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Abstract Actually, path planning is one of the most fundamental aspects of mobile robots study. The objective is to
determine the shortest feasible trajectory from a starting point to a goal location while avoiding obstacles. Particle Swarm
Optimization (PSO) has been widely applied to this problem. However, it is often complex, requiring careful parameter
tuning and extensive computational resources, in spite of that it suffers from high computational complexity, sensitivity
to parameter tuning, and local optima stagnation. To overcome these limitations, the new Dhouib-Matrix-SPP (DM-SPP)
method is proposed, which is rapid, straightforward, and does not require parameter adjustment. Simulation experiments
on four case studies (I-shaped, U-shaped, T-shaped and Randomly shaped) demonstrate that DM-SPP consistently
outperforms the ranking Particle Swarm Optimization (rPSO) metaheuristic and the artificial potential field-based Particle
Swarm Optimization (apfrPSO) metaheuristic in terms of computational time: DM-SPP is 66 time rapider than the rPSO
metaheuristic and 31 time rapider than the apfrPSO metaheuristic. These findings indicate that DM-SPP is a powerful and
scalable approach for mobile robot path planning.
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1. Introduction

With the rapid advancement of robotics in recent years, autonomous mobile robots have become increasingly
common and path planning is a critical component of mobile robot autonomy [1]. Path planning has been a
significant area of study in the field of mobile robotics for a long time. The goal of path planning is to devise a
route that is both safe and free of collisions, guiding from the initial point to the destination in an environment filled
with obstacles [2]. The primary objective is to allow robots to execute operations independently while minimizing
the necessity for human involvement and determine the optimal route from the starting point to the endpoint [3].
Nowadays, mobile robots are widely applied in a diversity of applications, such as, the space exploration [4],
medical applications [5], navigation system for transportation [6], road cracks [7, 8, 9] , the industrial electric
vehicles [10, 11], Neural Network [12], and other disciplines.

Our motivation for investigating autonomous robotic navigation is to close the gap between existing technology
and the various needs of practical applications [13]. Considerable obstacles remain in the path of making
meaningful advancements in robotics, necessitating further innovations to ensure dependable and effective
functioning in intricate settings. Despite the rapidity of industrial robots in executing repetitive tasks within
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controlled settings, they encounter constraints when operating in unfamiliar environments or under unforeseen
conditions [3, 14]. Their fixed programming restricts their flexibility to manage with dynamic changes within their
environment; they are limited to operating flexibility and autonomy and, in most cases, work within predetermined
sequences of actions in highly tuned environments [15]. Moreover, these robots are anticipated to demonstrate the
adaptability required to operate in complex environments, make rapid decisions, and execute missions without
human control [16]. This growing demand highlights the acknowledged advantages of autonomous systems in
enhancing safety, productivity, and efficiency across a wide range of industries. Therefore, there is a clear shift
toward creating robots equipped with enhanced sensing and decision-making capabilities to address the evolving
requirements of contemporary societies [17].
Because of their capacity to generate near-optimal results within a short time, heuristic algorithms have become
increasingly prevalent in mobile robot path planning [18]. Traditional Metaheuristic algorithms used for mobile
robot path planning include methods such as Genetic Algorithm (GA) Particle Swarm Optimization (PSO),
and Ant Colony Optimization (ACO) several others [19]. Each approach is suited to different applications, and
therefore has its own advantages and limitations. An improved version of the A method, designed to minimize
the number of turning points in a nuclear radiation environment, has been developed [20]. In this regard, several
enhanced PSO variants have been proposed by researchers in recent years. For instance, an adaptive PSO approach
is introduced in [21], and it is applied to both single and multiple humanoid robots for mobile robot path planning.
In addition, other algorithms are used to solve this problem, such as the Firefly metaheuristic and Pelican
Optimization Algorithm (POA). In addition, recent studies highlight a growing interest in hybrid metaheuristics
that combine the strengths of several algorithms (GA-PSO or ACO-PSO) in order to achieve faster convergence,
smoother trajectories, and better obstacle avoidance in complex environments [22]. Various studies have also
adopted heuristic techniques and employed them to tackle different aspects of path-planning methods. For
example, the initial PSO model was inspired by observing and graphically simulating the coordinated movement
of a flock of birds [23]. Genetic Algorithms (GA), along with their modified versions, are frequently employed to
determine the shortest path for mobile robot navigation in various environments [24]. A hybrid Genetic Algorithm,
utilizing the Continuous Bezier Optimization technique, is presented for the robot path planning problem in [25]. A
Whale Optimization Algorithm (WOA) has been implemented in a static environment to meet the requirements of
finding the shortest and smoothest path [23]. An efficient Q-Learning method is designed to generate shortest-path
planning with obstacle avoidance for a mobile robot in [26]. The A* method is enhanced to determine the most
efficient route for a mobile robot in a fixed environment[27]. An artificial potential field-based Particle Swarm
algorithm (apfrPSO) was developed to define more obstacle-free paths for a mobile robot in a grid map in [28].
Additionally, an optimal technique called Dhouib-Matrix-SPP (DM-SPP) has been developed to solve the shortest
path problem for any type of graph [29]. Consequently, DM-SPP has been extended to generate the trajectory of
a mobile robot using only eight possible movement directions [30, 31]. Furthermore, DM-SPP has been refined
to operate in four movement directions (referred to as DM-SPP-4) [32]. All DM-SPP approaches are tested in
multiple case studies of varying complexity and compared with various artificial intelligence techniques recently
proposed in the literature.

The paper primarily aims to prove the performance of the novel DM-SPP method. The primary advantage of
DM-SPP is its computational speed for finding a feasible path in simple grid worlds. For that, DM-SPP is compared
to two PSO methods in four case studies. These comparative experiments are designed to illustrate not only the
computational efficiency of DM-SPP, but also its capability to generate shorter and more reliable trajectories. As
producing the shortest possible path is an important consideration in mobile robotics, as it directly influences
execution time, energy consumption, and the overall sustainability of the system, the evaluation focuses on both
the quality of the solution and the speed of resolution. By examining its performance in various representative
situations, the study aims to highlight the robustness, scalability, and practical relevance of the DM-SPP method
for real-world route planning problems.

For the remainder of this paper, the content is organized as follows. Section 2 describes the principles of the
Particle Swam Optimization metaheuristic (PSO). Section 3 presents the proposed Dhouib-Matrix-SPP method.
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Section 4 describes experimentation, simulation results, and discussion. And finally a conclusion and perspectives
are given.

2. The Particle Swam Optimization metaheuristic

PSO was introduced by Kennedy and Eberhart in 1995 as an evolutionary computing technique. It is inspired by
social behaviors such as bird flocking and fish schooling, and operates with a population of candidate solutions
(particles) [33, 34]. Its core mechanism was largely inspired by simulations of animal social behavior as presented
in Figure 1. Before foraging, individuals either disperse or gather while searching for food, similar to birds.
Before foraging, birds either disperse or gather while searching for food and select areas where they can access it.
Nevertheless, they migrate from one location to another in pursuit of food. A bird with a strong sense of smell is
always present, guiding the flock to the food source [35]. The velocity of each particle is updated at every iteration
based on both its social interactions and individual behavior. Furthermore, PSO has been extended in recent years
through hybrid approaches and adaptive variants aimed at improving convergence speed, avoiding local optima,
and addressing multi-objective optimization problems, making it applicable to a wide range of complex real-world
scenarios.

Figure 1. Particle Swarm Optimization (PSO) algorithm.

When exploring an n-dimensional hyperspace, the position of particle i denotes the location of the solution
within the search space, as shown by xi = (xi1, xi2, xi3, ..., xin). The positional movement of particle i utilizes
its velocity history, as in vi = (vi1, vi2, vi3, ..., vin). Each particle i keeps track of its best position, as indicated by
pbesti = (pi1, pi2, pi3, ..., pin). The best position among all xpbesti in the group is identified as the global optimal
position, xgbesti . The position and velocity of each particle i are updated using information from the selected global
optimum and its own personal best, as shown in 1 and 2.

vi(t+ 1) = ωvi(t) + c1r1(xpbesti − xi(t)) + c2r2(xgbesti − xi(t)) (1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

Stat., Optim. Inf. Comput. Vol. x, Month 202x



3

Where:
t : denotes the iteration number.
ω : represents the inertial weight.
c1 and c2 are the learning factors of the personal and global optimal particles respectively.
r1 and r2 are random numbers within the range [0,1].
In general, xpbesti represents the particle’s best position and stores its memory. If the current position aligns with
the recorded information, the position remains unchanged; otherwise, it is updated with the current position.
xgbesti denotes the optimal solution obtained from the particle’s neighborhood.

The primary steps of the PSO can be summarized as follows [36].

• Step 1: Initialization. Randomly assign the positions and velocities of particles within the n-dimensional
problem space.

• Step 2: Particle Evaluation. Assess the fitness value of each particle within the n-dimensional optimization
function.

• Step 3: Update Optimal Values. The fitness of each particle is compared with its personal best value, pbest. If
it exceeds pbest, the particle’s current position becomes its new pbest. Then, the particle’s fitness is compared
with the global best value, gbest. If the current value is better than gbest, the global best position is updated
to the particle’s current position.

• Step 4: Update Particle. Adjust the position and velocity of each particle according to the updates in 1 and 2.
• Step 5: Termination Condition. Repeat from Step 2 until the stopping criterion is met, typically based on

achieving the desired fitness value or reaching the maximum number of iterations.

The advantages of the basic PSO are its easily adjustable parameters and straightforward implementation.
However, its drawbacks include a tendency to get trapped in local minimum value and premature convergence.
Moreover, the total number of iterations required to reach the global optimal solution is typically large, and
the time complexity of the overall evaluation process is very high. To overcome these limitations, researchers
have proposed various improvements such as hybridization with other metaheuristics, adaptive parameter tuning,
and parallel implementations, which improve convergence speed, robustness, and applicability to large-scale and
dynamic optimization problems.

3. The Dhouib-Matrix-SPP method

The novel DM-SPP is a new optimal method to generate the shortest path characterized by a time complexity of
O(n+m). The shortest path between a node and another specific node (Single Pair SPP) and between the source
(or destination) and all other nodes can be calculated by DM-SPP. In addition, the All Pair Sorthest Path can be
calculated by implementing DM-SPP in an iterative structure. DM-SPP is composed of four steps as illustrated in
Figure 2.

The new DM-SPP method has a polyvalent and deterministic structure that requires no parameters, which is a
significant revolution compared to other existing methods that require parameters. In mobile robotics, it is essential
to generate the shortest possible path, as this has a direct impact on the robot’s operational efficiency. A shorter
path allows the robot to reach its destination faster while minimizing unnecessary movements and deviations from
the trajectory. This not only helps improve task execution time, but also reduces mechanical wear and battery
consumption. In addition, the performance of DM-SPP is confirmed by its speed, which allows the mobile robot to
be faster, and its shorter resolution time with a more efficient solution. As a result, it reduces energy consumption,
which improves sustainability performance. By producing optimized and shorter trajectories, this method helps
reduce the robot’s total energy consumption. This reduction in energy demand increases the robot’s autonomy and
improves its sustainability performance, an increasingly important criterion in modern robotic systems.

The Dhouib-Matrix Shortest Path Problem (DM-SPP) method introduced by [31] is an innovative polynomial-
time algorithm designed to solve shortest path problems with great efficiency. Unlike traditional exact methods,
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Figure 2. The four steps of the novel DM-SPP method.

which can require significant computational effort for large graphs, DM-SPP provides a simplified and structured
procedure that significantly reduces computation time and energy consumption. This method is based on a
column-row elimination mechanism that iteratively eliminates suboptimal paths while preserving the essential
connectivity structure of the graph. Thanks to its lightweight operations and reduced memory requirements,
DM-SPP can be easily implemented and adapted to real-time applications.

In order to present the efficiency of DM-SPP versus PSO, the 20x20 grid map (see Figure 3) is used to compare
DM-SPP with two advanced variants of PSO (introduced in [28]): The ranking Particle Swarm Optimization (rPSO)
and the artificial potential field-based Particle Swarm Optimization (apfrPSO).

Figure 3. The 20x20 Grid map.
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Figure 4 illustrates the effect of varying the population size on the computational time (CPU) in seconds.
The x-axis represents the population size of PSO methods and Y-axis the required computational time. For each
population, an average of 30 iterations is represented. From this figure it can be concluded that DM-SPO is instable
method versus the clear stability of DM-SPP. However, the most important remark is the rapidity of DM-SPP:
For the case study of 20x20 grid map, DM-SPP generates a solution after just 0.017 second (where as rPSO and
apfrPSO require respectively an average computational time of 251.89 seconds and 120.07 second). ).

Figure 4. Stability of DM-SPP versus instability of PSO method on average running time.

Dm-SPP is a component of the general concept of Dhouib-Matrix (DM) where several other methods are
developed such as: The DM-TSP1 method to unravel the Travelling Salesman Problem [37], the DM-AP1 and
the DM-AP2 methods to optimize the Assignment Problem [38, 39] and the DM-TP1 to solve the Transportation
Problem [40]. Moreover, three novel metaheuristics are developed: The iterated stochastic DM3 [41], the multi-
start DM4 [42] and the local search FtN [43]. Also, to solve the Minimum Spanning Tree Problem the DM-
MSTP method is designed in [44] and to unravel the all-pairs shortest path problem the DM-ALL-SPP technique
is developed in [45].

4. Simulation results

This section presents a comparative analysis of the proposed DM-SPP method against two recent PSO-based
metaheuristics from the literature, namely the ranking Particle Swarm Optimization (rPSO) and the artificial
potential field-based Particle Swarm Optimization (apfrPSO) introduced in [28]. DM-SPP is implemented in
Python and executed on a Dell laptop equipped with an Intel Core i7-1255U processor and 16 GB RAM.
In accordance with the evaluation protocol adopted in Sections 2 and 3, the assessment focuses on computational
time, path length, and algorithmic effort (iteration count). The four benchmark environments— I-shaped, U-shaped,
T-shaped, and randomly shaped—were selected due to their use in prior studies and their differing structural
complexity. Across all cases, DM-SPP demonstrated highly favorable performance, reinforcing its deterministic
and parameter-free advantages compared to population-based metaheuristics.

4.1. I-shaped example

This first example is known as I-Shaped taken from [28]. DM-SPP generates the solution illustrated in Figure 5
with just 0.25 seconds.
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Figure 5. DM-SPP simulation result for I-shaped example.

Table 1 presents a comparative summary of performance indicators (represented by an average of thirty
independent runs) for the three methods. DM-SPP achieves speed-up factors of 83× over rPSO and 42× over
apfrPSO, confirming its ability to reach a feasible solution substantially faster than metaheuristic-based approaches.

Table 1. Comparing DM-SPP to PSO methods on I-shaped example.

Methods Distance Average CPU Iterations DM-SPP Improvement
rPSO 27.21 20.67 146 83

apfrPSO 24.38 10.44 36 42
DM-SPP 26.14 0.25 1 1

4.2. U-shaped example

The second experiment evaluates the U-shaped environment [28]. DM-SPP generates the solution in Figure 6
within 0.25 s.

As indicated in Table 2, DM-SPP is 58× faster than rPSO and 28× faster than apfrPSO. The results (represented
by an average of thirty independent runs) highlight the stability of DM-SPP’s computational performance regardless
of obstacle geometry.

Table 2. Comparing DM-SPP to PSO methods on U-shaped example.

Methods Distance Average CPU Iterations DM-SPP Improvement
rPSO 24.97 14.39 24 58

apfrPSO 21.56 6.89 30 28
DM-SPP 37.51 0.25 1 1
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Figure 6. DM-SPP simulation result for U-shaped example.

4.3. T-shaped example

The third experiment examines the T-shaped environment taken from [28]. DM-SPP computes the trajectory
depicted in Figure 7 in 0.29 s.

Figure 7. DM-SPP simulation result for T-shaped example.

Table 3 summarize the results generated by DM-SPP and the derivative versions of PSO. DM-SPP is 52 time
rapider than rPSO and 26 time rapider than apfrPSO.

4.4. Randomly shaped example

The final experiment uses the randomly generated environment from [28]. DM-SPP determines the trajectory
shown in Figure 8 in 0.24 s.
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Table 3. Comparing DM-SPP to PSO methods on T-shaped example.

Methods Distance Average CPU Iterations DM-SPP Improvement
rPSO 22.14 15.14 71 52

apfrPSO 19.31 7.49 2 26
DM-SPP 62.35 0.29 1 1

Figure 8. DM-SPP simulation result for Randomly shaped example.

As reported in Table 4, DM-SPP is 71× faster than rPSO and 31× faster than apfrPSO. This consistently high
improvement ratio across all case studies reflects the deterministic efficiency of the method.

Table 4. Comparing DM-SPP to PSO methods on Randomly shaped example.

Methods Distance Average CPU Iterations DM-SPP Improvement
rPSO 21.14 17.12 44 71

apfrPSO 19.73 7.38 48 31
DM-SPP 36.56 0.24 1 1

The aggregated comparison illustrated in Figure 9 confirms the substantial computational advantage of DM-SPP
across all four benchmark environments. Consistent with the methodological characteristics, the deterministic
structure and absence of parameter tuning enable DM-SPP to achieve overall speed-up factors of 66× relative to
rPSO and 31× relative to apfrPSO. These outcomes reinforce the relevance of DM-SPP as a rapid and scalable
approach for the mobile robot path planning problem.

In mobile robotics, computing speed is a key performance factor, particularly in scenarios that require immediate
navigation decisions. Fast trajectory generation algorithms enable robots to react quickly to environmental changes,
avoid collisions, and maintain operational continuity in real time. In industrial environments and warehouses,
speed has a direct impact on productivity, task completion rates, and coordination between multiple robots. In
rescue, surveillance, or time-critical missions, delays in trajectory computation can compromise safety or mission
success. Therefore, although optimality in terms of distance is desirable, many practical applications favor fast and
reliable trajectory generation, making fast deterministic algorithms such as DM-SPP particularly relevant when
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Figure 9. Comparing DM-SPP to PSO methods on four examples.

immediate feasibility is more important than absolute optimality.

It is done with gratitude. DM-SPP has one major limitation: its application is restricted to discrete environments
represented by grids. Indeed, DM-SPP operates on a graph where the grid map is transformed into a connected
graph. To overcome this limitation, continuous environments can be easily converted into discrete graphs, and then
DM-SPP can be applied.

5. Conclusion

This paper has presented a comprehensive comparison between advanced versions of the Particle Swarm
Optimization metaheuristic (the ranking Particle Swarm Optimization (rPSO) and the artificial potential field-
based Particle Swarm Optimization (apfrPSO) and the novel DM-SPP method for mobile robot path planning. The
results establish DM-SPP as a superior approach in terms of computational efficiency, and reliability. The method’s
parameter-free nature and deterministic behavior make it particularly suitable for practical applications. DM-
SPP is tested on four examples (I-shaped, U-shaped, T-shaped and Randomly shaped) and compared with rPSO
and apfrPSO metaheuristics. Simulation results prove that DM-SPP can generate rapidly the shortest trajectory,
moreover, it is 66 time rapider than the rPSO metaheuristic and 31 time rapider than the apfrPSO metaheuristic.
These results show that DM-SPP is particularly advantageous for rapid feasibility assessments in simple, static
environments where computational speed is essential. Nevertheless, in complex or highly dynamic scenarios
requiring continuous adaptation, more flexible metaheuristic approaches, such as methods based on particle swarm
optimization (PSO), may offer advantages. Further research will investigate multi-objectives aspects, trajectory
smoothing and 3d resolutions domains.
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