭k+1(zk+1) = {0}, completing the induction.

Consequently, for our fixed n we have
♭n(zn) = {0},

so any t ∈ ♭n(v) with v = zn must satisfy t = 0.

Now fix an arbitrary A ∈ P∗
m(U) and choose any

u ∈ µ̃m,n(A), v ∈ ν̃m,n(A) = {zn},

so v = zn. Let s ∈ ♭n(u) (so s ∈ [0, 1] by definition of ♭n) and let t ∈ ♭n(v) = ♭n(zn). By the previous argument,
t = 0.

The Linear Diophantine constraint (1) with β = 0 thus becomes

0 ≤ αs+ βt ≤ 1 ⇐⇒ 0 ≤ αs+ 0 · 0 ≤ 1,

that is,
0 ≤ αs ≤ 1 for every s ∈ ♭n(u), u ∈ µ̃m,n(A), A ∈ P∗

m(U).

Since s ∈ [0, 1] and α ∈ [0, 1], the inequality 0 ≤ αs ≤ 1 is automatically satisfied for all admissible s. Therefore
the nonmembership component ν̃m,n (fixed as the nested zero) does not impose any additional restriction beyond
the trivial requirement that its bottom-level value is 0. All nontrivial, freely chosen hierarchical uncertainty
information resides in the hyper-membership mapping

µ̃m,n : P∗
m(U) −→ P

(
Pn([0, 1])

)
\ {∅}.

But this is precisely the data of an (m,n)-SuperHyperfuzzy Set as in Definition 2.5, where each A ∈ P∗
m(U) is

assigned a nonempty family of n-level membership-value sets in [0, 1]. Hence, after disregarding the trivial constant
nonmembership part ν̃m,n and its induced hesitation, D̃ coincides with the (m,n)-SuperHyperfuzzy Set defined by
µ̃m,n.

This proves (iii) and completes the proof of the theorem.

Theorem 3.11 (Nonemptiness and boundedness of hesitation degrees)
Let (µ̃m,n, ν̃m,n) be an (m,n)-Linear Diophantine SuperHyperfuzzy Set on a nonempty universe U with parameters
α, β ∈ [0, 1] and α+ β ≤ 1. For every A ∈ P∗

m(U), the associated hesitation set

π̃m,n(A) =
{
1− (αs+ βt) | u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v)

}
is nonempty and satisfies π̃m,n(A) ⊆ [0, 1].

Proof
Fix A ∈ P∗

m(U). By the definition of (m,n)-Linear Diophantine SuperHyperfuzzy Set, both µ̃m,n(A) and ν̃m,n(A)
are nonempty. We first show that for any u ∈ Pn([0, 1]),

flatn(u) ⊆ [0, 1] and flatn(u) ̸= ∅.
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We argue by induction on n.

• Base case n = 0: By definition, flat0(x) = {x} for x ∈ [0, 1]. Thus flat0(x) ⊆ [0, 1] and is clearly nonempty.

• Induction step: Assume the claim holds for some n ≥ 0. Let u ∈ Pn+1([0, 1]). By definition,

flatn+1(u) =
⋃
T∈u

flatn(T ).

Each T ∈ u lies in Pn([0, 1]), so by the induction hypothesis flatn(T ) ⊆ [0, 1] and flatn(T ) ̸= ∅. Hence

flatn+1(u) =
⋃
T∈u

flatn(T ) ⊆ [0, 1],

and since u ̸= ∅, the union over at least one nonempty flatn(T ) is nonempty. Thus the claim holds for n+ 1.

By induction, for any u ∈ Pn([0, 1]) and v ∈ Pn([0, 1]), we have

∅ ̸= flatn(u) ⊆ [0, 1], ∅ ̸= flatn(v) ⊆ [0, 1].

Now fix any u0 ∈ µ̃m,n(A) and v0 ∈ ν̃m,n(A). Choose s0 ∈ flatn(u0) and t0 ∈ flatn(v0); such choices are
possible by the nonemptiness just shown. By the Linear Diophantine condition in the definition of (m,n)-Linear
Diophantine SuperHyperfuzzy Set,

0 ≤ αs0 + βt0 ≤ 1.

Define
h0 := 1− (αs0 + βt0).

From 0 ≤ αs0 + βt0 ≤ 1 we obtain

1− 1 ≤ 1− (αs0 + βt0) ≤ 1− 0,

that is,
0 ≤ h0 ≤ 1.

Hence h0 ∈ [0, 1]. By definition of π̃m,n(A), this h0 is an element of π̃m,n(A):

h0 = 1− (αs0 + βt0) ∈ π̃m,n(A),

so π̃m,n(A) is nonempty. In addition, every h ∈ π̃m,n(A) has the form h = 1− (αs+ βt) with 0 ≤ αs+ βt ≤ 1,
and the same inequality as above gives h ∈ [0, 1]. Thus π̃m,n(A) ⊆ [0, 1], as required.

Theorem 3.12 (Monotonicity with respect to hyper-membership and hyper-nonmembership)
Let

(µ̃(1)
m,n, ν̃

(1)
m,n)

and
(µ̃(2)

m,n, ν̃
(2)
m,n)

be two (m,n)-Linear Diophantine SuperHyperfuzzy Sets on the same universe U with the same parameters α, β.
Assume that for every A ∈ P∗

m(U),

µ̃(1)
m,n(A) ⊆ µ̃(2)

m,n(A), ν̃(1)m,n(A) ⊆ ν̃(2)m,n(A).

Let π̃(1)
m,n and π̃

(2)
m,n be the corresponding hesitation mappings. Then for all A ∈ P∗

m(U),

π̃(1)
m,n(A) ⊆ π̃(2)

m,n(A).
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Proof
Fix A ∈ P∗

m(U) and let h ∈ π̃
(1)
m,n(A). By definition, there exist

u ∈ µ̃(1)
m,n(A), v ∈ ν̃(1)m,n(A), s ∈ flatn(u), t ∈ flatn(v)

such that
h = 1− (αs+ βt).

Since µ̃
(1)
m,n(A) ⊆ µ̃

(2)
m,n(A) and ν̃

(1)
m,n(A) ⊆ ν̃

(2)
m,n(A), the same u and v also satisfy

u ∈ µ̃(2)
m,n(A), v ∈ ν̃(2)m,n(A).

The flattening operator flatn depends only on u and v, so s ∈ flatn(u) and t ∈ flatn(v) remain valid. Thus, in the
definition of π̃(2)

m,n(A), the same quadruple (u, v, s, t) contributes the value 1− (αs+ βt) = h. Hence h ∈ π̃
(2)
m,n(A).

Since h was arbitrary in π̃
(1)
m,n(A), we conclude π̃

(1)
m,n(A) ⊆ π̃

(2)
m,n(A).

Theorem 3.13 (Stability under intersection)
Let (µ̃(1)

m,n, ν̃
(1)
m,n) and (µ̃

(2)
m,n, ν̃

(2)
m,n) be two (m,n)-Linear Diophantine SuperHyperfuzzy Sets on U with the same

parameters α, β. Assume that for every A ∈ P∗
m(U) the intersections

µ̃(∩)
m,n(A) := µ̃(1)

m,n(A) ∩ µ̃(2)
m,n(A), ν̃(∩)

m,n(A) := ν̃(1)m,n(A) ∩ ν̃(2)m,n(A)

are nonempty. Then:

(i) The pair (µ̃
(∩)
m,n, ν̃

(∩)
m,n) is again an (m,n)-Linear Diophantine SuperHyperfuzzy Set on U with parameters

(α, β).

(ii) If π̃(1)
m,n, π̃(2)

m,n and π̃
(∩)
m,n denote the corresponding hesitation mappings, then

π̃(∩)
m,n(A) ⊆ π̃(1)

m,n(A) ∩ π̃(2)
m,n(A) for all A ∈ P∗

m(U).

Proof
(i) Fix A ∈ P∗

m(U) and take any
u ∈ µ̃(∩)

m,n(A), v ∈ ν̃(∩)
m,n(A).

By definition of the intersection,

u ∈ µ̃(1)
m,n(A) ∩ µ̃(2)

m,n(A), v ∈ ν̃(1)m,n(A) ∩ ν̃(2)m,n(A),

so
u ∈ µ̃(1)

m,n(A), u ∈ µ̃(2)
m,n(A), v ∈ ν̃(1)m,n(A), v ∈ ν̃(2)m,n(A).

Let s ∈ flatn(u) and t ∈ flatn(v). Because each of (µ̃(1)
m,n, ν̃

(1)
m,n) and (µ̃

(2)
m,n, ν̃

(2)
m,n) is an (m,n)-Linear Diophantine

SuperHyperfuzzy Set with parameters (α, β), we have

0 ≤ αs+ βt ≤ 1

from both definitions. Thus the Diophantine condition holds for all choices u ∈ µ̃
(∩)
m,n(A), v ∈ ν̃

(∩)
m,n(A), s ∈

flatn(u), t ∈ flatn(v), and hence (µ̃
(∩)
m,n, ν̃

(∩)
m,n) is an (m,n)-Linear Diophantine SuperHyperfuzzy Set.

(ii) Let h ∈ π̃
(∩)
m,n(A). Then there exist

u ∈ µ̃(∩)
m,n(A), v ∈ ν̃(∩)

m,n(A), s ∈ flatn(u), t ∈ flatn(v)
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such that
h = 1− (αs+ βt).

As in (i), u and v belong simultaneously to the corresponding sets of both original structures. Therefore the same
quadruple (u, v, s, t) is admissible in the definitions of π̃(1)

m,n(A) and π̃
(2)
m,n(A), so

h ∈ π̃(1)
m,n(A) and h ∈ π̃(2)

m,n(A).

Hence h ∈ π̃
(1)
m,n(A) ∩ π̃

(2)
m,n(A), and the inclusion π̃

(∩)
m,n(A) ⊆ π̃

(1)
m,n(A) ∩ π̃

(2)
m,n(A) follows.

Theorem 3.14 (Scaling of the Diophantine parameters)
Let (µ̃m,n, ν̃m,n) be an (m,n)-Linear Diophantine SuperHyperfuzzy Set on U with parameters α, β ∈ [0, 1] and
α+ β ≤ 1. Let λ ∈ [0, 1] and define

α′ := λα, β′ := λβ.

Then (µ̃m,n, ν̃m,n) is also an (m,n)-Linear Diophantine SuperHyperfuzzy Set on U with parameters (α′, β′).

Proof
Fix A ∈ P∗

m(U) and choose

u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v).

Since (µ̃m,n, ν̃m,n) is an (m,n)-Linear Diophantine SuperHyperfuzzy Set with parameters (α, β), we have

0 ≤ αs+ βt ≤ 1.

Multiplying this inequality by λ ∈ [0, 1] gives

0 ≤ λ(αs+ βt) = (λα)s+ (λβ)t = α′s+ β′t ≤ λ · 1 ≤ 1.

Hence, for every admissible choice of u, v, s, t, the Diophantine condition

0 ≤ α′s+ β′t ≤ 1

holds. Therefore the same pair (µ̃m,n, ν̃m,n) satisfies the definition of an (m,n)-Linear Diophantine
SuperHyperfuzzy Set with parameters (α′, β′).

Theorem 3.15 (Monotonicity of hesitation with respect to the parameters)
Fix (µ̃m,n, ν̃m,n) on U . Let (α1, β1) and (α2, β2) be two pairs of parameters in [0, 1]2 such that

0 ≤ α1 ≤ α2, 0 ≤ β1 ≤ β2, αi + βi ≤ 1 (i = 1, 2).

Assume (µ̃m,n, ν̃m,n) is an (m,n)-Linear Diophantine SuperHyperfuzzy Set for both (α1, β1) and (α2, β2).
Let π̃

(i)
m,n be the corresponding hesitation mappings. Then for every A ∈ P∗

m(U) and every admissible choice
u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v), we have

1− (α2s+ β2t) ≤ 1− (α1s+ β1t),

that is, each hesitation degree produced with (α2, β2) is less than or equal to the corresponding degree produced
with (α1, β1).
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Proof
Fix A ∈ P∗

m(U) and choose any admissible

u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v).

Since s, t ∈ [0, 1] (by the argument in the proof of Theorem 3.11), we have

α1s ≤ α2s, β1t ≤ β2t,

because α1 ≤ α2 and β1 ≤ β2 and s, t ≥ 0. Adding these inequalities gives

α1s+ β1t ≤ α2s+ β2t.

Define
h1 := 1− (α1s+ β1t), h2 := 1− (α2s+ β2t).

From α1s+ β1t ≤ α2s+ β2t we obtain

−(α1s+ β1t) ≥ −(α2s+ β2t),

and by adding 1 to both sides,
1− (α1s+ β1t) ≥ 1− (α2s+ β2t),

that is,
h1 ≥ h2.

Thus, for each admissible pair (s, t), the hesitation degree h2 obtained with (α2, β2) is less than or equal to the
degree h1 obtained with (α1, β1). Since the sets π̃

(1)
m,n(A) and π̃

(2)
m,n(A) are generated by all such pairs (s, t), the

claimed pointwise monotonicity holds for every element arising from the same choice of u, v, s, t.

3.3. Basic operations for (m,n)-Linear Diophantine SuperHyperfuzzy Sets

In this subsection we introduce three basic tools for (m,n)-Linear Diophantine SuperHyperfuzzy Sets: an
aggregation operator, a score function, and a distance measure. Throughout, we assume that U is finite and
that (α, β) ∈ [0, 1]2 satisfies α+ β > 0 and α+ β ≤ 1. We use Definition 3.5 and the flattening operator flatn
introduced above.

Definition 3.16 (Union-type aggregation of (m,n)-LD SuperHyperfuzzy Sets). Let {Fj}j∈J be a nonempty family
of (m,n)-Linear Diophantine SuperHyperfuzzy Sets on the same universe U , where

Fj =
(
µ̃(j)
m,n, ν̃

(j)
m,n

)
(j ∈ J).

Define the aggregated pair F
∨

= (µ̃
∨
m,n, ν̃

∨
m,n) by

µ̃
∨
m,n(A) =

⋃
j∈J

µ̃(j)
m,n(A), ν̃

∨
m,n(A) =

⋃
j∈J

ν̃(j)m,n(A)

for all A ∈ P∗
m(U).

Theorem 3.17 (Closure under union-type aggregation)
The aggregated pair F

∨
= (µ̃

∨
m,n, ν̃

∨
m,n) is again an (m,n)-Linear Diophantine SuperHyperfuzzy Set on U with

the same weights (α, β).
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Proof
First, for each A ∈ P∗

m(U), every µ̃
(j)
m,n(A) and ν̃

(j)
m,n(A) is a nonempty subset ofPn([0, 1]) by Definition 3.5. Hence

their unions µ̃
∨
m,n(A) and ν̃

∨
m,n(A) are also nonempty subsets of Pn([0, 1]). Thus

µ̃
∨
m,n, ν̃

∨
m,n : P∗

m(U)→ P
(
Pn([0, 1])

)
\ {∅}

are well-defined.

Next, fix A ∈ P∗
m(U) and take any

u ∈ µ̃
∨
m,n(A), v ∈ ν̃

∨
m,n(A), s ∈ flatn(u), t ∈ flatn(v).

By definition of the union, there exist indices j1, j2 ∈ J such that u ∈ µ̃
(j1)
m,n(A) and v ∈ ν̃

(j2)
m,n(A). Since every Fj

is an (m,n)-Linear Diophantine SuperHyperfuzzy Set with the same (α, β), we know that

0 ≤ αs+ βt ≤ 1

for every s ∈ flatn(u) and t ∈ flatn(v). In particular, the above inequality holds for our chosen s and t. Therefore
the linear Diophantine condition in Definition 3.5 is satisfied for all admissible tuples (A, u, v, s, t) in the aggregated
pair.

Finally, the associated hyper-hesitation set

π̃
∨
m,n(A) =

{
1− (αs+ βt) | u ∈ µ̃

∨
m,n(A), v ∈ ν̃

∨
m,n(A), s ∈ flatn(u), t ∈ flatn(v)

}
is well-defined and takes values in [0, 1] because 0 ≤ αs+ βt ≤ 1. Thus F

∨
satisfies all requirements of

Definition 3.5.

Definition 3.18 (Flattened Diophantine profile set). Let F = (µ̃m,n, ν̃m,n) be an (m,n)-Linear Diophantine
SuperHyperfuzzy Set on U . For each A ∈ P∗

m(U), define the Diophantine profile set

ΓF (A) =
{
(s, t) ∈ [0, 1]2

∣∣u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v)
}
.

By Definition 3.5 and the fact that U is finite, each ΓF (A) is a nonempty finite subset of [0, 1]2, and every
(s, t) ∈ ΓF (A) satisfies 0 ≤ αs+ βt ≤ 1.

Definition 3.19 (Score function for (m,n)-LD SuperHyperfuzzy Sets). Let F = (µ̃m,n, ν̃m,n) be an (m,n)-Linear
Diophantine SuperHyperfuzzy Set. For each A ∈ P∗

m(U) we define its score as

SF (A) = max
(s,t)∈ΓF (A)

αs− βt+ β

α+ β
.

Theorem 3.20 (Basic properties of the score function)
Let F be an (m,n)-Linear Diophantine SuperHyperfuzzy Set.

1. For every A ∈ P∗
m(U), the score SF (A) is well-defined and lies in [0, 1].

2. If the hyper-membership and hyper-nonmembership sets collapse to single points, i.e. for all A ∈ P∗
m(U)

there exist sA, tA ∈ [0, 1] such that

µ̃m,n(A) = {{sA}}, ν̃m,n(A) = {{tA}},

then
SF (A) =

αsA − βtA + β

α+ β
,

which coincides with the natural Linear Diophantine score of the underlying single-valued pair (sA, tA).
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3. If (s1, t1), (s2, t2) ∈ [0, 1]2 satisfy s1 ≤ s2 and t1 ≥ t2, then

αs1 − βt1 + β

α+ β
≤ αs2 − βt2 + β

α+ β
.

Hence, increasing membership and decreasing nonmembership never lowers the score.

Proof
(1) Fix A ∈ P∗

m(U). Since U is finite and each µ̃m,n(A) and ν̃m,n(A) is nonempty and finite, ΓF (A) is a nonempty
finite set. Therefore the maximum in the definition of SF (A) exists.

Next, for any (s, t) ∈ [0, 1]2 we have
−β ≤ αs− βt ≤ α.

Indeed,
αs− βt ≥ α · 0− β · 1 = −β, αs− βt ≤ α · 1− β · 0 = α.

Adding β yields
0 ≤ αs− βt+ β ≤ α+ β.

Since α+ β > 0, dividing by α+ β gives

0 ≤ αs− βt+ β

α+ β
≤ 1.

Therefore every candidate value inside the maximum lies in [0, 1]; hence SF (A) ∈ [0, 1].

(2) If for each A we have µ̃m,n(A) = {{sA}} and ν̃m,n(A) = {{tA}}, then

ΓF (A) =
{
(sA, tA)

}
,

because flatn({sA}) = {sA} and similarly for tA. Thus

SF (A) =
αsA − βtA + β

α+ β
,

which is exactly the claimed expression.

(3) Suppose (s1, t1), (s2, t2) ∈ [0, 1]2 with s1 ≤ s2 and t1 ≥ t2. Then

αs1 ≤ αs2 and − βt1 ≤ −βt2,

because α, β ≥ 0. Adding the two inequalities gives

αs1 − βt1 ≤ αs2 − βt2.

Adding β to both sides preserves the inequality, and dividing by the positive constant α+ β also does not change
the order. Hence

αs1 − βt1 + β

α+ β
≤ αs2 − βt2 + β

α+ β
,

which proves the monotonicity claim.

The score SF (A) can thus be used as a crisp evaluation index for each A ∈ P∗
m(U), summarizing the hierarchical

Diophantine profiles (s, t) ∈ ΓF (A) into a single number in [0, 1].
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Definition 3.21 (Distance between (m,n)-LD SuperHyperfuzzy Sets). Let F1 = (µ̃
(1)
m,n, ν̃

(1)
m,n) and F2 =

(µ̃
(2)
m,n, ν̃

(2)
m,n) be two (m,n)-Linear Diophantine SuperHyperfuzzy Sets on the same finite universe U , and write

SF1
and SF2

for their score functions. We define the score-based distance between F1 and F2 by

d(F1,F2) = max
A∈P∗

m(U)

∣∣SF1
(A)− SF2

(A)
∣∣.

Theorem 3.22 (Metric-type properties of the score-based distance)
The function d defined above has the following properties.

1. d(F1,F2) ≥ 0 for all F1,F2.

2. d(F1,F2) = d(F2,F1) for all F1,F2 (symmetry).

3. d(F1,F3) ≤ d(F1,F2) + d(F2,F3) for all F1,F2,F3 (triangle inequality).

4. d(F1,F2) = 0 if and only if SF1
(A) = SF2

(A) for all A ∈ P∗
m(U). In particular, if F1 = F2 then

d(F1,F2) = 0.

Thus d is a pseudo-metric on the class of (m,n)-LD SuperHyperfuzzy Sets, and becomes a genuine metric on the
quotient space modulo score equivalence.

Proof
(1) For each A, the quantity

∣∣SF1
(A)− SF2

(A)
∣∣ is nonnegative, hence its maximum over a finite set is also

nonnegative.

(2) For every A we have ∣∣SF1
(A)− SF2

(A)
∣∣ = ∣∣SF2

(A)− SF1
(A)
∣∣.

Taking the maximum over A ∈ P∗
m(U) on both sides yields d(F1,F2) = d(F2,F1).

(3) Let F1,F2,F3 be given. For any fixed A ∈ P∗
m(U), the standard triangle inequality for real numbers gives∣∣SF1

(A)− SF3
(A)
∣∣ ≤ ∣∣SF1

(A)− SF2
(A)
∣∣+ ∣∣SF2

(A)− SF3
(A)
∣∣.

Taking the maximum over all A on both sides yields

d(F1,F3) = max
A

∣∣SF1
(A)− SF3

(A)
∣∣ ≤ max

A

∣∣SF1
(A)− SF2

(A)
∣∣+max

A

∣∣SF2
(A)− SF3

(A)
∣∣.

The right-hand side equals d(F1,F2) + d(F2,F3), which proves the triangle inequality.

(4) If d(F1,F2) = 0, then
0 = d(F1,F2) = max

A

∣∣SF1(A)− SF2(A)
∣∣.

A maximum of nonnegative numbers can be zero only if every term is zero, so∣∣SF1
(A)− SF2

(A)
∣∣ = 0 for all A,

which is equivalent to SF1
(A) = SF2

(A) for all A. Conversely, if SF1
(A) = SF2

(A) for all A, then each absolute
difference is zero and hence d(F1,F2) = 0. In particular, taking F1 = F2 gives d(F1,F1) = 0.
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Definition 3.23 (Weighted aggregation of scores). Let F1, . . . ,FK be (m,n)-LD SuperHyperfuzzy Sets with
scores SF1

, . . . , SFK
, and let λ1, . . . , λK ∈ [0, 1] satisfy

∑K
k=1 λk = 1. The weighted aggregated score of A ∈

P∗
m(U) is defined by

Sagg(A) =

K∑
k=1

λk SFk
(A).

Proposition 3.24 (Basic properties of weighted score aggregation)
For every A ∈ P∗

m(U), the aggregated score satisfies 0 ≤ Sagg(A) ≤ 1. Moreover, if all SFk
(A) coincide, then

Sagg(A) equals this common value (idempotence).

Proof
For each k and each A we have SFk

(A) ∈ [0, 1] by Theorem 3.20(1). Since λk ≥ 0 and
∑K

k=1 λk = 1, we obtain

0 ≤
K∑

k=1

λk SFk
(A) ≤

K∑
k=1

λk · 1 = 1,

so Sagg(A) ∈ [0, 1]. If SF1
(A) = · · · = SFK

(A) = σ, then

Sagg(A) =

K∑
k=1

λk σ = σ

K∑
k=1

λk = σ,

which proves idempotence.

3.4. (m,n)-Linear Diophantine SuperHyperFuzzy OverSet

Here we define the (m,n)-Linear Diophantine SuperHyperFuzzy OverSet, which can be regarded as a non-
normalized version of the (m,n)-Linear Diophantine SuperHyperFuzzy Set.

Definition 3.25 (Linear Diophantine (m,n)-SuperHyperfuzzy Overset). Let U be a nonempty crisp universe and
let m,n ∈ N ∪ {0}. Fix a constant L > 1 and set

IL := [0, L].

For each k ≥ 0, denote by P∗
k (IL) the k-fold nonempty iterated powerset of IL, and let ♭k : P∗

k (IL)→ P(IL) be
the flattening operator defined recursively by

♭0(s) = {s} (s ∈ IL), ♭k+1(S) =
⋃
T∈S

♭k(T ) (S ∈ P∗
k+1(IL)).

Let α, β ∈ [0,∞) be fixed (we do not assume α+ β ≤ 1). A pair

D̃O =
(
µ̃O
m,n, ν̃

O
m,n

)
is called a Linear Diophantine (m,n)-SuperHyperfuzzy Overset (abbrev. LD-(m,n)-SHFO) on U if the following
conditions hold:
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(LD1) µ̃O
m,n, ν̃

O
m,n are mappings

µ̃O
m,n, ν̃

O
m,n : P∗

m(U) −→ P
(
P∗
n(IL)

)
\ {∅},

that is, for each A ∈ P∗
m(U), both µ̃O

m,n(A) and ν̃Om,n(A) are nonempty families of n-fold nested “overset”
membership values lying in IL = [0, L].

(LD2) For every A ∈ P∗
m(U) and every

u ∈ µ̃O
m,n(A), v ∈ ν̃Om,n(A),

the Linear Diophantine feasible slice

Fm,n(A;u, v) :=
{
(s, t) ∈ ♭n(u)× ♭n(v)

∣∣∣ 0 ≤ αs+ βt ≤ 1
}

is nonempty.

(LD3) The associated Linear Diophantine hyper-hesitation overset for A ∈ P∗
m(U) is defined by

π̃O
m,n(A) :=

{
1− (αs+ βt)

∣∣∣ u ∈ µ̃O
m,n(A), v ∈ ν̃Om,n(A), (s, t) ∈ Fm,n(A;u, v)

}
.

If, in addition, L = 1 and all nested values lie in [0, 1], then D̃O reduces to the usual (m,n)-Linear Diophantine
SuperHyperfuzzy Set (without overset).

Example 3.26 (A numerical LD-(0, 0)-SuperHyperfuzzy Overset). Let U = {x} be a singleton universe and
choose

m = n = 0, L = 2, IL = [0, 2].

Fix the Linear Diophantine parameters

α =
4

5
= 0.8, β =

1

2
= 0.5,

so that α+ β = 13
10 = 1.3 > 1; in particular we do not have α+ β ≤ 1.

For the unique element x ∈ U , define the overset hyper-membership and overset hyper-nonmembership by

µ̃O
0,0(x) =

{
9

10
,
6

5

}
, ν̃O0,0(x) =

{
9

10
, 0

}
.

Note that
6

5
= 1.2 > 1,

so 6
5 is an overset membership value lying outside the classical fuzzy interval [0, 1].

Step 1: flattening. Since n = 0, the flattening operator is

♭0(s) = {s} (s ∈ IL),

hence

♭0

(
9

10

)
=

{
9

10

}
, ♭0

(
6

5

)
=

{
6

5

}
, ♭0(0) = {0}.
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Step 2: all candidate pairs (s, t). The possible pairs (s, t) ∈ ♭0(u)× ♭0(v) with u ∈ µ̃O
0,0(x), v ∈ ν̃O0,0(x) are

(s, t) =

(
9

10
,
9

10

)
,

(
6

5
,
9

10

)
,(

9

10
, 0

)
,

(
6

5
, 0

)
.

Step 3: checking the Linear Diophantine condition. For each of these four pairs, we compute αs+ βt explicitly.

• Pair
(

9
10 ,

9
10

)
:

αs+ βt =
4

5
· 9
10

+
1

2
· 9
10

=
36

50
+

9

20
=

72

100
+

45

100
=

117

100
= 1.17 > 1.

Therefore
0 ≤ αs+ βt ≤ 1

is not satisfied, and the pair
(
s, t
)
=
(

9
10 ,

9
10

)
is excluded by the Linear Diophantine condition.

• Pair
(
6
5 ,

9
10

)
:

αs+ βt =
4

5
· 6
5
+

1

2
· 9
10

=
24

25
+

9

20
=

96

100
+

45

100
=

141

100
= 1.41 > 1.

Hence this pair also fails the inequality and is excluded.

• Pair
(

9
10 , 0

)
:

αs+ βt =
4

5
· 9
10

+
1

2
· 0 =

36

50
+ 0 =

72

100
= 0.72.

This satisfies
0 ≤ 0.72 ≤ 1,

so the pair
(

9
10 , 0

)
is an admissible pair with respect to the Linear Diophantine condition.

• Pair
(
6
5 , 0
)
:

αs+ βt =
4

5
· 6
5
+

1

2
· 0 =

24

25
=

96

100
= 0.96.

This satisfies
0 ≤ 0.96 ≤ 1,

so this pair is also admissible.

Consequently, for this element x the Linear Diophantine feasible slice is

F0,0(x) =

{(
9

10
, 0

)
,

(
6

5
, 0

)}
,

and the two pairs (
9

10
,
9

10

)
,

(
6

5
,
9

10

)
are explicitly excluded by the inequality

0 ≤ αs+ βt ≤ 1.
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Step 4: hyper-hesitation overset. The corresponding hyper-hesitation overset is

π̃O
0,0(x) =

{
1− (αs+ βt)

∣∣∣ (s, t) ∈ F0,0(x)
}

=
{
1− 0.72, 1− 0.96

}
= {0.28, 0.04}.

This example illustrates two key points:

• The membership value 6
5 = 1.2 > 1 is allowed as an overset membership degree and lies outside the classical

fuzzy interval [0, 1].

• The Linear Diophantine constraint 0 ≤ αs+ βt ≤ 1 genuinely filters out some pairs (s, t), such as (s, t) =(
9
10 ,

9
10

)
with αs+ βt = 117

100 > 1.

Thus, this example provides a concrete LD-(0, 0)-SuperHyperfuzzy Overset in which u, v, s, t can take values in
[0, L] with L > 1 and the inequality 0 ≤ αs+ βt ≤ 1 actively excludes part of the candidate pairs (s, t).

I will state the theorems as follows.

Theorem 3.27 (Well-definedness of the Linear Diophantine hyper-hesitation overset)
Let D̃O =

(
µ̃O
m,n, ν̃

O
m,n

)
be a Linear Diophantine (m,n)-SuperHyperfuzzy Overset on U as in Definition (LD1)–

(LD3) above, with parameters α, β ∈ [0,∞) and L > 1. Then for every A ∈ P∗
m(U) the set

π̃O
m,n(A) =

{
1− (αs+ βt)

∣∣∣ u ∈ µ̃O
m,n(A), v ∈ ν̃Om,n(A), (s, t) ∈ Fm,n(A;u, v)

}
is a nonempty subset of the closed unit interval [0, 1] ⊂ R. In particular, the assignment A 7→ π̃O

m,n(A) is well-
defined.

Proof
Fix A ∈ P∗

m(U). By (LD1), the sets µ̃O
m,n(A) and ν̃Om,n(A) are nonempty. Take arbitrary

u ∈ µ̃O
m,n(A), v ∈ ν̃Om,n(A).

By (LD2), the feasible slice

Fm,n(A;u, v) =
{
(s, t) ∈ ♭n(u)× ♭n(v)

∣∣∣ 0 ≤ αs+ βt ≤ 1
}

is nonempty, so there exists at least one pair (s, t) ∈ ♭n(u)× ♭n(v) with

0 ≤ αs+ βt ≤ 1. (2)

By Definition (LD1), we have u, v ∈ P∗
n(IL) with IL = [0, L], hence ♭n(u) ⊆ IL and ♭n(v) ⊆ IL. Thus

s, t ∈ IL = [0, L].

Since α, β ∈ [0,∞) and s, t ∈ [0, L], the quantity αs+ βt is a well-defined real number and (2) implies

0 ≤ αs+ βt ≤ 1.

Therefore
0 ≤ 1− (αs+ βt) ≤ 1,

so each value 1− (αs+ βt) lies in [0, 1]. Varying (s, t) over Fm,n(A;u, v) and (u, v) over µ̃O
m,n(A)× ν̃Om,n(A),

we obtain exactly the elements of π̃O
m,n(A). Because Fm,n(A;u, v) is nonempty for every such (u, v), we conclude

that π̃O
m,n(A) is nonempty, and by the above inequality every element of π̃O

m,n(A) belongs to [0, 1]. Hence the map
A 7→ π̃O

m,n(A) is well-defined with values in [0, 1].
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We now show that every Linear Diophantine (m,n)-SuperHyperfuzzy Overset admits a canonical transformation
into a usual Linear Diophantine (m,n)-SuperHyperfuzzy Set (i.e. with all nested values contained in the unit
interval).

Definition 3.28 (Leafwise truncation on IL). Let L > 1 and set IL = [0, L]. Define the truncation map φ : IL →
[0, 1] by

φ(x) := min{x, 1} (x ∈ IL).

For each k ≥ 0 we define recursively a map

Tk : P∗
k (IL) −→ P∗

k

(
[0, 1]

)
by

T0(s) := φ(s) (s ∈ IL), Tk+1(S) :=
{
Tk(T ) | T ∈ S

}
(S ∈ P∗

k+1(IL)).

Lemma 3.29 (Compatibility of truncation and flattening)
For every k ≥ 0 and every u ∈ P∗

k (IL) one has

♭k
(
Tk(u)

)
=
{
φ(s) | s ∈ ♭k(u)

}
.

In particular, ♭k(Tk(u)) ⊆ [0, 1].

Proof
We proceed by induction on k.

For k = 0, we have u ∈ IL and

T0(u) = φ(u), ♭0(u) = {u}, ♭0
(
T0(u)

)
= {φ(u)},

so
♭0
(
T0(u)

)
= {φ(u)} = {φ(s) | s ∈ ♭0(u)},

and the claim holds.

Assume the statement holds for some k ≥ 0, and let u ∈ P∗
k+1(IL). Then

Tk+1(u) =
{
Tk(T ) | T ∈ u

}
,

and by the definition of ♭k+1 we have

♭k+1

(
Tk+1(u)

)
=

⋃
W∈Tk+1(u)

♭k(W ) =
⋃
T∈u

♭k
(
Tk(T )

)
.

By the induction hypothesis,
♭k
(
Tk(T )

)
=
{
φ(s) | s ∈ ♭k(T )

}
,

so
♭k+1

(
Tk+1(u)

)
=
⋃
T∈u

{
φ(s) | s ∈ ♭k(T )

}
=
{
φ(s) | s ∈ ♭k+1(u)

}
,

which proves the desired equality. Since φ : IL → [0, 1], the last set is contained in [0, 1], and the lemma
follows.
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Definition 3.30 (Truncation of a Linear Diophantine (m,n)-SuperHyperfuzzy Overset). Let D̃O =
(
µ̃O
m,n, ν̃

O
m,n

)
be a Linear Diophantine (m,n)-SuperHyperfuzzy Overset on U with parameters (α, β, L). Define new mappings

µ̃m,n, ν̃m,n : P∗
m(U) −→ P

(
P∗
n([0, 1])

)
\ {∅}

by
µ̃m,n(A) :=

{
Tn(u) | u ∈ µ̃O

m,n(A)
}
, ν̃m,n(A) :=

{
Tn(v) | v ∈ ν̃Om,n(A)

}
for every A ∈ P∗

m(U). We call
D̃ :=

(
µ̃m,n, ν̃m,n

)
the truncation of D̃O.

Theorem 3.31 (Linear Diophantine (m,n)-SuperHyperfuzzy Oversets can be transformed into Sets)
Let D̃O =

(
µ̃O
m,n, ν̃

O
m,n

)
be a Linear Diophantine (m,n)-SuperHyperfuzzy Overset on U with parameters α, β ∈

[0,∞) and L > 1, and let D̃ =
(
µ̃m,n, ν̃m,n

)
be its truncation as above. Then:

1. For every A ∈ P∗
m(U), the sets µ̃m,n(A) and ν̃m,n(A) are nonempty families of n-fold nested membership

values lying in the unit interval [0, 1].

2. For every A ∈ P∗
m(U) and every

u′ ∈ µ̃m,n(A), v′ ∈ ν̃m,n(A),

the Diophantine feasible slice

Fm,n(A;u′, v′) :=
{
(s′, t′) ∈ ♭n(u

′)× ♭n(v
′)
∣∣∣ 0 ≤ αs′ + βt′ ≤ 1

}
is nonempty.

3. If we define, for each A ∈ P∗
m(U),

π̃m,n(A) :=
{
1− (αs′ + βt′)

∣∣∣ u′ ∈ µ̃m,n(A), v′ ∈ ν̃m,n(A), (s′, t′) ∈ Fm,n(A;u′, v′)
}
,

then π̃m,n(A) ⊆ [0, 1] and π̃m,n(A) ̸= ∅.

Consequently, the truncated pair D̃ = (µ̃m,n, ν̃m,n), together with π̃m,n, satisfies the axioms (LD1)–(LD3)
with L = 1 and defines a Linear Diophantine (m,n)-SuperHyperfuzzy Set. In other words, every Linear
Diophantine (m,n)-SuperHyperfuzzy Overset can be canonically transformed into a Linear Diophantine (m,n)-
SuperHyperfuzzy Set.

Proof
(1) Fix A ∈ P∗

m(U). By (LD1) for D̃O, the sets µ̃O
m,n(A) and ν̃Om,n(A) are nonempty. By definition of µ̃m,n(A),

every element of µ̃m,n(A) has the form Tn(u) with u ∈ µ̃O
m,n(A). Since u ∈ P∗

n(IL) and Tn maps P∗
n(IL) into

P∗
n([0, 1]), we have Tn(u) ∈ P∗

n([0, 1]). Thus µ̃m,n(A) is a family of n-fold nested sets whose leaves lie in [0, 1].
Nonemptiness follows because µ̃O

m,n(A) is nonempty and Tn is defined on every element of P∗
n(IL). The same

argument applies to ν̃m,n(A), proving (1).

(2) Let A ∈ P∗
m(U) and choose arbitrary

u′ ∈ µ̃m,n(A), v′ ∈ ν̃m,n(A).
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By definition, there exist
u ∈ µ̃O

m,n(A), v ∈ ν̃Om,n(A)

such that
u′ = Tn(u), v′ = Tn(v).

By (LD2) for D̃O, the slice

Fm,n(A;u, v) =
{
(s, t) ∈ ♭n(u)× ♭n(v)

∣∣∣ 0 ≤ αs+ βt ≤ 1
}

is nonempty, so choose a pair (s, t) ∈ Fm,n(A;u, v). Then

0 ≤ αs+ βt ≤ 1. (3)

Set
s′ := φ(s), t′ := φ(t),

so s′, t′ ∈ [0, 1]. By Lemma 3.29, we have

♭n(u
′) = ♭n

(
Tn(u)

)
= {φ(r) | r ∈ ♭n(u)},

and similarly
♭n(v

′) = ♭n
(
Tn(v)

)
= {φ(r) | r ∈ ♭n(v)}.

Since s ∈ ♭n(u) and t ∈ ♭n(v), it follows that

s′ = φ(s) ∈ ♭n(u
′), t′ = φ(t) ∈ ♭n(v

′).

Next we verify the Diophantine inequality for s′ and t′. By definition of φ,

0 ≤ s′ ≤ s, 0 ≤ t′ ≤ t

because φ(x) = min{x, 1} ≤ x for all x ∈ IL and φ(x) ≥ 0. Since α, β ≥ 0, we obtain

αs′ + βt′ ≤ αs+ βt.

Combining this with (3) yields
0 ≤ αs′ + βt′ ≤ αs+ βt ≤ 1.

Hence (s′, t′) ∈ ♭n(u
′)× ♭n(v

′) satisfies 0 ≤ αs′ + βt′ ≤ 1, so

(s′, t′) ∈ Fm,n(A;u′, v′).

Therefore Fm,n(A;u′, v′) is nonempty, which proves (2).

(3) Let A ∈ P∗
m(U). By (2), for every pair (u′, v′) as above, the set Fm,n(A;u′, v′) is nonempty, so there exist

(s′, t′) ∈ Fm,n(A;u′, v′). By definition of Fm,n(A;u′, v′) we have

0 ≤ αs′ + βt′ ≤ 1.

Thus
0 ≤ 1− (αs′ + βt′) ≤ 1,
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Algorithm 1: Flattening an n-level membership object
1 Function Flat(z, k):

// Input: z ∈ Pk([0, 1]), integer k ≥ 0.
// Output: flatk(z) ⊆ [0, 1].

2 if k = 0 then
3 return {z}
4 F ← ∅
5 foreach T ∈ z do
6 F ← F ∪ Flat(T, k − 1)

7 return F

so every element of

π̃m,n(A) =
{
1− (αs′ + βt′)

∣∣∣ u′ ∈ µ̃m,n(A), v′ ∈ ν̃m,n(A), (s′, t′) ∈ Fm,n(A;u′, v′)
}

belongs to [0, 1]. Moreover, because each Fm,n(A;u′, v′) is nonempty and µ̃m,n(A), ν̃m,n(A) are nonempty, the set
π̃m,n(A) is nonempty. This proves (3).

Putting (1)–(3) together, we see that D̃ = (µ̃m,n, ν̃m,n), with the hesitation part π̃m,n, satisfies the same axioms
(LD1)–(LD3) as D̃O but with L = 1 and all nested values contained in [0, 1]. Therefore D̃ is a Linear Diophantine
(m,n)-SuperHyperfuzzy Set, and the truncation construction defines a well-defined transformation from Linear
Diophantine (m,n)-SuperHyperfuzzy Oversets to Linear Diophantine (m,n)-SuperHyperfuzzy Sets.

4. Algorithms for (m,n)−Linear Diophantine SuperHyperFuzzy Set

In this section we describe a basic validation and construction procedure for (m,n)-Linear Diophantine
SuperHyperFuzzy Sets, and we state and prove its correctness and complexity. We assume that the flattening
operator

flatn : Pn([0, 1])→ P([0, 1])

is defined as in the previous subsection. The algorithm for flattening an n-level membership object is given below
in Algorithm 1.

Algorithm 1 is the direct operational counterpart of the recursive definition of flatn.

Next we formalize a validation and construction algorithm for (m,n)-Linear Diophantine SuperHyperFuzzy
Sets. We work with a finite index family A ⊆ P∗

m(U) of “active” m-level subsets, together with given hyper-
membership and hyper-nonmembership mappings

µ̃m,n, ν̃m,n : A −→ P
(
Pn([0, 1])

)
\ {∅}.

Algorithm 2 presents the procedure for validation and hesitation construction for (m,n)-LD SuperHyperFuzzy
Sets.

Remark 4.1. If A is chosen to be the full family P∗
m(U), then Algorithm 2 validates the complete (m,n)-Linear

Diophantine SuperHyperFuzzy structure on U . In many applications, only a finite subfamily of “active” m-level
subsets is needed, so a finite index set A is natural.
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Algorithm 2: Validation and hesitation construction for (m,n)-LD SuperHyperFuzzy Sets
Data: Nonempty finite universe U ; integers m,n ≥ 0; finite A ⊆ P∗

m(U); weights α, β ∈ [0, 1] with α+ β ≤ 1; mappings
µ̃m,n, ν̃m,n on A.

Result: Boolean flag isValid; hyper-hesitation mapping π̃m,n on A if isValid = true.

1 isValid← true
2 foreach A ∈ A do

// Check nonemptiness of hyper-membership and hyper-nonmembership sets
3 if µ̃m,n(A) = ∅ or ν̃m,n(A) = ∅ then
4 isValid← false
5 break

// Precompute flattened sets of degrees
6 SµA ← ∅
7 SνA ← ∅
8 foreach u ∈ µ̃m,n(A) do
9 Fu ← Flat(u, n)

10 foreach s ∈ Fu do
11 if s < 0 or s > 1 then
12 isValid← false
13 break
14 SµA ← SµA ∪ {s}
15 if isValid = false then
16 break

17 if isValid = false then
18 break
19 foreach v ∈ ν̃m,n(A) do
20 Gv ← Flat(v, n)
21 foreach t ∈ Gv do
22 if t < 0 or t > 1 then
23 isValid← false
24 break
25 SνA ← SνA ∪ {t}
26 if isValid = false then
27 break

28 if isValid = false then
29 break

// Check Diophantine constraint and construct hesitation degrees
30 π̃m,n(A)← ∅
31 foreach s ∈ SµA do
32 foreach t ∈ SνA do
33 vα,β ← α · s+ β · t
34 if vα,β < 0 or vα,β > 1 then
35 isValid← false
36 break
37 π̃m,n(A)← π̃m,n(A) ∪

{
1− vα,β

}
38 if isValid = false then
39 break

40 if isValid = false then
41 break

42 if isValid = false then
// Optionally clear π̃m,n if invalid

43 foreach A ∈ A do
44 π̃m,n(A)← ∅

45 return (isValid, π̃m,n)
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Theorems concerning these algorithms are presented below.

Theorem 4.2 (Correctness of Algorithm 2)
Let U , m, n, α, β, A, µ̃m,n, and ν̃m,n be as in Algorithm 2, and suppose all sets involved are finite. Then the
following hold.

1. If isValid= true on termination, then (µ̃m,n, ν̃m,n) satisfies the definition of an (m,n)-Linear Diophantine
SuperHyperFuzzy Set on A, and for every A ∈ A we have

π̃m,n(A) =
{
1− (αs+ βt)

∣∣ u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v)
}
.

2. Conversely, assume that (µ̃m,n, ν̃m,n) is an (m,n)-Linear Diophantine SuperHyperFuzzy Set on A in the
sense of Definition 3.5. Then Algorithm 2 terminates with isValid= true and the returned π̃m,n coincides
with the one defined in Definition 3.5.

Proof
We prove each item separately.

(1) Assume that Algorithm 2 terminates with isValid = true.

First, for every A ∈ A the algorithm explicitly tests whether µ̃m,n(A) and ν̃m,n(A) are empty. If either were
empty, the flag isValid would be set to false, and the outer loop would break. Since the final value is true,
it follows that

µ̃m,n(A) ̸= ∅, ν̃m,n(A) ̸= ∅ for all A ∈ A.

Hence the codomain constraint P(Pn([0, 1])) \ {∅} is satisfied.

Next, for every u ∈ µ̃m,n(A) the algorithm computes Fu = Flat(u, n), and for every s ∈ Fu it checks the
inequalities s ≥ 0 and s ≤ 1. If some s violated 0 ≤ s ≤ 1, then isValid would be set to false. Because the
final flag is true, all degrees s in all sets Fu satisfy 0 ≤ s ≤ 1. The same argument applies to all t ∈ Gv =
Flat(v, n) for all v ∈ ν̃m,n(A). Therefore, for every A ∈ A and for all

u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v),

we have s, t ∈ [0, 1].

Then, in the nested loop over s ∈ SµA and t ∈ SνA, the algorithm computes

vα,β = αs+ βt

and checks whether vα,β ∈ [0, 1]. If some pair (s, t) produced a value vα,β < 0 or vα,β > 1, then isValid would
be set to false. Hence, because the final flag is true, we obtain

0 ≤ αs+ βt ≤ 1

for all admissible (s, t); this is exactly the linear Diophantine condition required in Definition 3.5.

Finally, for each A ∈ A the algorithm constructs π̃m,n(A) by the update rule

π̃m,n(A)← π̃m,n(A) ∪
{
1− (αs+ βt)

}
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for all s ∈ SµA and t ∈ SνA. By the definition of SµA and SνA, we have

SµA =
⋃

u∈µ̃m,n(A)

flatn(u), SνA =
⋃

v∈ν̃m,n(A)

flatn(v).

Therefore, the set of all values 1− (αs+ βt) added to π̃m,n(A) coincides with{
1− (αs+ βt)

∣∣ u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈ flatn(u), t ∈ flatn(v)
}
,

as required. This proves Item (1).

(2) Conversely, assume that (µ̃m,n, ν̃m,n) is an (m,n)-Linear Diophantine SuperHyperFuzzy Set on A in the
sense of Definition 3.5. Then, by the definition, for every A ∈ A we have µ̃m,n(A) ̸= ∅ and ν̃m,n(A) ̸= ∅, so the
initial emptiness checks in Algorithm 2 never fail.

Moreover, for every A ∈ A, every u ∈ µ̃m,n(A), every v ∈ ν̃m,n(A), and every s ∈ flatn(u), t ∈ flatn(v),
Definition 3.5 ensures that

0 ≤ s ≤ 1, 0 ≤ t ≤ 1, 0 ≤ αs+ βt ≤ 1.

Hence none of the inequalities checked in the inner loops can fail, and the flag isValid remains true throughout
the execution.

By construction of SµA and SνA and by the same reasoning as in Item (1), the sets π̃m,n(A) computed by the
algorithm are identical to those prescribed in Definition 3.5. Therefore the algorithm terminates with isValid
= true and with the correct hyper-hesitation mapping. This proves Item (2) and completes the proof.

Theorem 4.3 (Time complexity of Algorithm 2)
Let A be finite. For each A ∈ A, denote

MA :=
∣∣µ̃m,n(A)

∣∣, NA :=
∣∣ν̃m,n(A)

∣∣,
and for each u ∈ µ̃m,n(A), v ∈ ν̃m,n(A) write

Lu :=
∣∣flatn(u)∣∣, Lv :=

∣∣flatn(v)∣∣.
Then the total number of elementary loop iterations in Algorithm 2 is bounded by

T ≤
∑
A∈A

( ∑
u∈µ̃m,n(A)

Lu +
∑

v∈ν̃m,n(A)

Lv +
∑

u∈µ̃m,n(A)

∑
v∈ν̃m,n(A)

LuLv

)
.

In particular, if we set

M := max
A∈A

MA, N := max
A∈A

NA, L := max
{
Lu, Lv

∣∣A ∈ A, u ∈ µ̃m,n(A), v ∈ ν̃m,n(A)
}
,

and write |A| = K, then
T = O

(
K(M +N)L+KMNL2

)
= O

(
KMNL2

)
.

Proof
Fix A ∈ A. The cost of the block

∀u ∈ µ̃m,n(A) ∀ s ∈ Flat(u, n) : (· · · )
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is
∑

u∈µ̃m,n(A) Lu. Similarly, the cost of processing all v ∈ ν̃m,n(A) and their flattened degrees t ∈ Flat(v, n) is∑
v∈ν̃m,n(A) Lv.

For the nested loops over s ∈ SµA and t ∈ SνA, observe that

SµA =
⋃

u∈µ̃m,n(A)

flatn(u), SνA =
⋃

v∈ν̃m,n(A)

flatn(v).

Thus the total number of pairs (s, t) visited is at most( ∑
u∈µ̃m,n(A)

Lu

)
·

( ∑
v∈ν̃m,n(A)

Lv

)
≤

∑
u∈µ̃m,n(A)

∑
v∈ν̃m,n(A)

LuLv,

where we used the inequality (
∑

i ai)(
∑

j bj) ≤
∑

i,j aibj for nonnegative ai, bj .

Summing these contributions over all A ∈ A yields the stated upper bound on T :

T ≤
∑
A∈A

( ∑
u∈µ̃m,n(A)

Lu +
∑

v∈ν̃m,n(A)

Lv +
∑

u∈µ̃m,n(A)

∑
v∈ν̃m,n(A)

LuLv

)
.

For the simplified Big-O estimate, note that for each A ∈ A we have∑
u∈µ̃m,n(A)

Lu ≤MAL ≤ML,
∑

v∈ν̃m,n(A)

Lv ≤ NAL ≤ NL,

and ∑
u∈µ̃m,n(A)

∑
v∈ν̃m,n(A)

LuLv ≤MANAL
2 ≤MNL2.

Therefore
T ≤

∑
A∈A

(
ML+NL+MNL2

)
= K(M +N)L+KMNL2.

In Big-O notation this is T = O
(
K(M +N)L+KMNL2

)
, and in particular T = O(KMNL2) as claimed.

5. Conclusion

In this paper, we introduced two novel frameworks—the Linear Diophantine Hyperfuzzy Set and the Linear
Diophantine SuperHyperfuzzy Set—by embedding linear Diophantine constraints into the hyperfuzzy and
superhyperfuzzy paradigms. We also examined their fundamental concrete examples and the associated
algorithms. On that basis, we evaluated the algorithmic complexity and the validity of the proposed methods. For
reference, Table 5 presents the comparison of the HyperFuzzy Set and the Linear Diophantine HyperFuzzy Set, and
Table 6 provides the comparison of the SuperHyperFuzzy Set and the (m,n)-Linear Diophantine SuperHyperFuzzy
Set. From these observations, we believe that such constructions offer a promising framework for clearly
representing real-world concepts that require hierarchical and uncertain Linear Diophantine conditions.
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Table 5. Brief comparison of HyperFuzzy Set and Linear Diophantine HyperFuzzy Set

Aspect HyperFuzzy Set Linear Diophantine HyperFuzzy Set
Membership
representation

Each x has µ̃(x) ⊆ [0, 1] nonempty. Each x has µ̃(x), ν̃(x) ⊆ [0, 1]
nonempty.

Additional parameters No global weights. Uses fixed (α, β) with 0 ≤ α+ β ≤
1.

Core constraint Only 0 ≤ u ≤ 1 for u ∈ µ̃(x). Requires 0 ≤ αu+ βv ≤ 1 for all u ∈
µ̃(x), v ∈ ν̃(x).

Hesitation / indeterminacy Not canonically specified; may be
derived externally.

π̃(x) = {1− (αu+ βv) | u ∈
µ̃(x), v ∈ ν̃(x)}.

Modeling focus Multiple plausible membership
grades per element.

Coupled sets of support and opposi-
tion under a linear constraint.

Table 6. Brief comparison of SuperHyperFuzzy Set and (m,n)-Linear Diophantine SuperHyperFuzzy Set

Aspect SuperHyperFuzzy Set (m,n)-Linear Diophantine SuperHy-
perFuzzy Set

Membership
representation

µ̃m,n : P∗
m(U)→P(Pn([0, 1]))\{∅}. µ̃m,n, ν̃m,n : P∗

m(U)→
P(Pn([0, 1]))\{∅}.

Additional parameters No global weights. Uses fixed (α, β) with 0 ≤ α+ β ≤
1.

Core constraint Flattened grades s ∈ flatn(u) lie in
[0, 1].

0 ≤ αs+ βt ≤ 1 for all s ∈ flatn(u),
t ∈ flatn(v).

Hesitation / indeterminacy May be introduced ad hoc from µ̃m,n. π̃m,n(A) = {1− (αs+ βt) |
u ∈ µ̃m,n(A), v ∈ ν̃m,n(A), s ∈
flatn(u), t ∈ flatn(v)}.

Modeling focus Hierarchical membership uncertainty
on iterated powersets.

Hierarchical balance of membership
and nonmembership with tunable
trade-offs.

Looking ahead, we plan to extend these models to additional uncertainty frameworks, including Neutrosophic
Sets [67, 15], Shadowed Sets[68], Soft Sets[69, 70], Plithogenic Sets [71, 14], Hesitant Fuzzy Sets [72], Z-
Numbers [73, 74], and other related frameworks. We will also investigate algorithmic strategies and computational
implementations to validate and apply these constructs in real-world decision-making scenarios. Furthermore, we
intend to explore graph-based generalizations by integrating the Linear Diophantine Hyperfuzzy Set concept into
HyperGraphs [75] and SuperHyperGraphs [76]. Furthermore, we believe that the algorithms presented in this
paper still have room for improvement. We hope that, in the future, experts in the field will further refine and
enhance their computational complexity.
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