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Abstract In this paper, a single direction with double step length method for solving systems of nonlinear equations is
presented. Main idea used in the algorithm is to approximate the Jacobian via acceleration parameter. Furthermore, the two
step lengths are calculated using inexact line search procedure. This method is matrix-free, and so is advantageous when
solving large-scale problems. The proposed method is proven to be globally convergent under appropriate conditions. The
preliminary numerical results reported in this paper using a large-scale benchmark test problems show that the proposed
method is practically quite effective.
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1. Introduction

Consider the systems of nonlinear equations:
F (x) = 0, (1)

where F : Rn → Rn is nonlinear map.
Among various methods for solving nonlinear equations (1), Newton’s method is quite welcome due to its nice
properties such as the rapid convergence rate, the decreasing of the function value sequence[14]. The iterative
formula of a Newton method is given by

xk+1 = xk + sk, sk = αkdk, k = 0, 1, ..., (2)

where, αk is a step length to be computed by a line search technique [4, 5, 7], xk+1 represents a new iterative point,
xk is the previous iteration, while dk is the search direction to be calculated by solving the following linear system
of equations,

F ′(xk)dk = −F (xk), (3)

where F ′(xk) is the Jacobian matrix of F (xk) at xk.
A basic requirement of the line search is to sufficiently decrease the function values i.e. to establish

∥F (xk + αkdk)∥ ≤ ∥F (xk)∥. (4)
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Moreover (1) can come from an unconstrained optimization problem, a saddle point, and equality constrained
problem [10]. Let f be a norm function defined by

f(x) =
1

2
||F (x)||2 (5)

where, || · || to stand for the Euclidian norm. Then the nonlinear equations problem (1) is equivalent to the following
global optimization problem

minf(x), x ∈ Rn.

and condition (4) is equivalent to
f(xk + αkdk) ≤ f(xk) (6)

Furthermore, the search direction dk is generally required to satisfy the descent condition

▽f(xk)
T dk < 0.

It is vital to mention that due to the well known shortcomings of Newton method, a double step length has been
proposed in [13, 16] and the iterative procedure is given as:

xk+1 = xk + αkck + βkdk, (7)

r where xk+1 represents a new iterative point, xk is the previous iterative point, αk and βk denote the step lengths,
while ck and dk are search directions respectively. The step lengths αk and βk can also be computed either exact
or in exact. The ideal line search rule is the exact one [1] that satisfies

f(xk + αkdk) = min
α>0

f(xk + αdk). (8)

In fact, the exact step length is difficult or even impossible to seek in practical computation. Therefore the most
frequently used line search in practice is inexact line search [3, 9, 11]. Brown and Saad [5] proposed the following
line search rule to obtain the step length αk

f(xk + αkdk)− f(xk) ≤ σαk▽f(xk)
T dk, (9)

where σ ∈ (0, 1) and the search direction dk can be obtained in several ways (see[2, 6, 7, 8] and references therein).
From the technique in (9), it is easy to see that the Jacobian matrix must be computed at every iteration, which
will increase the computing difficulty, especially for the large-scale problems or when the matrix is expensive to
calculate. Considering these points, a new backtracking inexact technique is presented by Yuan∗ and Lu [12] in
order to obtain the step length αk:

∥F (xk + αkdk)∥2 ≤ ∥F (xk)∥2 + δα2
kF (xk)

T dk, (10)

where δ ∈ (0, 1). The global convergence and the superlinear convergence of this method is established. The
numerical results showed that the line search technique (10) is more effective than the normal methods.
In this article, we introduce the derivative-free line search proposed by Li and Fukushima [10] in order to compute
our step lengths αk and βk.
Let ω1 > 0, ω2 > 0 and q, r ∈ (0, 1) be constants and let {ηk} be a given positive sequence such that

∞∑
k=0

ηk < η < ∞, (11)

f(xk + (αk + βk)dk)− f(xk) ≤− ω1∥(αk + βk)F (xk)∥2

− ω2∥(αk + βk)dk∥2 + ηkf(xk).
(12)
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Let ik be the smallest non negative integer i such that (12) holds for α = ri and β = qi. Let αk = rik and
βk = qik .
An iterative method that generates a sequence {xk} satisfying (4) or (6) is called a norm descent method [16]. If
dk is a descent direction of f at xk, then inequality (6) holds for all αk > 0 sufficiently small. Accordingly, the
related iterative method is a norm descent method. In particular, Newton’s method with line search is norm descent.
For a quasi-Newton method, however, dk may not be a descent direction of f at xk even if Bk is symmetric and
positive definite. To globalize a quasi-Newton method, Li and Fukushima [10] proposed an approximately norm
descent line search technique and established global and superlinear convergence of a Gauss-Newton based BFGS
method for solving symmetric nonlinear equations. The method in [10] is not norm descent. In addition, the global
convergence theorem is established under the assumption that F ′(xk) is uniformly nonsingular.
The drawback of the technique (3) is the need to compute the Jacobian matrix F ′(xk) at every iteration, which will
increase the computing difficulty, due to the first-order derivative of the system because sometimes they are not
even available or could not be obtained exactly [14] especially for the large-scale problems. In this case Newton’s
method cannot be applied directly [7]. Therefore, motivated by[13] the purpose of this article is to develop a
derivative-free method with decent direction for solving system of nonlinear equations via

F ′(xk) ≈ γkI, (13)

Where I is an identity matrix. The proposed method has a norm descent property without computing the Jacobian
matrix with less number of iterations and CPU time that is globally convergent.
We organized the paper as follows; In the next section, we present the proposed method, convergence results are
presented in section 3. Some numerical results are reported in section 4. Finally we made conclusions in section 5.

2. Derivation of the Method

In this section we compute the two step lengths αk and βk in (7) using inexact line search procedure. This is made
possible by making the two directions in (7) to be equal, i.e ck = dk. In order to incorporate more information of
the iterates at each iteration and to improve good direction towards the solution, we suggest a new direction to be
defined as:

dk = −γ−1
k F (xk), (14)

where γk > 0 is an acceleration parameter. By putting (14) in to (7) we obtained

xk+1 = xk − (αk + βk)γ
−1
k F (xk). (15)

We now proceed to obtain the proposed acceleration parameter. Therefore, we start from

F (xk+1) ≈ F (xk) + F ′(ξ)(xk+1 − xk) (16)

where the parameter ξ fulfills the conditions ξ ∈ [xk, xk+1],

ξ = xk + δ(xk+1 − xk) = xk − δ(αk + βk)γ
−1
k F (xk) 0 6 δ 6 1. (17)

Bearing in mind that the distance between xk and xk+1 is small enough, we can take δ = 1 in (17) and get ξ = xk+1.
Thus we have

F ′(ξ) ≈ γk+1I. (18)

Now from (16) and (18) its not difficult to verify that:

F (xk+1)− F (xk) = −γk+1(αk + βk)γ
−1
k F (xk). (19)
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Taking yk = F (xk+1)− F (xk) and sk = −(αk + βk)γ
−1
k F (xk), and multiplying yTk to the both side of (19) the

acceleration parameter yields:

γk+1 =
yTk yk
yTk sk

. (20)

From (14) and (15) we have the general scheme as:

xk+1 = xk + (αk + βk)dk. (21)

Now we describe the algorithm of the proposed method as follows:

Algorithm 1(IDS).
STEP 1: Given x0, γ0 = 1, ϵ = 10−3, set k = 0.
STEP 2: Compute F (xk).
STEP 3: If∥F (xk)∥ ≤ ϵ, then stop, else goto next STEP.
STEP 4: Compute search direction dk = −γ−1

k F (xk).
STEP 5: Compute step the lengths αk and βk (using (12)).
STEP 8: Set xk+1 = xk + (αk + βk)dk.
STEP 7: Compute F (xk+1).

STEP 8: Determine γk+1 =
yTk yk
yTk sk

.

STEP 9: Set k=k+1, and go to STEP 3.

3. Convergence Analysis

In this section we present the global convergence of our method (IDS). To begin with, let us defined the level set

Ω = {x|∥F (x)∥ ≤ ∥F (x0)∥}. (22)

In order to analyze the convergence of algorithm 1 we need the following assumption:

Assumption 1.
(1) There exists x∗ ∈ Rn such that F (x∗) = 0.
(2) F is continuously differentiable in some neighborhood say N of x∗ containing Ω.
(3) The Jacobian of F is bounded and positive definite on N. i.e there exists a positive constants M > m > 0 such
that

∥F ′(x)∥ ≤ M ∀x ∈ N, (23)

and

m∥d∥2 ≤ dTF ′(x)d ∀x ∈ N, d ∈ Rn. (24)

From the level set we have:

∥F (x)∥ ≤ m1 ∀x ∈ Ω. (25)

Remarks:
Assumption 1 implies that there exists a constants M > m > 0 such that

m∥d∥ ≤ ∥F ′(x)d∥ ≤ M∥d∥ ∀x ∈ N, d ∈ Rn. (26)

m∥x− y∥ ≤ ∥F (x)− F (y)∥ ≤ M∥x− y∥ ∀x, y ∈ N. (27)
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In particular ∀x ∈ N we have

m∥x− x∗∥ ≤ ∥F (x)∥ = ∥F (x)− F (x∗)∥ ≤ M∥x− x∗∥, (28)

where x∗ stands for the unique solution of (1) in N.
Since γkI approximates F ′(xk) along direction sk, we can contemplate another assumption
Assumption 2.
γkI is a good approximation to F ′(xk), i.e

∥(F ′(xk)− γkI)dk∥ ≤ ϵ∥F (xk)∥ (29)

where ϵ ∈ (0, 1) is a small quantity [12].
Lemma 1. Let assumption 2 holds and {xk} be generated by algorithm 1. Then dk is a descent direction for

f(xk) at xk i.e
▽f(xk)

T dk < 0. (30)

proof. from (14), we have

▽f(xk)
T dk = F (xk)

TF ′(xk)dk

= F (xk)
T [(F ′(xk)− γkI)dk − F (xk)]

= F (xk)
T ((F ′(xk)− γkI)dk − ∥F (xk)∥2,

(31)

by chauchy swatz we have,

▽f(xk)
T dk ≤ ∥F (xk)∥∥((F ′(xk)− γkI)dk∥ − ∥F (xk)∥2

≤ −(1− ϵ)∥F (xk)∥2.
(32)

Hence for ϵ ∈ (0, 1) this lemma is true.
By lemma 1, we can deduce that the norm function f(xk) is a descent along dk , which means that ∥F (xk+1)∥ ≤
∥F (xk)∥ is true.
Lemma 2. Let assumption 2 hold and {xk} be generated by algorithm 1. Then {xk} ⊂ Ω.
proof. By lemma 1 we have ∥F (xk+1)∥ ≤ ∥F (xk)∥. Moreover, we have for all k.

∥F (xk+1)∥ ≤ ∥F (xk)∥ ≤ ∥F (xk−1)∥ . . . ≤ ∥F (x0)∥.

This implies that {xk} ⊂ Ω.
Lemma 3.(see[12]) Suppose that assumption 1 holds {xk} is generated by algorithm 1. Then there exists a constant
m > 0 such that for all k.

yTk sk ≥ m∥sk∥2. (33)

Lemma 4.(see[7]) Suppose that assumption 1 holds and {xk} is generated by algorithm 1. Then we have

lim
k→∞

∥αkdk∥ = 0, (34)

and
lim
k→∞

∥αkF (xk)∥ = 0. (35)

Lemma 5. Suppose that assumption 1 holds and {xk} is generated by algorithm 1. Then there exists some
positive constants m2 such that for all k > 0,

∥dk∥ ≤ m2, (36)
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proof. from (27), we have

∥dk∥ =

∥∥∥∥−yTk−1sk−1F (xk)

∥yk−1∥2

∥∥∥∥
≤ ∥sk−1∥∥yk−1∥∥F (xk)∥

m2∥sk−1∥2

≤ M∥sk−1∥∥F (xk)∥
m2∥sk−1∥

≤ M∥F (xk)∥
m2

≤ M∥F (x0)∥
m2

.

(37)

Taking m2 = M∥F (x0)∥
m2 , we have (36).

The proof is completed.
We can deduce that for all k (36) hold.

Now we are going to establish the following global convergence theorem to show that under some suitable
conditions, there exist an accumulation point of {xk} which is a solution of problem (1).
Theorem 1. Suppose that assumption 1 holds and {xk} is generated by algorithm 1. Assume further for all k > 0,

αk ≥ c
|F (xk)

T dk|
∥dk∥2

, (38)

where c is some positive constant. Then

lim
k→∞

∥F (xk)∥ = 0. (39)

Proof. From lemma 5 we have (36). Therefore by (34) and the boundedness of {∥dk∥}, we have

lim
k→∞

αk∥dk∥2 = 0, (40)

from (38) and (40) we have

lim
k→∞

|F (xk)
T dk| = 0. (41)

on the other hand from (14) we have,

F (xk)
T dk = −γ−1

k ∥F (xk)∥2 (42)

∥F (xk)∥2 = ∥ − F (xk)
T dkγk∥

≤ |F (xk)
T dk||γk|.

(43)

but

γ−1
k =

yTk−1sk−1

∥yk−1∥2
≥ m∥sk−1∥2

∥yk−1∥2
≥ m∥sk−1∥2

M2∥sk−1∥2
=

m

M2
.

then
|γ−1

k | ≥ m

M2
,

so from (43) we have,
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∥F (xk)∥2 ≤ |F (xk)
T dk|

(
M2

m

)
. (44)

Thus

0 ≤ ∥F (xk)∥2 ≤ |F (xk)
T dk|

(
M2

m

)
−→ 0. (45)

Therefore

lim
k→∞

∥F (xk)∥ = 0. (46)

The proof is completed.

4. Numerical Results

In this section,the performance of our method for solving non linear equation (1) is compared with a derivative-free
CG method and its global convergence for solving symmetric nonlinear equations [2]. It should be noted here that:

(i) Inexact Double Step length Method (IDS) stands for our method and we set the following:

ω1 = ω2 = 10−4, r = 0.2 and ηk =
1

(k + 1)4
.

(ii) A derivative-free CG (DFCG) is the method proposed by [2] and we set the following:

ω1 = ω2 = 10−4, α0 = 0.01 r = 0.2 and ηk =
1

(k + 1)4
.

The employed computational codes was written in Matlab 7.9.0 (R2009b) and run on a personal computer 2.00
GHz CPU processor and 3 GB RAM memory. We stopped the iteration if the total number of iterations exceeds
1000 or ∥F (xk)∥ ≤ 10−3. We have tried the two methods on eight test problems with different initial points and
dimension (n values). problems 1-7 are from [2] and problem 8 was arbitrarily constructed by us.

Problem 1:

F (x) =


2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

x+ (ex1 − 1, ..., exn − 1)T .

Problem 2:

F (x) =


2 −1
0 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

x+ (sinx1 − 1, ..., sinxn − 1)T .
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Problem 3:

F1(x) = x1(x
2
1 + x2

2)− 1,

Fi(x) = xi(x
2
i−1 + 2x2

i + x2
i+1),

Fn(x) = xn(x
2
n−1 + x2

n).

i = 2, 3, ..., n− 1.

Problem 4:

F3i−2(x) = x3i − 2x3i−1 − x2
3i − 1,

F3i−1(x) = x3i−2x3i−2x3i − x2
3i−2 + x2

3i−1 − 2,

F3i(x) = e−x3i−2 − e−x3i−1 .

i = 1, ...,
n

3
.

Problem 5:

Fi(x) = (1− x2
i ) + xi(1 + xixn−2xn−1xn)− 2.

i = 1, 2, ..., n.

Problem 6:

F1(x) = x2
1 − 3x1 + 1 + cos(x1 − x2),

Fi(x) = x2
1 − 3xi + 1 + cos(xi − xi−1).

i = 1, 2, ..., n.

Problem 7:

Fi(x) = xi − 0.1x2
i+1,

Fn(x) = xn − 0.1x2
1.

i = 1, 2, ..., n− 1.

Problem 8:

Fi(x) = 0.i(1− xi)
2 − e−x2

i ,

Fn(x) =
n

10
(1− e−x2

n).

i = 1, 2, ..., n− 1.
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Table 1. The Numerical Results for IDS and DFCG on problems 1 to 8, where e=Ones(n,1)

IDS DFCG
Problems x0 dim iter Time(s) ∥F (xk)∥ iter Time(s) ∥F (xk)∥

1 0.5*e 100 13 0.058072 7.55E-04 33 0.137884 9.74E-05
1000 18 0.717315 3.62E-04 53 2.285821 8.72E-05
2000 13 1.818927 4.03E-04 54 7.791001 8.10E-05

2 e 100 9 0.061803 4.26E-04 49 0.18529 4.08E-05
1000 11 0.480761 4.77E-04 63 2.874518 9.31E-05
2000 11 1.517515 5.57E-04 61 9.321487 9.30E-05

3 0.01*e 100 13 0.006141 8.75E-04 52 0.021726 9.57E-05
1000 13 0.035568 8.72E-04 54 0.105493 8.83E-05

50000 14 0.824716 7.36E-04 55 3.550896 7.53E-05
4 0.1*e 100 10 0.008541 9.11E-04 47 0.018898 8.07E-05

5000 12 0.108037 8.09E-04 57 0.308569 9.39E-05
10000 13 0.178396 1.22E-04 58 0.637811 6.51E-05

5 0.7*e 100 7 0.004733 9.04E-04 431 0.31315 3.02E-06
1000 8 0.019697 2.84E-04 431 0.996263 9.54E-06

10000 8 0.10864 8.99E-04 431 8.684382 3.02E-05
6 0.4*e 100 5 0.004443 3.57E-04 279 0.141663 -

1000 6 0.020648 1.12E-04 261 0.641637 -
10000 6 0.119242 3.55E-04 279 6.450851 -

7 e 100 4 0.022792 3.14E-04 5 0.017619 2.35E-05
1000 4 0.154512 7.43E-04 5 0.206744 7.52E-05

10000 5 2.899741 2.25E-04 6 5.167084 4.64E-08
8 0.5*e 100 5 0.003375 7.96E-04 13 0.008095 6.11E-05

1000 7 0.017057 9.89E-04 27 0.057786 6.03E-05
10000 10 0.132313 4.25E-04 36 0.466298 1.29E-06

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

τ

p(
τ)

 

 

IDS
DFCG

Figure 1. Performance profile of IDS and DFCG methods with respect to the number of iteration for the problems 1-8

The numerical results of the two methods are reported in Tables 1,where ”iter” and ”Time” stand for the total
number of all iterations and the CPU time in seconds, respectively, while ∥F (xk)∥ is the norm of the residual at the
stopping point. From Tables 1, we can easily observe that both of these methods attempt to solve the systems of
nonlinear equations (1), but the better efficiency and effectiveness of our proposed algorithm was clear for it solves
where DFCG fails. This is quite evident for instance with problem 6. In particular, the IDS method considerably
outperforms the DFCG for almost all the tested problems, as it has the least number of iterations and CPU time,
which are even much less than the CPU for the DFCG method. This is apparently due to the computation of double
step length in each iteration of the IDS as well as the approximation of the Jacobian through the acceleration
parameter.

Figures (1-2) show the performance of our method relative to the number of iterations and CPU time, which
were evaluated using the profiles of Dolan and Moré [15]. That is, for each method, we plot the fraction P (τ) of
the problems for which the method is within a factor τ of the best time. The top curve is the method that solved the
most problems in a time that was within a factor τ of the best time.
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Figure 2. Performance profile of IDS and DFCG methods with respect to the CPU time (in second) for the problems 1-8

5. Conclusion

In this paper we present an Inexact Double Step length (IDS) method for solving systems of nonlinear equations and
compare its performance with that of a derivative-free conjugate gradient (DFCG) method for symmetric nonlinear
equations [2] by doing some numerical experiments. We however proved the global convergence of our proposed
method by using a derivative-free line search, and the numerical results show that our method is very efficient.
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