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Abstract Estimating parameters in Semiparametric Additive Partial Linear Models (SAPLMs) accurately proves quite
difficult under high-dimensional data and related explanatory variables. Multicollinearity among predictors not only
increases the variance of parameter estimates but also makes statistical interpretation more difficult, especially when the
number of variables exceeds the sample size. We contrast two strong estimating techniques (Ridge regression with R/W
robust estimators and the Reciprocal Lasso method) to solve these problems. Our work assesses their efficacy in overcoming
multicollinearity while concurrently choosing important variables. We evaluate the techniques by means of three criteria,
namely: Average Absolute Deviation Error (AADE), Mean Squared Error (MSE), and coefficient of determination (Rz),
using actual educational data on elements influencing the academic performance of special needs students. Results show
that the Reciprocal Lasso approach offers more accurate predictions and improved variable selection capacity than both
Ridge robust methods regarding the practical aspect, in terms of simulation methods, it was observed that the Lasso method
is preferable when the sample size is less than the number of explanatory variables, the Ridge with W robust method is
preferable when there is a moderate correlation between the explanatory variables, and the Ridge with R robust method is
preferable when there is a strong relationship between the explanatory variables.
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1. Introduction

Integrating the benefits of both linear and nonlinear modeling, semiparametric additive partial linear models
(SAPLMs) are essential statistical analysis tools [1]. They are especially useful in situations where relationships
between independent and dependent variables cannot be strictly linear, since they provide flexibility in capturing
complex patterns [2]. Comprising a linear component for parametric relationships and a nonlinear component for
nonparametric effects, SAPLMs strike the best compromise between interpretability and computational efficiency
[3]. In multiple regression models, an abundance of explanatory variables can complicate the analytical process.
To address this challenge, it is essential to reduce the model’s dimensionality, usually by implementing particular
assumptions [3, 4]. The principle of scatter plot smoothing can be seamlessly extended to higher dimensions.
In principle, regression smoothing for a predictor with d dimensions adheres to the same tenets as in the one-
dimensional scenario, where local averaging consistently yields asymptotically accurate approximations of the
regression curve [5]. This method faces two major challenges. The regression function m(x) manifests as a high-
dimensional surface, and when d > 2, it becomes unvisualizable, thereby limiting its geometric interpretation in
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elucidating the relationship between X and Y. The efficacy of nonparametric smoothing, reliant on averaging within
local neighborhoods, is compromised by data sparsity in high-dimensional spaces. Despite substantial sample
sizes (e.g., n > 1000), the distribution of data points frequently remains too sparse to guarantee dependable
smoothing [5, 6]. [7] conducted a study on the estimation of partial linear models using wavelet analysis and
robust estimation techniques. The research aimed to enhance the accuracy of statistical model estimation by
integrating linear and nonlinear relationships. Specifically, Huber’s M-estimation was applied to estimate the
linear component, while the Wavelet Thresholding method was used for the nonlinear component. The study
concluded that combining these two approaches effectively addresses issues related to nonlinearity and outliers
in statistical models. Researchers in 2014 conducted research on variable selection in Frailty Models using the
H-likelihood method [8]. The research aimed at improving the manner in which we select models with random
effects. The researchers compared three approaches to improving variable selection in semi-parametric models:
Least Absolute Shrinkage and Selection Operator (LASSO), Smoothly Clipped Absolute Deviation (SCAD), and
Penalized H-Likelihood (HL). Results showed that HL. and SCAD performed better than LASSO in the selection
of variables and error reduction of predictions. Simulated results were characterized by the sudden decline of
prediction error rates through SCAD and HL compared to LASSO. The study concluded that HL. and SCAD
significantly enhance the study of semi-parametric models to a large extent and, thereby, are extremely helpful
in the analysis of survival data and models with multiple random effects. Research carried out by [2] analyzed
methods of dimension reduction of high-dimensional data along with variable selection within statistical modeling.
The paper explained the development of the Minimum Average Variance Estimation (MAVE) method such that it
was reducing the dimensions without defining a model initially. The paper introduced a new extension named
the Minimum Average Variance Estimation Sparse (MAVE-S) method that involves adaptive techniques with
the aim of enhancing variable selection. [1] on the other hand, investigated multicollinearity and the effects of
outliers on the accuracy estimates of regression models. They noted that under such a scenario, ordinary least
squares (OLS) gives inconsistent estimates. The authors suggested combining Ridge and Liu estimators and
robust estimation techniques as a solution to this issue, ultimately developing new estimators known as Ridge and
Liu[20, 21]. The study established that in cases where precise measurement matters, particularly during economic
and industrial studies, the use of Ridge and Liu estimators in conjunction with robust regression enhances statistical
accuracy. [9] contrasted two estimation methods for a semi-parametric regression model when autocorrelation
exists. The research utilized a semi-parametric partial linear regression model with parametric and non-parametric
components. Two estimation methods were used in the research: least squares estimation (LSEM) and semi-
parametric generalized least squares estimation (SGLSE) [22]. The SGLSE method proved superior to LSEM with
regard to the treatment of autocorrelation, as would be evident through the results from simulation investigations
[10]. A comparison was undertaken on the grounds of the criterion of mean square error (MSE). [11] analyzed the
relationship of money demand with key economic variables like gross domestic product, government consumer
spending, and consumer price index during the period from 2000 to 2022. Authors discussed regression model
coefficients when they encountered missing data using traditional estimation methods like maximum likelihood
estimation (MLE), as well as more efficient methods like R-estimators, L-estimators, and both EM and W methods.
We carried out comparative studies to identify the optimum procedure for various data loss situations. The finding
indicated L-Estimators produced the most precise results when data loss was 3%. EM performed better at % data
loss, and R-Estimators performed better than all procedures at 5% data loss. The study confirmed that in cases
where losses are high, the use of more precise estimation methods is more effective compared to traditional methods
when dealing with missing data. Recently, [12] examined how outliers and multicollinearity impacted the reliability
of predictions that come from regression models. They joined the Least Trimmed Squares (LTS) technique with
Ridge regression in an attempt to minimize the impacts of outliers as well as to enhance the precision of their
estimations [23]. Their objective was to enhance the methods through which the estimates are made. The result,
with an R? of 88%, indicated that the proposed model was very accurate. The research proved that applying the
LTS method along with Ridge regression can significantly contribute to predictive models and efficiently deal with
missing data. The research indicates that the authors recommend applying these methods to address the issues
caused by extreme observations and multicollinearity in regression analysis.
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2 A COMPARATIVE STUDY OF RIDGE ROBUST AND RECIPROCAL LASSO ESTIMATORS

This study compares two robust estimation methods: Ridge regression with R/W robust estimators and
Reciprocal Lasso. Our goal is to tackle multicollinearity and identify important variables. We look at three key
metrics to assess performance: AADE, MSE, and R”. This analysis looks at actual educational data to explore the
academic success of students with special needs.

2. Methodology

2.1. Problem Statement

Research problem lies in the fact that partially linear additive semiparametric models are among the most
flexible and efficient statistical models for analyzing data that combine linear and nonlinear relationships, as
they provide a balance between interpretability and accuracy in representing complex phenomena. however, the
application of these models in practice—particularly when dealing with real, multivariate data—faces substantial
statistical challenges, foremost among them the problem of multicollinearity arising from strong correlations
among explanatory variables. this problem becomes more severe when the number of independent variables is
large relative to the sample size, leading to instability in parameter estimators, inflated variances, and difficulty
in disentangling the individual effect of each variable on the response variable. The impact of multicollinearity is
not limited to computational issues; rather, it directly affects the interpretation of model results and the accuracy
of statistical inference. In such cases, regression coefficients become unreliable and may exhibit illogical signs
or exaggerated magnitudes, thereby weakening hypothesis testing results and reducing the predictive power
of the model. Moreover, traditional estimation methods such as Ordinary Least Squares (OLS) are unable to
efficiently address this problem, as they are highly sensitive to outliers and data deviations and lack effective
mechanisms for selecting the most important variables within the model. Although several penalized and robust
estimation methods—such as Ridge Robust estimators and Lasso-type approaches—have been developed to
address multicollinearity, reduce estimator variance, and enhance model stability, the performance of these methods
varies depending on the nature of the data and the correlation structure among explanatory variables. In cases of
high correlation among predictors, some of these methods may fail to select all relevant variables or to achieve
the desired balance between estimation accuracy and variable selection, particularly within the framework of
partially linear additive semiparametric models that simultaneously incorporate parametric and nonparametric
components. accordingly, the research problem arises from the pressing need to evaluate and compare the efficiency
of Ridge Robust and Reciprocal Lasso estimators in addressing multicollinearity within partially linear additive
semiparametric models, in terms of their ability to improve estimation accuracy, enhance parameter stability, and
strengthen the selection of explanatory variables with true effects. this, in turn, ensures the development of more
reliable and interpretable statistical models for practical applications, especially in the fields of educational data
and social sciences.

2.2. Semi-parametric Additive Partially Linear Model

The Semi-Parametric Additive Partially Linear Model is a blend of linear and nonlinear methods that helps to
shed light on how independent and dependent variables relate to each other [13]. This model does a great job of
looking at data sets that have complex patterns.

p
yi:XiTﬁ+ Zf](zl])—i_el, i:1727"'anaj:1723"'7p (1)
Jj=1
p
Y fiZy)
J1 X11 Xip Bi j=1 el
= : : + +
y Xnl “ee X ﬁ P e
n n np P ij(znj) n
=1

Stat., Optim. Inf. Comput. Vol. x, Month 202x



H. RAAID TALIB, N. ABDUL-KAREEM FAYADH AND S. SABAH AKRAM 3

Here, y is a vector of the degree (n x 1) for the response variable observations, x is a matrix of the degree (n X p)
for the independent variable, f3 is a vector from the degree (p x 1) that represents the linear part, f;(Z;) is a vector
from the degree (n x 1), which represents the non-linear part, and e is a vector of the degree (n x 1) for a random
error with mean zero and variance 62.

The above model is divided into the linear part (X! ), which deals with the clear linear effects between the
variables, and the non-linear part (g;(Z;;)), which represents the non-linear relationships that cannot be easily
explained using linear methods [8].

2.3. Multicollinearity and High Dimensionality

Multicollinearity problem: Multicollinearity occurs when two or more independent (explanatory) variables in
a linear regression model exhibit a strong linear correlation, making it difficult to isolate the individual effect of
each variable on the dependent variable. This issue complicates the interpretation of regression coefficients and
can lead to inaccurate estimates, ultimately compromising the reliability of statistical hypothesis testing [3].
*Causes of Multicollinearity

1. The nature of the data itself: If the independent variables originate from the same source or are founded on
the same phenomena, there may be a close link among them.

2. Introduction of redundant or duplicate variables.
3. Small samples or the paucity of data may make cross-correlations between variables seem to exist.

4. When variables are mathematically altered (e.g., squaring or taking the logarithm of a variable), a linear
relationship may occur [5].

“Tests for detecting multicollinearity:
1. Simple Correlation Coefficient: It is a measure of the linear relationship between two independent variables.

2. Variance Inflation Factor (VIF): It is a measure of how much the variance in a regression coefficient is being
inflated due to collinearity.

3. Tolerance: It is the reverse of VIF, i.e., the share of variance explained by other predictors.

4. Eigenvalues and Condition Index: This method allows us to investigate multicollinearity by studying the
eigenvalues of the correlation matrix and their condition numbers.

5. Determinant of the correlation matrix: If the determinant is small, then there is high multicollinearity.

6. Graphical Analysis: Residual plots and scatterplots are excellent ways of presenting the relationship between
variables.

7. Extended Durbin—Watson Test: A modified version of the Durbin—Watson test for autocorrelation that also
detects collinearity [3].

» Effects of Multicollinearity

1. When regression coefficients are more heterogeneous, this leads to less stable estimates that can reduce the
reliability of our statistical inferences.

2. Ambiguous or confusing results: Regression coefficients may carry negative signs or unrealistic magnitudes,
leading to interpretation problems.

3. Adjusted forecast: From a precision standpoint, multicollinearity can make the model less predictive by
increasing standard errors and leading to overfitting [3].
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4 A COMPARATIVE STUDY OF RIDGE ROBUST AND RECIPROCAL LASSO ESTIMATORS

2.4. Calculation Methods for the Semiparametric Additive Partially Linear Model:

The Semiparametric Additive Partially Linear Model is a combination of a parametric regression function and
an additive nonparametric regression function. For estimation, the parametric component can be in the form of a
simple linear model, multiple linear models, or even a nonlinear function. Conversely, there exist various methods
for estimating the nonparametric component. The model structure plays a significant role in the choice of estimation
methods, merging parametric and nonparametric estimation to increase accuracy and flexibility.

2.4.1. The Difference method

This method is employed to estimate nonlinear functions f;(Z;;) and is particularly useful for avoiding the
complexities associated with direct derivative calculations [14]. We assume that f;(Z;;) is differentiable, and its
first derivative at the point Z;; can be approximated using forward differences as follows:

Fie) ~ filzij+ h})l — fi(zij)

Then, f;(Z;;) is replaced by the approximate derivative using the difference method, as shown in the following
formula:

2

(z,,Jrh})Z fita) 3)

Rearranging Equation (3) allows for the estimation of the coefficients corresponding to the linear and nonlinear
components, as expressed in the following formula:
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Then, the B coefficients are estimated using the Ridge Regression method:

B=XTX+AD"'XT (y=F(2) )
F(z):Estimated values of functions f;(Z;;)

After estimating the linear component, the function f;(Z;;) is estimated as follows:

Filey) ™ =h. <)’i —xIB - ka(&k)) (6)
k#j

t: Number of iterations.

ﬁ’: Estimated parameters in the equation (6)

The estimation process alternates between the nonparametric and parametric components until stability is
achieved, meaning the optimal solution is reached and the convergence condition is satisfied, as follows:

Hfj(’l)(zij)’+1 — fi(Zij)!

<e @)

2.4.2. Ridge Robust Estimation
The Ridge Robust Estimator successfully remedies such problems by reducing variance and enhancing
model steadiness via parameter tuning. The technique enhances the precision of statistical models when there are

large data drifts. The standard estimation process may lead to inaccuracy or unsafe results in situations where
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independent variables are highly collinear or shift over time. Ridge Robust Estimation offers safer and precise
estimates even against unexpected or unusual data conditions.

According to the provided formula, Frank and Friedman (1993) developed this technique. Parametric estimation
can be problematic, including multicollinearity and non-stationarity. In the Ridge technique, a penalty term is
incorporated to reduce these problems and improve the model’s stability. Initially, the parametric component is
assumed to be unknown, with its initial value set as XiT B = 0. The non-parametric component is then estimated
using the Smoothing Kernel method, as demonstrated in the following formula [2, 4].

_ YL Ki(Z—-Zij)yi
Y Kn(Z—Ziy)

70 ®)

(0)

where f'j (Z) represents the initial estimate of the non-parametric functions, and then the residual is calculated to
remove the effect of the non-parametric part as shown in the following formula [7]:

p A
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Then, the 8 will be estimated using Ridge with the residual r\"

objective function, as follows:

. This is done by minimizing the modified

Oridge(B) = ||ri” —XﬁHZM 18I (10)

By applying partial differentiation to Qgiqe. (), With respect to B and setting it equal to zero, we obtain:

Biidge = XTX + 207X (11)

Through equation (4) and using Blgﬂ)lge, we calculate the new variable (y}) and then use y; to calculate f;l) (Zij)
using the difference method [9].

A(1
V=i~ XT Biige (12)

Y Kn(Z—Zij)y;
Y Kn(Z—Z)
Iteration is done between estimating the parametric and non-parametric parts until stability occurs, i.e., reaching
the optimal solution and achieving the convergence condition, as follows [6]:

7 (zy) = (13)

Bw —B“*”H <e (14)

Hf}’) ) fff’*”(Z)H <e (15)

By continuing the repetition process, we get the final estimate, as shown below [6]:
B=B" and  fi=f"z 16
B=p an fi=r j (2) (16)

* Robust Estimations:Due to the increasing emphasis on robust estimation and insights derived from prior
statistical studies, various methodologies for robust estimation of location and scale have been established.
The R method and the W method are approaches designed to improve estimation accuracy by reducing the
impact of outliers.

* R-Estimators:The term “Robust Estimation” is derived from its basis in rank tests. This idea was first
introduced by Hodges and Lehmann, who used the following Walsh rates in their approach:
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6 A COMPARATIVE STUDY OF RIDGE ROBUST AND RECIPROCAL LASSO ESTIMATORS

Wij=xi+x;/2, where (i=1,2,...,n) and (j=1,2,...,n).

The Walsh rates are utilized to compute the R estimators for the location parameter via the subsequent formula:

TR:med{xﬁ;xj ; i<j}

This formula is the most efficient in terms of computational steps when compared to the formula for (i < j) or
the extended form for all value pairs (i, j). Regarding the R estimators for the scale parameter, Rousseeuw and
Croux introduced the following statistics:

Sk = Cmed,; {medj |x; —x.,'|}

For each i, the median is computed as {|x; —x;|; j = 1,2,...,n}, resulting in n values that contribute to the final
estimate of SR. The constant c is introduced to ensure that the estimate aligns with the presumed distribution, where
¢ =1.6982,0.7071,1.1926 for the normal, Cauchy, and exponential distributions, respectively. When applying the
formula above, the median corresponds to the ordered statistic & = [(n + 1)/2], while the inner median, med;,
corresponds to the ordered statistic # = [(n/2) + 1]. In the same study, the researchers also proposed an alternative
R estimator for estimating the scale parameter, as follows [15, 16]:

QR:d{|x,~—xj| ) i<j}(k)

The constant d is employed to align the estimate with the assumed distribution, with values of (3.476, 1.207,
1.0483) allocated to the normal, Cauchy, and exponential distributions, respectively [1].

k= (Z) =~ <’;>/4; h=|n/2] +1

» W-Estimation:The W estimator provides an alternative to the M estimator, with (7,) being the M estimator,
which is defined in the following way:

u xi—Tn -
,-Z"’( cs, )‘0

1
By defining W based on the formula "UW”(u) = y(u) and replacing w(w) through equivalence, we derive the

following:
/! Xi— Tn Xi— Tn
W =
lgi ( CSn ) ( CSn >

_ i xiwl[(xi —T3)]/CSn
wl(xi —T,)]/CS,

or by rearranging:

T,

as T, is the x;’s weighted average.

Due to the infrequency of obtaining an algebraic solution to the specified equation, akin to calculating the mean,
a numerical method is utilized. Let T* represent the estimate at the k™ iteration [17], then:

q X 7"
! CS,

Then, the iterative form is represented as:
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D) _ i (]
n (k)} ’

The equation is known as the Iteratively Reweighted Least Squares (IRLS)
n

method, with weights defined as:

The Ordinary Least Squares (OLS) technique is utilized to determine T, aiming to minimize the following sum
of squared deviations: Y7, (x; — T)?

Z?:l Xi
n

And it is in the form: T =
The Weighted Least Squares (WLS) estimator, denoted as 7,,, is determined based on fixed weights W;.

The objective is to find 7;, that minimizes the following weighted sum of squared differences: Y7, w;(x; —1)?

which is in the following form:T,, = Z:l:',lwi’l(jft)
i

The estimation process starts with a preliminary estimate of the W estimator of the spatial parameter. The
Iteratively Reweighted Least Squares (IRLS) algorithm refines this estimate step by step in a sequence of iterations
until it converges and gives a stable solution of good accuracy [12]. In the same fashion, while the M estimator
is a generalization of the Maximum Likelihood Estimator (MLE), the W estimator is a general type of the Least
Squares Estimator (LSE). While in some instances both of these two estimators will produce similar results; in
most cases they will produce estimates that will be similar but distinct.

2.4.3. Reciprocal Lasso (RLasso)

The Reciprocal Lasso (RLasso) methodology, formulated by Zou and Hastie (2005), aims to address specific
limitations of Lasso regression.

1. When regression coefficients are more heterogeneous, this leads to less stable estimates that can reduce the
reliability of our statistical inferences.

2. Ambiguous or confusing results: Regression coefficients may carry negative signs or unrealistic magnitudes,
leading to interpretation problems.

3. Adjusted forecast: From a precision standpoint, multicollinearity can make the model less predictive by
increasing standard errors and leading to overfitting [3].

The RLasso estimator is formulated using the subsequent expressions [14, 18]:

. )
ﬁ(RLasso):argngn||Y—Xﬂ|\% + Z|§| (17)
t=1 1Pt
N 1 2 LS
B(RLasso) = argrr;gin Y [vi— Y'B(Z)-X"B]” + Y Bl (13)
i=1 r=11Ft
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8 A COMPARATIVE STUDY OF RIDGE ROBUST AND RECIPROCAL LASSO ESTIMATORS

So, A represents the control parameter or penalty parameter for RLasso and is non-negative. That is, A > 0
P: represents the variables number of the linear explanatory in the model and (r = 1,2, ..., p).
B(Z;):B-Spline basic function.

We used cubic B-spline functions with 4 internal knots placed at the 20th, 40th, 60th, and 80th percentiles
of each predictor variable. This created 7 parameters for each nonlinear component. The analysis continued until
the parameter changes became very small (less than 0.000001) or until reaching 1000 cycles. All computations
were done using R software.

The Reciprocal Lasso method has the characteristics of Oracle Op’s.

2.5. Selection of Penalty Parameter

The penalty parameter (also referred to as the regularization parameter or synthesis parameter) is denoted by
A and plays a crucial role in model estimation. It directly influences the estimator’s properties, such as bias
and variance. The penalty parameter regulates the extent of parameter shrinkage and determines the selection
of explanatory variables in the model. When the penalty parameter is set to zero (1 = 0), the penalty estimators
reduce to classical estimators. However, as A increases, it leads to excessive variable selection. In the extreme case
of A — oo, all coefficients are forced to zero. Conversely, when A is too small, the penalty effect becomes minimal,
resulting in negligible shrinkage of the coefficients.

The penalty parameter significantly influences the properties of estimated parameters, such as unbiasedness,
stability, and Oracle properties. Therefore, selecting an appropriate penalty parameter with high precision is
crucial. Several criteria exist for determining the optimal penalty parameter, including [13]:

2.5.1. Robustified Cross Validation(RCV)

Scientists Robinson and Moyeed proposed the Smoothing Parameter Selection method using the RCV approach.
This method is designed to determine the optimal bootstrap parameter in small samples, minimizing errors
associated with limited sample sizes. The corresponding mathematical formula is as follows [12, 16]:

S+t u(Ry)
1+n~1+tr(Ry)

2
RCV =n =R (19)

Where Ry = (XTX +A1)~!
2.5.2. Improved Akaike Information Criterion
This measure is considered more suitable than Akaike’s Information Criterion (AIC) as it addresses the

bias that arises in small sample sizes [8]. To correct this issue, a modified version, denoted as AICc, was proposed
[1, 19].

Z{)&'*B/l(f)}z

_ 2{tr(Ry)+1}
o[ ®R =0 2{tr(Ry) +1}
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Optimization of Penalty Parameters The selection of the regularization parameter A was meticulously performed
using criterion-specific optimization techniques: For Ridge Robust Estimators: The penalty parameter A was
determined by minimizing the Robust Cross-Validation (RCV) criterion formulated in Equation (19). The
optimization landscape was explored through a fine-grained grid search over the interval A € [1073,10°] with
logarithmic spacing, ensuring identification of the global minimum of the RCV function. For Reciprocal Lasso
Estimator: The adaptive penalty parameter was optimized using the Improved Akaike Information Criterion
(AICc) specified in Equation (21). The AICc formulation incorporates a finite-sample correction that provides
unbiased model selection in high-dimensional settings withp/n ~ 0.77. The optimization procedure employed the
Brent’s algorithm for unimodal intervals and simulated annealing for multimodal regions, guaranteeing robust
convergence to optimal A values that balance bias-variance tradeoff while maintaining Oracle properties.

3. Practical Part

This section presents the practical aspect of the study, utilizing real educational data from students with special
needs. The key factors influencing students’ academic performance (grade point average) were identified, and data
was collected from the Iraqi Ministry of Education for wasit Governorate.

3.1. Description of the sample and study variables

This research examines a cohort of students with special needs from Wasit Governorate, Iraq, assessing the
availability of critical data to facilitate the study’s completion. Twenty-three research variables were examined,
encompassing academic performance (final stage average), demographic factors (age, income, type of study, study
hours, intelligence level, residence type), family background (parents’ education levels, family size, parents’ ages),
and additional influential factors such as class size, teacher count, birth order, vision acuity, distance to school,
pedagogical methods, and school attendance days, with a sample size of 30 students.

X1 | Number of study hours Xi» | teacher count

X5 | Student’s age Xi3 | birth order
X3 | income Xi4 | vision acuity
X4 | type of study Xjs5 | distance to school
Xs | study hours Xi6 | pedagogical methods
Xe | intelligence level X17 | and school attendance days
X7 | residence type Xig | father’s educational level
X3 | parents’ education levels | X9 | mother’s educational level
Xy | family size Xy | student weight
X10 | mother’s age X351 | student gender
X11 | class size Xy, | father’s age
y final stage average

Stat., Optim. Inf. Comput. Vol. x, Month 202x



10 A COMPARATIVE STUDY OF RIDGE ROBUST AND RECIPROCAL LASSO ESTIMATORS

Table 1. Calculations and variables selection of the coefficients utilizing the Semi-parametric Additive Partially Linear
Model.

. Ridge with R robust | Ridge with W robust | Reciprocal Lasso
. B SE B SE B SE

X 3.6728 1.1728 3.8027 1.2819 3.7991 | 1.2109
X3 3.8917 1.1927 3.8928 1.0082 4.3892 | 1.6659
X3 0.2126 0.0076 0.2881 0.0105 0.2917 | 0.0121
Xy 7.2910 1.5689 7.4489 1.7811 8.1192 | 1.8922
X5 6.1982 1.2007 5.9982 1.2901 48911 | 1.1185
Xe 0.6291 0.1728 0.5983 0.1728 0.7103 | 0.1922
X7 1.2781 0.2781 1.3819 0.3183 2.1988 | 0.3004
Xg 2.3897 0.4891 2.0283 0.3872 3.0064 | 0.4110
X9 | -0.6781 0.1887 -0.5770 0.1779 -0.6013 | 0.2005
X0 | -0.7099 0.3811 -0.8018 0.2768 -0.9004 | 0.3301
X1 | 79011 0.9027 8.8001 0.8992 6.8899 | 0.7099
X1 | -1.2776 0.6022 -1.5583 0.4930 Exclude -
X3 | 2.1276 0.5478 2.6657 0.4884 3.4376 | 0.7693
X4 | Exclude - Exclude - 0.9547 | 0.1264
X5 | Exclude - Exclude - Exclude -
X6 | 1.5722 0.3684 1.2115 0.4004 1.5873 | 0.3760
Xi7 | Exclude - Exclude - 0.6003 | 0.1638
X1 | 0.7693 0.1077 0.9812 0.2094 0.8662 | 0.1770
X9 | Exclude - 0.6844 0.1157 Exclude -

X>0 | Exclude - Exclude - Exclude -
X71 | Exclude - Exclude - 0.8944 | 0.2028
X2 | 4.3569 0.6581 5.2352 0.6833 6.1774 | 0.6988

3.2. Estimation

The study employed Ridge with R robust, Ridge with W robust, and Reciprocal Lasso methods for variable
estimation and selection. The analysis utilized an R-based computational method, producing the subsequent results
as demonstrated in Table 1.

3.3. Comparison

The estimation techniques and variable selection methods were assessed using average absolute deviation, mean
squared error, and coefficient of determination. The results of this comparison are delineated in the table below.

Table 2. Performance comparison of regression methods.

Methods AADE | MSE R?
Ridge with R robust | 3.0207 | 6.8794 | 73.59%
Ridge with W robust | 3.0067 | 7.0163 | 73.78%
Reciprocal Lasso 2.6708 | 5.3849 | 77.04%
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Table 3. (AADE), (R?) and (MSE) with (n = 15, 40, 75, 100), (p =0.2), (¢ =0.5) , (P =50).

n Methods AADE | R*> | MSE Best
Ridge with R robust | 4.883 | 65.455 | 3.688
15 | Ridge with W robust | 4.458 | 66.517 | 3.096 Reciprocal Lasso

Reciprocal Lasso 3.728 | 69.116 | 2.684
Ridge with R robust | 4.327 | 66.835 | 3.255
40 | Ridge with W robust | 4.007 | 67.920 | 3.107 Reciprocal Lasso

Reciprocal Lasso 3.226 | 70.044 | 2.938
Ridge with R robust | 3.727 | 71.637 | 3.005
75 | Ridge with W robust | 3.548 | 72.117 | 2.874 | Ridge with W robust

Reciprocal Lasso 3.894 | 71.895 | 2.965
Ridge with R robust | 3.562 | 72.907 | 2.785
100 | Ridge with W robust | 3.165 | 74.556 | 2.276 | Ridge with W robust
Reciprocal Lasso 3.650 | 72.176 | 2.800

Based on the table’s results and the comparison criteria applied, the R Lasso method demonstrates superior
performance by achieving lower average absolute deviation and mean squared error compared to the other
approaches. Furthermore, its coefficient of determination surpasses that of the other methods, indicating better
model accuracy.

4. Simulation Part

In this section, the finite sample performance of the proposed procedure is investigated by Monte Carlo
simulations. The methods used in Part 2, are compared, as they use the quadratic approximation of the
nonparametric functions. using the model (1) where k£ =2

p
)’i:XiTB + ij(zij) + &
=1

f1(Z1) =5sin(1.577,)

f(Z2) =15 (6—3‘2522 _ 7o~ 640 +4e_2'3322)

The experiments are replicated 1000 with different sample sizes (n= 15, 40, 75 and 100) with assuming there are
50 explanatory linear variables and two nonlinear variables. we assume f8 =(3, 2.3, 0.4, -1.2, 2.4, 5, 4.6, -3.5, 3.4,
-6.2,0,0, ...,0,34, -0.8, 2.8, 2.9, -5.3) and (o =0.5, 1.5, 3). The distribution of X and € are standard normal.
X and € are independent, the correlation between X; and X;[p li=j ‘] with p =(0.2, 0.6 and 0.9). Z; and Z; are
independent and uniformly distributed on [0,1] and B-splines are used to approximate the nonparametric functions
and the number of knots in the approximation for each non-parametric component ranges from 2 to 8, the results
were as follows:
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Table 4. (AADE), (R?) and (MSE) with (n = 15, 40, 75, 100), (p =0.6), (6 =0.5) , (P =50).

n Methods AADE | R?> | MSE Best
Ridge with R robust | 5.844 | 62.657 | 4.488
15 | Ridge with W robust | 5.034 | 62.288 | 4.187 Reciprocal Lasso

Reciprocal Lasso 4.657 | 64.980 | 3.674
Ridge with R robust | 5.365 | 65.783 | 4.156
40 | Ridge with W robust | 4.859 | 63.932 | 4.001 Reciprocal Lasso

Reciprocal Lasso 4226 | 69.681 | 3.476
Ridge with R robust | 4.845 | 70.772 | 3.878
75 | Ridge with W robust | 4.477 | 71.366 | 3.277 | Ridge with W robust

Reciprocal Lasso 4922 | 70.537 | 3.903
Ridge with R robust | 4.476 | 72.576 | 3.276
100 | Ridge with W robust | 4.154 | 74.699 | 3.004 | Ridge with W robust
Reciprocal Lasso 4790 | 71.588 | 3.411

Table 5. (AADE), (R?) and (MSE) with (n = 15, 40, 75, 100), (p =0.9), (6 =0.5) , (P =50).

n Methods AADE | R> | MSE Best
Ridge with R robust | 6.844 | 61.768 | 5.166
15 | Ridge with W robust | 5.632 | 61.005 | 5.001 Reciprocal Lasso

Reciprocal Lasso 5.154 | 63.769 | 4.548
Ridge with R robust | 6.547 | 62.622 | 5.024
40 | Ridge with W robust | 5.361 | 62.166 | 4.895 Reciprocal Lasso

Reciprocal Lasso 4576 | 63.677 | 4.439
Ridge with R robust | 5.260 | 65.355 | 4.374
75 | Ridge with W robust | 5.308 | 64.997 | 4.577 | Ridge with R robust

Reciprocal Lasso 5.899 | 64.123 | 4.824
Ridge with R robust | 3.657 | 67.032 | 3.582
100 | Ridge with W robust | 3.894 | 66.277 | 4.005 | Ridge with R robust
Reciprocal Lasso 4265 | 65.003 | 4.376

Table 6. (AADE), (R?) and (MSE) with (n = 15, 40, 75, 100), (p =0.2), (6 =1.5) , (P =50).

n Methods AADE | R?> | MSE Best
Ridge with R robust | 5.375 | 60.188 | 4.897
15 | Ridge with W robust | 5.764 | 61.375 | 4.327 Reciprocal Lasso

Reciprocal Lasso 4.899 | 64.045 | 3.866
Ridge with R robust | 5.005 | 62.478 | 4.438
40 | Ridge with W robust | 4.903 | 63.677 | 4.274 Reciprocal Lasso

Reciprocal Lasso 4.438 | 65.327 | 3.922
Ridge with R robust | 4.565 | 65.834 | 3.855
75 | Ridge with W robust | 4.677 | 64.467 | 3.906 | Ridge with R robust

Reciprocal Lasso 4.896 | 64.677 | 4.325
Ridge with R robust | 4.244 | 66.903 | 3.587
100 | Ridge with W robust | 4.374 | 65.388 | 3.843 | Ridge with R robust
Reciprocal Lasso 4558 | 65.117 | 4.002
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n Methods AADE | R?> | MSE Best
Ridge with R robust | 5.684 | 59.588 | 5.377
15 | Ridge with W robust | 5.934 | 58.889 | 5.174 Reciprocal Lasso
Reciprocal Lasso 5496 | 61.277 | 4.892
Ridge with R robust | 5.436 | 59.165 | 5.026
40 | Ridge with W robust | 5.564 | 59.002 | 5.000 Reciprocal Lasso
Reciprocal Lasso 5.334 | 60.547 | 4.739
Ridge with R robust | 5.211 | 61.276 | 4.547
75 | Ridge with W robust | 5.165 | 61.875 | 4.176 | Ridge with W robust
Reciprocal Lasso 5.288 | 60.798 | 4.653
Ridge with R robust | 5.009 | 64.687 | 4.234
100 | Ridge with W robust | 4.576 | 67.123 | 3.767 | Ridge with W robust
Reciprocal Lasso 5.435 | 62.365 | 4.146

Table 8. (AADE), (R?) and (MSE) with (n = 15, 40, 75, 100), (p =0.9), (6 =1.5) , (P =50).

n Methods AADE | R? | MSE Best
Ridge with R robust | 6.143 | 62.266 | 5.546
15 | Ridge with W robust | 5.788 | 61.588 | 5.174 | Reciprocal Lasso
Reciprocal Lasso 5.376 | 62.699 | 4.644
Ridge with R robust | 6.000 | 62.689 | 5.433
40 | Ridge with W robust | 5.547 | 62.975 | 5.003 Reciprocal Lasso
Reciprocal Lasso 5.166 | 63.366 | 4.153
Ridge with Rrobust | 5.218 | 65.227 | 4.588
75 | Ridge with W robust | 5.377 | 64.733 | 4.615 | Ridge with R robust
Reciprocal Lasso 5473 | 62.683 | 4.795
Ridge with R robust | 5.008 | 67.565 | 4.043
100 | Ridge with W robust | 5.124 | 65.377 | 4.435 | Ridge with R robust
Reciprocal Lasso 5.265 | 63.447 | 4.505
Table 9. (AADE), (R%) and (MSE) with (n = 15, 40, 75, 100), (p =0.2), (6 =3) , (P =50).
n Methods AADE | R?> | MSE Best
Ridge with R robust | 6.747 | 58.908 | 5.277
15 | Ridge with W robust | 6.580 | 59.226 | 5.199 Reciprocal Lasso
Reciprocal Lasso 5.682 | 61.160 | 4.747
Ridge with R robust | 6.537 | 60.004 | 5.153
40 | Ridge with W robust | 6.366 | 61.254 | 5.004 | Reciprocal Lasso
Reciprocal Lasso 5.740 | 63.476 | 4.358
Ridge with Rrobust | 6.411 | 65.577 | 4.484
75 | Ridge with W robust | 6.272 | 64.805 | 4.898 | Ridge with R robust
Reciprocal Lasso 6.682 | 63.785 | 5.178
Ridge with R robust | 6.015 | 67.179 | 4.300
100 | Ridge with W robust | 6.177 | 65.115 | 4.473 | Ridge with R robust
Reciprocal Lasso 6.377 | 64.480 | 5.026
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Table 10. (AADE), (R?) and (MSE) with (n = 15, 40, 75, 100), (p =0.9), (6 =3) , (P =50).

n Methods AADE | R> | MSE Best
Ridge with R robust | 6.565 | 60.157 | 6.188
15 | Ridge with W robust | 6.776 | 60.100 | 6.201 Reciprocal Lasso
Reciprocal Lasso 5.376 | 63.179 | 5.547
Ridge with R robust | 6.373 | 61.006 | 5.578
40 | Ridge with W robust | 6.436 | 62.254 | 5.576 Reciprocal Lasso
Reciprocal Lasso 5.266 | 64.688 | 5.366
Ridge with R robust | 5.834 | 66.146 | 5.365
75 | Ridge with W robust | 5.699 | 67.784 | 5.169 | Ridge with R robust
Reciprocal Lasso 6.179 | 65.947 | 5.893
Ridge with R robust | 5.358 | 67.784 | 5.175
100 | Ridge with W robust | 5.022 | 69.479 | 5.040 | Ridge with R robust
Reciprocal Lasso 6.004 | 66.609 | 5.688
Table 11. (AADE), (R?) and (MSE) with (n = 15, 40, 75, 100), (p =0.9), (¢ =3) , (P =50).
n Methods AADE | R*> | MSE Best
Ridge with R robust | 6.702 | 66.387 | 5.955
15 | Ridge with W robust | 6.765 | 66.894 | 6.100 | Reciprocal Lasso
Reciprocal Lasso 5.902 | 68.025 | 5.968
Ridge with R robust | 6.579 | 57.892 | 5.254
40 | Ridge with W robust | 6.412 | 67.115 | 5.177 Reciprocal Lasso
Reciprocal Lasso 5.599 | 69.174 | 5.015
Ridge with R robust | 5.474 | 68.246 | 5.010
75 | Ridge with W robust | 5.797 | 67.899 | 5.265 | Ridge with R robust
Reciprocal Lasso 6.176 | 66.166 | 5.556
Ridge with R robust | 5.199 | 70.165 | 4.768
100 | Ridge with W robust | 5.540 | 69.062 | 5.100 | Ridge with R robust
Reciprocal Lasso 5.547 | 67.037 | 5.476

5. Conclusion

- Offering more flexibility than many other models, the Semi-parametric Additive Partially Linear Model is a
quick way to solve high-dimensional problems. It includes both linear and nonlinear additive components,
therefore allowing the capture of complex interactions. Its ability to combine several linear explanatory
variables and non-linear functions makes this model relevant in many industries, including health, education,
social sciences, finance, and economics.

- As for the simulation part, it was observed that the (Lasso) method was superior for small sample sizes (15
and 40) and for all cases with respect to the values of correlation and standard deviation. for sample sizes
(75 and 100), the Ridge with W robust method was preferable for moderate correlations (r = 0.6) and for all
standard deviation values (0.5, 1.5, and 3). However, for high correlations between explanatory variables (r

=0.9), the Ridge with R robust method was preferred.
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- The Reciprocal Lasso approach is best for estimating and selecting variables in the semi-parametric additive
partially linear model since it shows better efficiency than other methods regarding the practical part.

- These qualities increase its adaptability for several uses. Particularly in the education sector, the study found
several important factors that significantly affect results and need focus.

6. Recommendations for future research

Based on the methodological insights gained from this study, several avenues for future research are
recommended to validate and extend our findings

1. Large-Sample Validation: The primary recommendation is to replicate this comparative analysis using a
substantially larger dataset. Future studies should prioritize a significantly higher observation-to-variable
ratio (n >> p) to mitigate the risk of overfitting, obtain more stable standard errors, and provide a more robust
assessment of the true variable selection capabilities of the Reciprocal Lasso and Ridge Robust estimators in
a high-dimensional setting.

2. Advanced Validation Techniques: Employing more rigorous resampling techniques is advised. Future
work should utilize repeated k-fold cross-validation or bootstrap methods specifically designed for high-
dimensional data to obtain unbiased estimates of prediction error and better evaluate the generalizability of
the models.

3. Application to Other Domains: Applying this comparative framework to other fields with inherently large
datasets (e.g., genomics, finance, or psychometrics) would be highly valuable. This would test the robustness
and transportability of our conclusions across different domains and data-generating processes.

Addressing these points in future research will be instrumental in confirming the generalizability of our results
and in solidifying the practical utility of the Reciprocal Lasso estimator for semiparametric additive partial linear
models
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