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1. Introduction

Nonlinear analysis presents many problems that can be resolved by the nonemptyness of the intersection of a
certain family of subsets of a underlying set. Each point of the intersection can be a fixed point, a coincidence
point, an equilibrium point, a saddle point, an optimal point, a solution point for complementarity problem, a
solution point for variational problem, or others of the corresponding problem under consideration. The first result
on the nonempty intersection was the celebrated Knaster-Kuratowski-Mazurkiewicz theorem (simply, the KKM
principle) in [10], which is concerned with certain types of multimaps called the KKM maps. The KKM theory is
the study of KKM maps and their applications. Generalized form of the KKM theorem namely Fan-KKM principle
provides a foundation for many of the modern essential results in diverse areas of mathematical sciences (for more
details see [15]). However the Fan-KKM theorem has essential role in solving all kinds of implicit complementarity
problems or variational inequality problems, particularly in generalized vector F -implicit variational inequality
problems [17]. The vector variational inequalities and vector complementarity problems have found many of their
applications in vector optimization, set-valued optimization, approximate analysis of vector optimization problems
and vector network equilibrium problems.

Huang and Li [7] introduced and studied a class of scalar F -implicit variational inequality problems in Banach
spaces. In 2006, Li and Huang [12] generalized the results from the scalar case in [7] to the vector case. The
vector variational inequalities and vector complementarity problems have found many of its applications in vector
optimization, set-valued optimization, approximate analysis of vector optimization problems and vector network
equilibrium problems. Recently, Lee, Khan, and Salahuddin [11] introduced the class of generalized vector F -
implicit variational inequality problems in Banach spaces, which generalized some results of [7] and [12] to a
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more generalized vector case. Some new existence theorems of solutions for generalized F -implicit variational
inequality problems were also proved in [11].

In this paper, motivated by the above mentioned works, we obtain some new results to prove a generalized form
of the Fan-KKM theorem in minimal vector spaces. Also we introduce a new class of vector F -implicit variational
inequality problems and as an application of our obtained Fan-KKM theorem we derive an existence theorem for
this kind of problems.

2. Preliminaries

The concepts of minimal structures and minimal spaces, as generalization of topology and topological spaces
were introduced in [14]. For easy understanding of the material incorporated in this paper, we recall some basic
definitions and results. Also some new concepts are introduced in minimal spaces. Further results about minimal
spaces can be found in [1, 2, 3, 4, 13], [16] and some references cited therein.

A family M ⊆ P(X) is said to be a minimal structure on X if ∅, X ∈ M. In this case (X,M) is called a minimal
space. For example, let (X, τ) be a topological space, then τ , SO(X), PO(X), αO(X) and βO(X) are minimal
structures on X [13]. In a minimal space (X,M), A ∈ P(X) is said to be an m-open set if A ∈ M and also
B ∈ P(X) is an m-closed set if Bc ∈ M. For any set A ⊆ X , define m-Int(A) =

∪
{U : U ⊆ A,U ∈ M} and m-

Cl(A) =
∩
{F : A ⊆ F, F c ∈ M}. Note that for A ⊆ X , m-Cl(A) (resp. m-Int(A)) is not necessarily m-closed

(resp. m-open). The following lemma may be useful to apply in a minimal space.

Lemma 1
[13] For any two sets A and B in a minimal space X ,

(a) A ⊆ m-Cl(A) and A = m-Cl(A) if A is an m-closed set.
(b) m-Cl(A ∩B) ⊆ (m-Cl(A)) ∩ (m-Cl(B)).
(c) m-Cl(m-Cl(B)) = m-Cl(B).
(d) (m-Cl(A))c = m-Int(Ac).

Definition 1
[16] Let (X,M) and (Y,N ) be two minimal spaces. A function f : (X,M) −→ (Y,N ) is called minimal
continuous (briefly, m-continuous) if f−1(U) ∈ M for any U ∈ N .

Definition 2
[1] For two minimal spaces (X,M) and (Y,N ), we define minimal product structure for X × Y as follows:

M×N = {A ⊆ X × Y : ∀ (x, y) ∈ A, ∃U ∈ M, ∃V ∈ N ; (x, y) ∈ U × V ⊆ A}.

Definition 3
[1] A linear minimal structure on a vector space X over the complex field F is a minimal structure M on X such
that the two mappings

+ : X ×X → X, (x, y) 7→ x+ y,

. : F×X → X, (t, x) 7→ tx,

are m-continuous, where F has the usual topology and both F×X and X ×X have the corresponding product
minimal structures. A linear minimal space (or minimal vector space) is a vector space together with a linear
minimal structure.

Obviously, any topological vector space is a minimal vector space but the converse is not true generally. In the
following, it is shown that there is a linear minimal space which is not a topological vector space.

Example 1
Consider the real field R and let M = {(a, b) : a, b ∈ R ∪ {±∞}}. Clearly, M is a minimal structure on R. We
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claim that M is a linear minimal structure on R. For this, we must prove that, two operations + and · are m-
continuous. Suppose (x0, y0) ∈ +−1(a, b) and so x0 + y0 ∈ (a, b). Put ϵ = min{x0 + y0 − a, b− (x0 + y0)} and
so x0 ∈ (x0 − ϵ

2 , x0 +
ϵ
2 ) and y0 ∈ (y0 − ϵ

2 , y0 +
ϵ
2 ). Hence

x0 + y0 ∈ ((x0 −
ϵ

2
, x0 +

ϵ

2
) + (y0 −

ϵ

2
, y0 +

ϵ

2
)) ⊆ (a, b);

which implies that +−1(a, b) is m-open in the minimal product space R×R; that is + is m-continuous. Also,
suppose (α0, x0) ∈ ·−1(a, b). Since α0x0 ∈ (a, b) and lims,t→0(α0 − s)(x0 − t) = α0x0, one can find some 0 < δ
for which | α0 − s |< δ and | x0 − t |< δ imply that a < (α0 − s)(x0 − t) < b. Therefore,

(α0, x0) ∈ (α0 − δ, α0 + δ) · (x0 − δ, x0 + δ) ⊆ (a, b);

i.e., ·−1(a, b) is m-open in the minimal product space R×R, which implies that the operation · is m-continuous.

Definition 4
[1] Consider a minimal space (X,M) and a nonempty subset Y of X . The family M|Y = {U ∩ Y : U ∈ M} is
called induced minimal structure by M on Y . (Y,M|Y ) is called a minimal subspace of (X,M). For any subset
A of X ,

m-IntY (A) =
∪
{V : V ∈ M|Y and V ⊆ A}

and
m-ClY (A) =

∩
{F : F c ∈ M|Y and A ⊆ F}.

Definition 5
[16] For a minimal space (X,M),

(a) a family of m-open sets A = {Aj : j ∈ J} in X is called an m-open cover of K if K ⊆
∪

j Aj . Any
subfamily of A which is also an m-open cover of K is called a subcover of A for K;

(b) a subset K of X is m-compact whenever given any m-open cover of K has a finite subcover.

Theorem 1
[16] Suppose that X and Y are two minimal spaces and f : X → Y is an m-continuous function. For any m-
compact subset K ⊆ X , f(K) is m-compact in Y .

Lemma 2
Suppose that X is an m-compact minimal space and Y ⊆ X . Then m-Cl(Y ) is m-compact.

Proof
Suppose that {Uα}α∈I is an m-open cover of m-Cl(Y ). So

X = m-Cl(Y ) ∪m- Int(Y c) ⊆
∪
α∈I

Uα ∪
∪
β∈J

Gβ ,

where Gβ’s are m-open subsets of Y c. Since X is an m-compact minimal space we have:

X ⊆
n∪

i=1

Uαi ∪
m∪
j=1

Gβj ⊆
n∪

i=1

Uαi ∪m-Int(Y c).

Then m-Cl(Y ) ⊆
∪n

i=1 Uαi .

Lemma 3
[3] Suppose (X,M) is an m-compact minimal space, {Ai : i ∈ I} is a family of subsets of X . If {m-Cl(Ai) : i ∈
I} has the finite intersection property, then ∩

i∈I

m-C l(Ai) ̸= ∅.
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In the following result, we prove the minimal version of Tychonoff theorem

Theorem 2
The minimal product space

( ∏
α∈I

Xα,
∏
α∈I

Mα

)
is m-compact if and only if (Xα,Mα) is an m-compact minimal

space, for any α ∈ I .

Proof
One direction is an immediate consequence of Theorem 1. For the converse, on the contrary, assume that A ⊆∏
α∈I

Mα is an m-open cover of
∏
α∈I

Xα without any finite subcover for
∏
α∈I

Xα. For any α ∈ I , set Uα = {V ∈ Mα :

π−1
α (V ) ∈ A}. Since A has no finite subcover for

∏
α∈I

Xα, no finite subcover of Uα can cover Xα, for any α ∈ I .

Now, m-compactness of Xα implies that Uα can not cover Xα. Therefore there exists xα ∈ Xα \
∪
{V : V ∈ Uα},

for any α ∈ I . Set x = (xα)α∈I . Then x ∈
∏
α∈I

Xα \
∪
{A : A ∈ A}, which implies that A is not an m-open cover

for
∏
α∈I

Xα, a contradiction.

3. Generalized Fan-KKM Theorem

A multimap F : X ( Y is a function from a set X into the power set of Y . Given A ⊆ X , set F (A) =
∪

x∈A F (x).
A multimap F : X ( Y is said to be minimal transfer closed if for any x ∈ X and y /∈ F (x), there exists x0 ∈ X
for which y /∈ m-Cl(F (x0)). Clearly, F : X ( Y is minimal transfer closed if and only if

∩
x∈X

F (x) =
∩

x∈X

m-

Cl(F (x)). It is obvious that an m-closed valued multimap is a minimal transfer closed multimap.
A subset A of a vector space X is convex if we have ty + (1− t)z ∈ A, whenever y, z ∈ A and t ∈ [0, 1]. Also

the convex hull of A, denoted by co(A), is the smallest convex set that contains A, that is, the intersection of all
convex sets containing A.

Definition 6
Suppose that D is a convex subset of a minimal vector space X . A multimap F : D ( X is called a KKM map if
co(A) ⊆ F (A) for any A ∈ ⟨D⟩, where the notation ⟨D⟩ means the set of all finite subsets of D.

The following theorem is a generalized form of the Fan-KKM theorem, as a special case of Theorem 4.7 in [3],
related to the minimal vector spaces.

Theorem 3
Suppose that X is a minimal vector space. Consider two nonempty valued multimaps F,G : X ( X satisfying

(a) F (x) ⊆ G(x) for all x ∈ X ,
(b) F is a KKM map,
(c)

∩
x∈M

m-Cl(G(x)) is m-compact for some M ∈ ⟨D⟩,

(d) for all A ∈ ⟨X⟩, G is minimal transfer closed on co(A),

(e) for all A ∈ ⟨X⟩, m-Cl
( ∩

x∈co(A)

G(x)
)
∩ co(A) ⊆

∩
x∈co(A)

G(x) ∩ co(A).

Then
∩

x∈X

G(x) ̸= ∅.

Now, we introduce a new concept in minimal vector spaces with some examples which is useful for the proof of
our results.

Definition 7
Suppose that X is a minimal (topological) vector space. A nonempty set A ⊆ X has the minimal (topological)
finitely adjoint co-compact property if co(A ∪B) is an m-compact (compact) subset of X , for any B ∈ ⟨X⟩.
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Example 2 (a) Consider R with it’s usual topology. Then every finite subset of R has the topological finitely
adjoint co-compact property.

(b) Since every topological space is a minimal space, any set with the topological finitely adjoint co-compact
property in a topological vector space has the minimal finitely adjoint co-compact property if we consider
the topological structure as minimal structure, but the converse is not true. Consider the minimal structure
M = {R, ∅, (a, b)} on R where a, b ∈ R− and let c ∈ R+. For any A ∈ ⟨R⟩,

co((c,+∞) ∪A) =

{
(c,+∞), c< minA,
[minA,+∞), c≥ minA,

which is not compact in R when we consider the usual topology. But it is an m-compact subset of R via
minimal structure M (just R is it’s cover). So there exists a set with the minimal finitely adjoint co-compact
property which does not have the topological finitely adjoint co-compact property.

(c) Suppose that X is a minimal vector space. Any m-compact convex subset of X has the minimal finitely
adjoint co-compact property. To see this, suppose that A is an m-compact convex subset of X and B =
{b1, b2, . . . , bn} ∈ ⟨X⟩. Define the function φ : A× {b1} × · · · × {bn} ×∆n+1 → co(A ∪B) by

φ(a, b1, b2, . . . , bn, t1, t2, . . . , tn+1) =

n∑
i=1

tibi + tn+1a,

with ∆n =
{ n∑

i=1

tiei;
n∑

i=1

ti = 1, ti ≥ 0
}

, where (ei) is the standard base of Rn. It is not hard to see that

φ is an onto m-continuous function by Definition 3. Since we can consider ∆n+1 as an m-compact subset
of Rn, according to the Theorem 2, A× {b1} × · · · × {bn} ×∆n+1 is m-compact. Now, from Theorem 1,
φ(A× {b1} × · · · × {bn} ×∆n+1) = co(A ∪B) is m-compact.

From Theorem 3 along with Definition 7 we can achieve another version of the Fan-KKM theorem which is our
main task in this section.

Theorem 4
Suppose that in Theorem 3 condition (c) is replaced with the following condition:

(c′) there exists a nonempty subset B ⊆ X with the minimal finitely adjoint co-compact property such that m-
Cl

( ∩
x∈B

G(x)
)

is m-compact.

Then
∩

x∈X

G(x) ̸= ∅.

Proof
For A ∈ ⟨X⟩, set LA := co(A ∪B). Define multimaps FA, GA : LA ( LA by

GA(x) = G(x) ∩ LA and FA(x) = F (x) ∩ LA.

For any x ∈ LA, FA(x) ⊆ GA(x). It is not hard to see that FA is a KKM multimap because the multimap F
is KKM. According to the definition of the multimap GA, we have m-ClLA

(GA(x)) ⊆ m-ClLA
(LA) = LA for

any x ∈ LA. Since B has the minimal finitely adjoint co-compact property then LA is m-compact and Lemma 2
implies that m-ClLA

(GA(x)) is m-compact for any x ∈ LA. All conditions of Theorem 3 are satisfied for FA, GA

and LA. Hence
∩

x∈LA

GA(x) ̸= ∅ for A ∈ ⟨X⟩. Now, suppose that MA =
∩

x∈LA

G(x), for each A ∈ ⟨X⟩. The family

R = {MA : A ∈ ⟨X⟩} has the finite intersection property. To see this, assume that A1, A2, . . . , An ∈ ⟨X⟩. Since
n∪

i=1

Ai ∈ ⟨X⟩, we get M∪n
i=1Ai =

∩
x∈L∪n

i=1
Ai

G(x) ̸= ∅. Then

∅ ̸= M∪n
i=1Ai ⊆

n∩
i=1

MAi ,
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which gives the result.
It follows that MA ⊆

∩
x∈B

G(x) and so m-Cl(MA) ⊆ m-Cl
( ∩
x∈B

G(x)
)
. According to the assertion (c′), m-

Cl
( ∩
x∈B

G(x)
)

is m-compact and Lemma 3 implies that
∩

A∈⟨X⟩
m-Cl(MA) ̸= ∅. Now, choose x̄ ∈

∩
A∈⟨X⟩

m-

Cl(MA) and arbitrary x ∈ X . For A0 = {x̄, x}, we have:

x̄ ∈ m-Cl(MA0) = m-Cl
( ∩

y∈LA0

G(y)
)
⊆ m-Cl

( ∩
y∈co(A0)

G(y)
)
.

By assertion (e),

x̄ ∈ m-Cl
( ∩

y∈co(A0)

G(y)
)
∩ co(A0) ⊆

∩
y∈co(A0)

G(y) ∩ co(A0) ⊆ G(x).

Then x̄ ∈
∩

x∈X

G(x).

Remark 1
It should be noticed that

(a) according to Example 2(c), when B is an m-compact convex subset of X , the first assertion in condition (c′)
of Theorem 4 is fullfilled.

(b) Theorem 4 generally goes back to the Fan-KKM theorem discussed in [5].

4. Minimal Generalized Vector F -implicit Variational Inequality Problem

In this section, as an application of the generalized Fan-KKM theorem, we give sufficient conditions to solve a
minimal generalized vector F -implicit variational inequality problem in the minimal vector spaces.

A nonempty subset P of a vector space X is called a convex cone if P + P = P and αP ⊆ P for all α ≥ 0,
where P + P = {x+ y : x, y ∈ P} and αP = {αx : x ∈ P}. A cone is said to be pointed if P ∩ −P = {0}.

The following “generalized vector F-implicit variational inequality problem (GVF-IVIP)” problem has been
considered and solved in [11]:

Let X be a real Banach space, K ⊆ X be a nonempty closed convex cone and (Y, P ) be an ordered Banach space
induced by the pointed closed convex cone P . Denote the space of all continuous linear mappings from X into Y
by L(X,Y ) and the value of a linear continuous mapping t ∈ L(X,Y ) at x by ⟨t, x⟩. Let A, T : K → L(X,Y ),
g : K → K, F : K → Y and N : L(X,Y )× L(X,Y ) → L(X,Y ) be mappings.
Find x ∈ K such that

⟨N(Ax∗, Tx∗), g(y)− g(x∗)⟩+ F (g(y))− F (g(x∗)) ≥ 0, for all y ∈ K.

Theorem 5
Suppose that

(a) five mappings N, g,A, T and F are continuous,
(b) there exists a mapping h : K ×K → Y such that

(i) h(x, x) ≥ 0 for all x ∈ K;
(ii) ⟨N(Ax, Tx), g(y)− g(x)⟩+ F (g(y))− F (g(x))− h(x, y) ≥ 0 for all x, y ∈ K;

(iii) the set {y ∈ K : h(x, y) ̸≥ 0} is convex for all x ∈ K;

(c) there exists a nonempty compact convex subset C of K such that for all x ∈ K \ C there exists y ∈ C such
that ⟨N(Ax, Tx), g(y)− g(x)⟩+ F (g(y))− F (g(x)) ≥ 0.

Then GVF-IVIP has a solution. Furthermore, the solution set of (GVF-IVIP) is closed.
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Now, suppose that X and Y are two minimal vector spaces and M is a nonempty convex subset of X . Set
Lm(X,Y ) as the set of all m-continuous linear mappings from X into Y . Let ⟨T, x⟩ be the value of T ∈ Lm(X,Y )
at point x. In addition, let A,B : M ( Lm(X,Y ), g : M → M , F : M ×M → Y , S : Lm(X,Y )× Lm(X,Y ) →
Lm(X,Y ) and let C : M ( Y has nonempty convex pointed cone values; that is for all y ∈ M , C(y) is a nonempty
and convex pointed cone in Y .

We consider the following “minimal generalized vector F -implicit variational inequality problem (MGVF-
IVIP)” which is generalization of (GVF-IVIP):

Find y ∈ M such that for any x ∈ M ,

⟨S(Ay,By), g(x)− g(y)⟩+ F (g(x), g(y))− F (g(y), g(x)) ∈ C(y).

The following theorem gives a solution for MGVF-IVIP, in the minimal vector spaces.

Theorem 6
With the above notations, suppose that

(a) for all A ∈ ⟨M⟩ the multimap GA : co(A) ( M defined by

GA(x)={y ∈ M ; ⟨S(Ay,By), g(x)−g(y)⟩+F (g(x), g(y))−F (g(y), g(x)) ∈ C(y)},

is a minimal transfer closed multimap,
(b) there is a nonempty m-compact subset B = m-Cl(B) ⊆ M and a nonempty set D ⊆ M with the minimal

finitely adjoint co-compact property such that for any x ∈ M \B there is y ∈ D such that

⟨S(Ax,Bx), g(y)− g(x)⟩+ F (g(y), g(x))− F (g(x), g(y)) /∈ C(x),

(c) there is a mapping f : M ×M → Y such that

(i) f(g(x), g(x)) ∈ C(x) for all x ∈ M ,
(ii) ⟨S(Ay,By), g(x)− g(y)⟩+ F (g(x), g(y))− F (g(y), g(x))− f(g(y), g(x)) ∈ C(y) for all x, y ∈ M ,

(iii) the set {y ∈ M : f(g(x), g(y)) /∈ C(x)} is convex for all x ∈ M .

Then the MGVF-IVIP has a solution.

Proof
Define two multimaps G,H : M ( M as follows:

G(x)={y ∈ M : f(g(y), g(x)) ∈ C(y)},
H(x)={y ∈ M : ⟨S(Ay,By), g(x)−g(y)⟩+F (g(x), g(y))−F (g(y), g(x)) ∈ C(y)}.

From (c)(ii) and the fact that the multimap C is nonempty convex pointed cone valued, we have G(x) ⊆ H(x) for

all x ∈ M . Assume that A = {x1, x2, . . . , xn} ⊆ M and z ∈ co(A) be such that z /∈
n∪

i=1

G(xi). So f(g(z), g(xi)) /∈

C(z) for each i = 1, 2, . . . , n. Now condition (c)(iii) implies that f(g(z), g(z)) /∈ C(z) which contradicts (c)(i).
Then G is a KKM multimap.

From assertion (b), for each x ∈ M \B, there exists y ∈ D such that x /∈ H(y). Hence x ∈ M \H(y) which
implies that M \B ⊆

∪
y∈D

M \H(y) or equivalently
∩

y∈D

H(y) ⊆ B. It follows that m-Cl
( ∩

y∈D

H(y)
)
⊆ m-

Cl(B) = B. From Lemma 2, it is easy to see that m-Cl
( ∩

y∈D

H(y)
)

is m-compact. By assertion (a), we can

derive conditions (d) and (e) of Theorem 4. Condition (d) is obvious since H , when is restricted to the co(A),
coincides with the multimap GA for each A ∈ ⟨M⟩. For condition (e), since∩

x∈co(A)

H(x) =
∩

x∈co(A)

m-Cl(H(x)),
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then we get

m-Cl
( ∩

x∈co(A)

H(x)
)
∩ co(A) = m-Cl

( ∩
x∈co(A)

m-Cl(H(x))
)
∩ co(A)

⊆
∩

x∈co(A)

m-Cl(m-Cl(H(x))) ∩ co(A)

=
∩

x∈co(A)

m-Cl(H(x)) ∩ co(A)

=
∩

x∈co(A)

H(x) ∩ co(A).

Now all conditions of Theorem 4 are satisfied and so
∩

x∈M

H(x) ̸= ∅. Then the solution set of the MGVF-IVIP is

nonempty.

Example 3
Consider R with the minimal structure M = {R, ∅} ∪ {(a, b) : a, b ∈ R−} ∪ {R \ [a, b] : a, b ∈ [0,∞)}. In
Theorem 6, set X = Y = R, M = [0,+∞), D = (1,+∞) and B = [0, 1]. It is clear that B is an m-closed m-
compact set and D has the minimal finitely adjoint co-compact property. Also [0,+∞) is a convex pointed cone.
For any x, y ∈ M define g(x) = x/2, F (x, y) = x, f(x, y) = 2(y − x), A(y) = B(y) = y, C(x) = [0,+∞) and
S(Ay,By) = Ay = y. So for each A ∈ ⟨M⟩, GA is m-closed valued and hence it is a minimal transfer closed
multimap. All conditions are satisfied and then

∩
x∈M

H(x) =
∩

x∈[0,+∞)

[0, x] = {0} is a solution of the MGVF-IVIP.

Remark 2 (a) Theorem 6 reduces to Theorem 5 if we consider all details in a topological vector space instead of
minimal vector space, F : M → Y and C ≡ [0,+∞), a pointed convex cone.

(b) Theorem 6 is a generalization of Theorem 2.2 in [8] and Theorem 3.2 in [12, 18]. Also Theorem 6, extends
and improves the corresponding results of [7].

5. Conclusion

Vector variational inequality (VVI) is a base for vector equilibrium problems, which can be applied to traffic
networks and migration equilibrium problems (see [6]). Meanwhile, Fan-KKM principle can be utilized to solve
some special problems related to vector variational inequalities. Additionally, many new problems in nonlinear
analysis can be solved by introducing generalized concepts and extending spaces to provide a proper solution.
The above description motivated us to introduce the concepts of generalized Fan-KKM multimaps and generalized
vector F -implicit variational inequality problems (See, also [9]). In this work, we introduced a generalized version
of the Fan-KKM theorem for vector F -implicit variational inequality problems in minimal vector spaces that covers
many previous results.
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