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Abstract The current study proposes and presents a new regression model for the response variable following the Akash
distribution. The unknown parameters of the regression model are estimated using the maximum likelihood method. A
simulation study is conducted to evaluate the performance of the maximum likelihood estimates (MLEs). Additionally, a
residual analysis is performed for the proposed regression model. The log-Akash model is compared to several other models,
including Weibull regression and gamma regression, using various statistical criteria. The results show that the suggested
model fits the data better than these other models. It is anticipated that the model has applications in fields such as economics,
biological studies, mortality and recovery rates, health, hazards, measuring sciences, medicine, and engineering
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1. Introduction

Regression models play a vital role in statistics as they describe the relationship between response variables
and explanatory factors, allowing for the analysis of heterogeneous data. By linking distributional parameters
to covariates, they capture variations across individuals or conditions. Such models are essential in fields like
reliability, survival analysis, and medical research, where multiple factors influence outcomes. Developing new
regression forms for different distributions enhances model fit, reduces bias, and improves practical decision-
making.

Several distributions have been used to model data in various fields, including economics, biological studies,
mortality, recovery rates, health, risks, measurement sciences, medicine, engineering, insurance, and finance. In
recent years, there have been studies that have attempted to provide modeling of data based on its distributions.
For example, [4] suggested the unit-improved second-degree Lindley distribution for inference and regression
modeling. [15] proposed the log-generalized modified Weibull regression modeling. [13] introduced a new quantile
regression for modeling bounded data using the Birnbaum-Saunders distribution. [20] introduced Log-Burr
XII regression models. [16] introduced the Log-Beta Generalized Weibull Regression Model for lifetime data.
[10] suggested the quantile regression modeling on the unit Burr-XII. [9] suggested the Exponentiated Weibull
regression. [6] suggested the Log-generalized inverse Weibull Regression Model. [8] introduced the Transmuted
Weibull Regression Model. [14] proposed an extension of the Burr XII Distribution: Applications and Regression.
[2] suggested the Zografos—Balakrishnan Burr XII Regression model. [12] suggested the unit generalized half-
normal quantile regression model. [22] investigated the performance of Log-Beta Log-Logistic Regression Model.
Moreover. Abdelmaksoud2025 presents a comparative analysis of several estimation methods—such as maximum
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likelihood, least squares, and Bayesian approaches—for the Kumaraswamy Weibull regression model, with an
application to economic value-added data.

This article is organized as follows: Section (2) introduces the definition of Akash distribution, while Section
(3) suggests a log Akash regression model of location-scale. Section (4) employs the maximum likelihood method
to estimate the parameters, and Section (5) presents different types of residual analysis. Section (6) discusses the
simulation study, Section (7) applies the model to real data, and Section (8) concludes the work.

2. Definition of Akash Distribution

The importance of modeling and analysis of lifetime data is emphasized in various fields, and several continuous
distributions are used to describe lifetime data. The exponential, Lindley, gamma, lognormal, and Weibull
distributions are among the commonly used distributions for modeling lifetime data. However, the gamma
and lognormal distributions’ survival functions cannot be expressed in closed form and require numerical
integration, making the exponential, Lindley, and Weibull distributions more popular choices. One advantage of
the Lindley distribution over the exponential distribution is that the former’s danger rate decreases monotonically,
whereas the latter has a constant hazard rate. This property makes the Lindley distribution more flexible and
realistic in modeling certain types of lifetime data. The cumulative distribution function (c.d.f.) and probability
density function (p.d.f) of the Lindley disillustrates the probability density function (PDF) of the Akash
distributiontribution, as introduced by Lindley (1958), are given by
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Although the Lindley distribution has been widely used in modeling lifetime data and has been shown to be useful
in stress-strength reliability modeling by Hussain (2006), there are still some limitations and restrictions when
applying it to real-world data. To address these issues, (Shanker et al, 2018) proposed a new distribution that is a
mixture of an exponential distribution and a gamma distribution. This new distribution has the advantage of being
more flexible and can better fit various types of lifetime data. The probability density function (p.d.f.) of the new
distribution is
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This distribution is known as the Akash distribution. The cumulative distribution function (CDF) corresponding to
equation (3) is given by
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2 LOG AKASH REGRESSION MODEL WITH APPLICATION

CDF of the Aksch Distribution for Different Parameter Values
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Figure 1. Plots of the pdf for the Akash distribution. Figure 2. Plots of the cdf for the Akash distribution.

3. The Log Akash Regression Model

The main objective of this paper is to introduce a novel application of the Akash distribution in regression
modeling. The proposed model utilizes the log-Akash distribution, which is derived from the positive Akash
random quantity through a log transformation. This approach is commonly used in survival analysis and allows
for the handling of both censored and uncensored data. The model assumptions of The log Akash regression Mode
is The model assumes constant variances for all observations, which is a standard assumption in regression models
with censoring in survival analysis and reliability studies These assumptions vary slightly depending on the model
type, but they often include: 1. Linearity: There is a linear relationship between the outcome and the variables
that predicted it. This indicates that a linear combination of the predictor variables (X) can be used to describe the
expected value of the dependent variable (Y). 2-Independence: Observations do not depend on one another. This
indicates that there is no correlation between the residuals (errors), which is especially important for time series
or hierarchical data where observations may be grouped.. 3-Homoscedasticity: At every level of the independent
variables, the variance of errors remains constant. Stated otherwise, the “’scatter” or spread of residuals should be
roughly constant across all predictor values. 4-No Perfect Multicollinearity: The predictors in multiple regression
shouldn’t have a perfect correlation with one another. It may be challenging to discern each predictor’s unique
impact on the result when there is substantial multicollinearity, which occurs when predictors are highly correlated.
5-Normality of Errors: The errors, or residuals, follow a normal distribution. Although it is less important for
prediction accuracy in big samples, this assumption is especially pertinent for hypothesis testing and creating
confidence ranges. 6-No Autocorrelation: In time series data, where autocorrelation (correlation of residuals
across time) should be minimized, this assumption is most applicable. The residuals’ autocorrelation indicates
a pattern or trend that the model may have missed, suggesting the necessity for extra terms or transformations.
Let X be a random variable having the Akash density function, and let the random variable Y = o log X, where

B = exp(—p/o). Differentiating the transformation, we getY = clog X = dY =0 %’ which implies % iy
Therefore, the Jacobian is |%| = % The density function of Y can be written as:
Fo) = Fr@)| 2] = ey €7
Y\Y)=Jx dy = Ix p
f(y,u,o):f_l(x)|J| (5)
_su Y
e 2 y— €o
[y, p,o) = — [14—671/} exp (-@%) . (6)
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Figure (3) The survival function of the Akash distribution at different values of the parameters
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Figure 3. Plots of the SF for the Akash distribution
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We suggest a new log-location-scale regression model based on the Akash density function. Let Y be the response
variable following the Akash distribution,

x = (21,%2,...,Tpn)

and the regression model is defined as

y=x'B8+o0z

The variable y conforms to the Akash distribution with unspecified parameters, where mu is a real number and
sigma is also a real number, using the identity link function. The vector mu, which consists of is a known design

matrix.
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4 LOG AKASH REGRESSION MODEL WITH APPLICATION

4. Estimation of the Model paramter

For the right-censored lifetime data, we have ¢; = min(f;, ¢;), where f; is the lifetime and ¢; is the censoring time.
Then, we define

yi = log(t:)
for the i-th individual, i = 1,...,n. If we have a random sample with n observations (y1,z1),. .., (Yn, Tn), We
define
5 — {1 for y; = log(f:),
' 0 fory; =log(c;),
where §; is the censoring indicator. The log-likelihood function is given by

n

08) = Z [051og f(yi | ©:;0) + (1 — 6;)log S(y; | x:;0)],

=1

where f(y; | z;; ) is the probability density function and S(y; | x;; 0) is the survival function corresponding to the
lifetime distribution.

K, :Z&logf(yi% Kz =) (1—4;)logs(y) (13)
icF icC
K, = En:&; (yl — M) - zn:tsi log ((672}1’/0 + 2)0) - i&ey + zn:(si log (672”/0 + eM) (14)
icF 7 icF icF icF
Ky = 7Zl(l — ;) log [(6_2“/0 + 2) +e*(1+ ez)] - i(l — ;) log (6_2“/0 + 2) - i(l — ;) (15)
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=By +xp (16)

into the previous equation, we get the following
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Estimate coefficients of regression by minimizing the log-likelihood function

000) 0K, 0K,
— 19
98 ~ 9B | 9B, (19)

o00) 0K, 0K,
_ 2
o5~ 9B 0B (20)

From the previous three equations, we obtain non-linear equations by solving them using the software R, to obtain
the value of the regression coefficients
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5. Residuail Analysis

After fitting a model, it is essential to evaluate its suitability and ensure that it meets certain assumptions. One way
to do this is by analyzing residuals, which can help identify any issues with the model’s fit. In survival analysis,
which involves right-censored data, martingale residuals can be used to assess the quality of fit and leverage of the
model.

5.1. Martingale Residuals

are defined as the difference between the counting process and the integrated density function (also known as the
hazard rate function) in parametric lifetime models. This method was introduced by Barlow and Prentice (2014)
and has been used by researchers such as Therneau (2020), Commenges and Rondeau (2000), and Elgmati (2015).

y
TM:(Si—i—/ kE(u)du, i=1,2,3 1)
0

where d; = 1 if the observation is censored, and §; = 0 if the observation is uncensored. The equation then reduces
to:

y
Ifé;, =1, rM—lJr/ k(u) du

v = 0; +10g S(y)) (22)

0; +1og(S(y)), ifd; =1
= og(S(y)) : (23)

log(S(y)), ifg, =0
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5.2. Deviance Residual

In statistics and machine learning, the deviance residual measures the discrepancy between a model’s predictions
and the actual values of the response variable. It assesses how well a model fits the data. In regression analysis, the
deviance residual is calculated as the difference between the observed response variable and the predicted response
variable, raised to a power, known as the deviance exponent. The deviance residual is used to evaluate a model’s
fit, with lower values indicating a better fit. The formula for deviance residual is:

Deviance Residual = (Observed Response — Predicted Response)Peviance Exponent

From the martingale residual, this form is more symmetric about zero. Consequently, the deviance residual for
Akash distribution is defined as follows:

' _ , _— 12 ifs =
- {51gn(rM)[ 2(rp +9; +log(6; —rar))] /7, ifé; =1 25)

sign(rar) [=2 (rag + 6; + log(8; — rar))]Y/?, if6; =0
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6 LOG AKASH REGRESSION MODEL WITH APPLICATION

5.3. Modified martingale-type residual

A change is proposed in the martingale-type residual that can be written as:

TMD = (1—(52‘)-"-7”01. (26)

where J; = 0 denotes a censored observation and J; = 1 denotes an uncensored observation. Here, rp, is the
deviance (martingale-type) residual as defined in Section 5.2.
In the log-Aksch regression model, the modified martingale-type residual is defined as:

i —2(ras + 6; + log(6; — 1z if §; = 1
N {blgn(m)[ (ras 0g(di — rar) i o

1+ sign(rar) [=2 (rar + 6; +log(6; — rag))]Y/?, if6; =0

5.4. Pearson Residuals

The Pearson residual is a widely used method for detecting outliers in data. It is based on the idea of subtracting the
mean and dividing by the standard deviation, which helps to identify potential outliers by comparing the relative
distances of each data point from the mean. This method is particularly useful in linear regression, where it can
help assess the fit of the model and detect any observations that do not conform to the overall pattern ion

r; = Yi — M (28)
var(y; )

Where z; follows the Akash distribution, and the mean of y; is given by fi;. This approach enables researchers to
readily identify extreme values that arise in the data due to measurement errors or issues during data collection, as
well as values that do not conform to the overall pattern of the data.

6. Simulation Study

In this section, a simulation study is conducted to evaluate the maximum likelihood estimators (MLEs) of the
parameters of the Akash regression model. Three censoring rates are considered: 7 = 10%, 20%, 30%, and three
sample sizes are used: n = 20, 50, 100. The number of simulation replications is set to N = 1000.

The lifetimes are generated using the probability density function of the Akash distribution. The following
parameter vector is used in the simulation: Sy = 2,81 = 2,0 = 0.6. The covariates x; are generated from the
uniform distribution on the interval (0, 1), i.e., x; ~ Uniform(0, 1).

For each generated sample, the bias, average of estimates (AEs), and mean squared errors (MSEs) are calculated.
The simulation results are reported in Table 1.

The bias and MSE are computed as follows:

N

1

Bias = v ;(ﬁl - B) (29)
1 o .

MSE = > (8; = )° (30)

=1
The simulation results presented in Table 1 indicate that the biases approach zero as the sample size increases.
From Table 2, it was indicated that the MSE approach zero as the sample size increases.
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Table 1. Bias for Log Akash Regression Model

T n B1 Bo o

0.20 20 0.0081 0.0734 0.0090
50 0.0074 0.0431 0.0077
100 0.0065 0.0415 0.0068

030 20 0.0058 0.0344 0.0065
50 0.0046 0.0236 0.0064
100  0.0039 0.0187 0.0059

0.50 20 0.0024 0.0145 0.0032
50 0.00191 0.0125 0.0020
100 0.00126 0.0113 0.0014

Table 2. Mean Squared Error (MSE) for Log Akash Regression Model

T n Bo B1 o

0.20 20 0.0215 0.0443 0.0066
50 0.0054 0.3712 0.0058
100 0.0034 0.2184 0.0038

0.30 20 0.0029 0.1917 0.0014
50 0.0022 0.0152 0.0011
100 0.0018 0.0142 0.0010

0.50 20 0.0015 0.0131 0.0009
50 0.0013 0.0123 0.0005
100 0.0011 0.0100 0.0003

7. Real Data

The data in this study consists of four variables: one dependent variable and three independent variables. The data
scale used is continuous. The dependent variable is patient satisfaction, while the independent variables include
patient age (z1), anxiety level (x3), and disease severity index (x3).

The study focuses on the relationship between patient satisfaction and patient age. The dataset consists of 200
observations. The descriptive statistics for the two variables are summarized in Table 3.

Table 3. Descriptive Statistics for Dependent and Independent Variables

Variable Min Max Median Mean QI

Y 26 92 40 42 38
x1 22 55 33 38 31

From Table 3 statistics, it was noticed that the dependent variable y (patient satisfaction) has a minimum value
of 26, maximum of 92, mean of 42, and median of 40. The independent variable x; (patient age) has a minimum
value of 22, maximum of 55, median of 33, and mean of 38.
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8 LOG AKASH REGRESSION MODEL WITH APPLICATION

Histogram with Akash, Lindley & Gamma PDFs
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Figure 4. Histogram with Fitted Akash, Lindley, and Gamma Distributions

The image shows a histogram of observed data overlaid with three probability density functions (PDFs):
Akash (red solid line), Lindley (blue dashed line), and Gamma (green dotted line). The histogram represents the
distribution of the data, and the overlaid curves are used to compare how well each theoretical distribution fits the
observed data. Both the Akash and Lindley PDFs closely follow the shape of the histogram, especially near the
peak and tail, suggesting a good fit, while the Gamma PDF deviates more, particularly overestimating the density
around 0.5. Overall, the plot demonstrates that the Akash and Lindley distributions may model the data more
accurately than the Gamma distribution

7.1. Goodness-of-Fit

Table 4. Goodness-of-Fit Criteria for Different Distributions

Goodness-of-Fit Criteria Aakash  Lindley Gamma
Akaike Information Criterion (AIC) 52.24356 56.23672 58.23147
Bayesian Information Criterion (BIC) 51.23456 54.32466 56.23146

Hannan-Quinn Information Criterion (HQIC) 55.21432 56.23142 57.32451

From Table 4 , it was observed that the statistical criteria—Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC)—have lower values for the Aakash
distribution compared to the Gamma and Lindley distributions. Therefore, this suggests that the Aakash distribution
provides a better fit to the data.

7.2. Goodness-of-Fit Tests and Normality Assessment

From Table 5, it was noticed that the values of the Cramér—von Mises statistic, the Kolmogorov—Smirnov statistic,
and the Anderson—Darling statistic for the Aakash distribution are smaller than those for the other distributions.
This indicates that the data is more consistent with the Aakash distribution compared to the Lindley and Gamma
distributions.
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Table 5. Goodness-of-Fit Test Statistics for Different Distributions

Goodness-of-Fit Criteria Aakash Lindley Gamma

Kolmogorov-Smirnov Statistic  0.0871768  0.0988232  (.164698
Cramér—von Mises Statistic 0.0171432  0.0976642 0.056378
Anderson—Darling Statistic 0.1463242  0.6248354 0.309834

Table 6. Normality Tests for the Data

Test Test Statistic p-value
Kolmogorov—Smirnov Test 1.00000 0.0271
Shapiro—-Wilk Test 0.97302 2.2 x 10716

By examining Table 6, it can be verified whether the data follows a normal distribution using two tests: the
Kolmogorov—Smirnov test and the Shapiro—Wilk test. The results from both tests indicate that the p-value is less
than 0.05, suggesting that the data does not follow a normal distribution.

7.3. Fitted Regression Model

In this section, after determining the appropriate model for the data, it is necessary to compare the proposed model
with other models using some evaluation criteria from the model selection process. The following table presents
the AIC, BIC, and R? values for the different regression models.

Table 7. AIC, BIC, and R? for Different Regression Models

Model Bo 81 AIC BIC R?

Log-Aakash Regression Model  0.423  0.632 142.323 139.212 0.856
Log-Lindley Regression Model  0.532  0.532 154.234 151.542 0.653
Log-Gamma Regression Model 0.623  0.623 156.324 153.274 0.527

From Table 7, it was observed that the AIC and BIC values for the Log-Aakash regression model are lower
than those for the Log-Lindley and Log-Gamma regression models. Additionally, the R? value for the Log-Aakash
regression is higher. These results suggest that the Log-Aakash regression model provides a better fit to the data
compared to the other models

8. The Martingale Residuals

the Martingale residuals versus fitted values plot for the Akash regression model illustrates the adequacy and
sensitivity of the fitted model. The residuals are mostly scattered randomly around the horizontal zero line,
indicating that the model appropriately captures the relationship between the covariates and the response variable.
The absence of any clear systematic pattern suggests that the functional form of the Akash regression is correctly
specified and that there are no major violations of model assumptions. A few negative residuals appear as outliers,
which may reflect observations with slightly higher influence, but they do not indicate serious lack of fit. Overall,
the random dispersion of residuals around zero confirms that the Akash regression model provides a satisfactory
fit to the data and exhibits good stability and robustness in representing the underlying process

Stat., Optim. Inf. Comput. Vol. x, Month 202x
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Martingale Residuals

LOG AKASH REGRESSION MODEL WITH APPLICATION

Martingale Residuals vs Fitted
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Figure 5. Martingale Residuals vs Fitted Values — Akash Regression

8.1. Q-0 plot of Martingale residuals

The Q—-Q plot of Martingale residuals** for the Akash regression model assesses the normality and adequacy
of the residuals. In this plot, the sample quantiles of the Martingale residuals are plotted against the theoretical
quantiles of a standard normal distribution. The points lie approximately along the red reference line, indicating
that the residuals are roughly normally distributed and that the model provides a satisfactory fit to the data. Minor
deviations at the lower tail suggest the presence of a few extreme negative residuals, which may correspond to
influential observations, but these do not substantially affect the overall model performance. Therefore, the Q-Q
plot confirms that the Akash regression model is well-specified and effectively captures the underlying data pattern

Sample Quantiles

Q-Q Plot of Martingale Residuals (Akash Regression)

-3
|

-5
I

Theoretical Quantiles

Figure 6. Q-Q Plot of Martingale Residuals — Akash Regression
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Conclusion

The current study proposed a new regression model called the Akash regression model. The maximum log-
likelihood estimation method was employed to estimate the unknown parameters. A simulation study demonstrated
that the maximum log-likelihood method outperformed other methods in the case of small samples. The researcher
relied on some tools to test the suitability of the data used in the research under study, including Kolmogorov-
Smirnov Statistic and Cramer- Von -Mises Anderson -Darling Statistica as all the previous measures were smaller

in

the case of the distribution under study. The suggested regression model was compared with sub-models,

specifically the Lindley regression model and the gamma regression model, using the AIC and BIC criterion
statistics. According to the data, the proposed regression model has a better performance than the other models.
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