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Abstract In a multivariate setup, the classification techniques have its significance in identifying the exact status of the
individual/observer along with accuracy of the test. One such classification technique is the Multivariate Receiver Operating
Characteristic (MROC) Curve. This technique is well known to explain the extent of correct classification with the curve
above the random classifier (guessing line) when it satisfies all of its properties especially the property of increasing
likelihood ratio function. However, there are circumstances where the curve violates the above property. Such a curve is
termed as improper curve. This paper demonstrates the methodology of improperness of the MROC Curve and ways of
measuring it. The methodology is explained using real data sets.
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1. Introduction

In classification, there are plenty of techniques to accommodate the need for identifying an individual/observer’s
status in a wide variety of fields like Psychology, Banking, Forensic, Medicine, etcetera [12, 3]. One such
classification technique, the Receiver Operating Characteristic (ROC) Curve has been adapted by many authors
in order to evaluate the accuracy of a test especially in the field of medicine [6]. The ROC analysis is majorly used
to identify the individual’s health status by defining an optimal threshold for a biomarker observed in the case of
that particular disease. The first parametric ROC is the Binormal ROC Curve where the variable under study for
two independent populations (healthy/diseased or signal/noise) follow Normal distributions [3].

The ROC Curve has three important properties [4]:

• y = h(x) is the mathematical model of the ROC Curve, where y denotes the true positive rate and x denotes
the false positive rate. The curve is a monotonic increasing function in the positive quadrant, lying between
y=0 at x=0 and y=1 at x=1.

• The ROC Curve is unaltered if the classification scores undergo a strictly increasing transformation.
• The slope of the ROC Curve (likelihood ratio of ROC Curve) at threshold value ‘c‘ is always positive and

given by
dy

dx
=

P (U > c|1)
P (U > c|0
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When dealing with practical problems, we often come across the presence or involvement of several variables.
This generates a scenario of having a classifier rule for a better classification. Su and Liu [11], Reiser and Ferragi
[8], Schisterman et. al. [10], Liu et. al. [5], Yuan and Ghosh [13], Chang and Park [2] and Sameera et. al. [9] are
a few to cite among those who proposed an extension of univariate ROC model to multivariate setup. However
the present work is based upon the Multivariate ROC (MROC) model proposed by Sameera et. al. [9], as they
showed that this model works better than the model proposed by Su and Liu [11] and their model is applicable
to data where the covariance structures of two populations can be proportional or non-proportional. As mentioned
about the properties of the ROC Curve, the most important one to verify is the concavity behavior i.e., slope of the
ROC Curve at ‘c‘ is always positive. Now the question to be raised is, what happens if a curve is not satisfying the
concavity property?. If the curve violates this property, it might affect the accuracy of the test as well as the optimal
cutoff point defined for that particular test.

Mathematically, a meaningful decision variable should be an increasing function of the likelihood ratio [7] and
such MROC Curve is said to be “Proper“. A function whose first derivative is decreasing throughout an open
interval is called concave in that interval, and a function whose first derivative is increasing throughout an open
interval is called convex in that interval. Since the slope of a MROC Curve for a continuous decision variable is
equal to the likelihood ratio at the corresponding threshold, it follows that the slope of a MROC Curve decreases as
the false positive rate (FPR)increases, that is, a MROC Curve will be concave everywhere (0 ≤ FPR ≤ 1). If the
decision variable is not an increasing function of the likelihood function, then its model and corresponding MROC
Curve are said to be improper.

2. Illustration of Improper MROC (iMROC) Curve

Consider the following example which illustrates the Indian Liver Patients (ILP) data set. For which the MROC
Curve has been drawn and depicted in Figure 1. From the figure, fitted MROC Curve seems to be proper but
when observed keenly; the improperness of the curve can be identified. In such situation, the usual MROC Curve
methodology might not project the true accuracy of a test. Figure 1 visualizes the two crucial points namely,
Crossing Reference line (t0 or Crossing Point) and Inflection Reference line (t1 or Inflection Point). Figure 1
shows the corresponding fitted MROC Curve; note that there is a visible ‘dip in the curve crossing the chance
line near the upper right hand corner of the unit square plot. In Figure 1, MROC Curve crosses the chance line at
the point (1-Specificity, Sensitivity) = (0.96, 0.96), shown by the intersection of the “crossing” reference line with
the MROC Curve. Furthermore, this MROC Curve is concave for FPR < 0.76, but is convex for FPR > 0.76.
Therefore, the MROC Curve which separates the concave and convex portions of the curve is called the “Inflection
Point (t1)”. Similarly, the MROC Curve which crosses the chance line at the point where FPR=TPR is called the
“Chance line crossing point or Crossing Point (t0)”. From Figure 1, though the dip of the curve is visible i.e. the
MROC Curve is not concave everywhere, it not possible to identify the inflection point visually. Even in the case of
improper MROC Curves, it is not that easy to identify the point where the curve changes from concave to convex.
In order to deal with this situation, the improper MROC Curve methodology has been developed and demonstrated
below.

2.1. MROC Curve

Let U0 & U1 ∈ U be the vectors of test scores of two independent multivariate normal populations with mean
vectors µ0, µ1 and covariance matrices Σ0 & Σ1 with m and n sample sizes respectively.

Ui ∼ MVN(µi,Σi) ; i = 0, 1

f (X|µi,Σi) =
1

(2π)
p
2 |Σi|

N
2

e−
1
2 (X−µi)

′Σ−1
i (X−µi)
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Figure 1. Improper MROC Curve for ILP Dataset

Let x(c) denotes the false positive rate (FPR) and y(c) denote the true positive rate (TPR) where ‘c’ is the
threshold value. The expressions for FPR, TPR are

FPR = x(c) = P (U > c|0) = 1− Φ

(
(c− b′µ0)√

(b′Σ0b)

)
(1)

TPR = y(c) = P (U > c|1) = Φ

(
b′µ1 − c√
(b′Σ1b)

)
(2)

where b(̸= 0) be a k × 1 vector, U is the test score and c be a scalar. The threshold value thus obtained using (1) is
given as

c = b′µ0 +
√

(b′Σ0b)Φ
−1(1− x) (3)

where Φ−1(·) is the inverse function of Φ(·).
substituting (3) in (2) implies that

TPR = y(x) = Φ

(
b′(µ1 − µ0)−

√
(b′Σ0b)Φ

−1(1− x)√
(b′Σ1b)

)
(4)

which is the form of Multivariate ROC model [9].
The AUC of MROC Curve is

AUC =

∫ 1

0

y(x)dx

AUC = Φ

{
b′(µ1 − µ0)√
[b′(Σ1 +Σ0)b]

}
(5)
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2.2. Crossing Point

Let ‘c’ denote threshold to a chance line crossing FPR, then

P (U > c|0) = P (U > c|1)

Φ

(
(c− b′µ0)√

(b′Σ0b)

)
= Φ

(
c− b′µ1√
(b′Σ1b)

)

on further simplification, the expression for C0 crossing threshold is

C0 =
(b′µ0)

√
(b′Σ1b)− (b′µ1)

√
(b′Σ0b)[√

(b′Σ1b)−
√

(b′Σ0b)
] (6)

Let t0 denote the chance line crossing FPR corresponding to c0. Then

t0 = P (U > c|0) = 1− Φ

(
(c− b′µ0)√

(b′Σ0b)

)
on substituting (6) in the above expression, we obtain the expression for crossing point as,

t0 =
(b′µ1)− (b′µ0)[√

(b′Σ1b)−
√

(b′Σ0b)
] (7)

Uniqueness of t0 follows from the uniqueness of c0.

2.3. Inflection Point

The slope of ROC Curve is twice differentiable. From basic calculus results concerning concave functions it follows
that the MROC Curve is concave (convex) over an open interval if its second derivative is negative (positive)
throughout the interval (0, 1). The approach is to show that the second derivative of the MROC Curve is negative
throughout (0, t1) and positive throughout (t1, 1) if ν < 1, and positive throughout (0, t1) and negative throughout
(t1, 1) if ν > 1.

Let t denote an FPR with corresponding threshold c. The derivative of the MROC Curve evaluated at t is equal
to the likelihood ratio evaluated at c, i.e.,

∂ROC(t)

∂t
= LR(c)

i.e., at t = t0
∂ROC(t)

∂t
/t = t0 = LR(c0) = ν (say)

It follows, using the chain rule, that
∂2ROC(t2)

∂t
=

∂LR(c)

∂c

∂c

∂t
(8)

Since,

t = P (U > c|0) = 1− P (U ≤ c|0) = 1− Φ

(
(c− b′µ0)√

(b′Σ0b)

)
Then t is a strictly decreasing function of c and

∂t

∂c
= − 1√

(b′Σ0b)
ϕ

(
(c− b′µ0)√

(b′Σ0b)

)
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Therefore, the equation (8) can be rewritten as,

∂2ROC(t2)

∂t
=

∂LR(c)

∂c

[
− 1√

(b′Σ0b)
ϕ

(
(c− b′µ0)√

(b′Σ0b)

)]−1

(9)

Since ϕ

(
(c−b′µ0)√
(b′Σ0b)

)
> 0, it follows from Equation (9) that the second derivative of the MROC Curve and the

derivative of the likelihood ratio have opposites signs when evaluated at t and c, respectively. That is,

sign

(
∂2ROC(t2)

∂t

)
= −sign

(
∂LR(c)

∂c

)
where

sign(ν) =

 1 if ν > 0
0 if ν = 0
−1 if ν < 0

Since the logarithmic function is strictly increasing, the likelihood ratio and log likelihood ratio derivatives have
the same sign; hence it follows that

sign

(
∂2ROC(t2)

∂t

)
= −sign

(
∂LR(c)

∂c

)
(10)

The log likelihood and its derivative with respect to c is given by

lnLR(c) = ln
√

(b′Σ0b)− ln
√

(b′Σ1b) +
1

2

[
− (c− b′µ1)

2

(b′Σ1b)
+

(c− b′µ0)
2

(b′Σ0b)

]
(11)

∂LR(c)

∂c
= − (c− b′µ1)

(b′Σ1b)
+

(c− b′µ0)

(b′Σ0b)

The threshold value at the inflection point can be estimated as,

∂LR(c)

∂c
= 0

− (c− b′µ1)

(b′Σ1b)
+

(c− b′µ0)

(b′Σ0b)
= 0

on further simplification, the threshold value at the inflection point is given by

c1 =
(b′Σ1b)(b

′µ0)− (b′Σ0b)(b
′µ1)

[b′Σ1b− b′Σ0b]
(12)

Then the corresponding FPR is

t1 = 1− Φ

(
(c1 − b′µ0)√

(b′Σ0b)

)
on substituting c1 in the above equation, the FPR at the corresponding c1 is given by

t1 = 1− Φ


{

(b′Σ1b)(b
′µ0)−(b′Σ0b)(b

′µ1)
[b′Σ1b−b′Σ0b]

}
− b′µ0√

(b′Σ0b)


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on further simplification, the FPR value at the inflection point is as follows

t1 = Φ

(
(b′µ1 − b′µ0)

√
b′Σ0b

[b′Σ1b− b′Σ0b]

)
(13)

Since the derivative of the log likelihood ratio has the opposite sign of the second derivative of the MROC
Curve evaluated at the corresponding FPR (10) and thresholds less than c1 correspond to FPRs greater than
t1 and vice versa, the FPR value t1 = Φ

(
(b′µ1−b′µ0)

√
b′Σ0b

[b′Σ1b−b′Σ0b]

)
is the unique inflection point FPR and c1 =

(b′Σ1b)(b
′µ0)−(b′Σ0b)(b

′µ1)
[b′Σ1b−b′Σ0b]

is its corresponding inflection point threshold.
i.e., LR(c) at c1 is zero

∂LR(c)

∂c
= − (c− b′µ1)

(b′Σ1b)
+

(c− b′µ0)

(b′Σ0b)

At c1

∂LR(c)

∂c
|c=c1 = −

(
(b′Σ1b)(b

′µ0)−(b′Σ0b)(b
′µ1)

[b′Σ1b−b′Σ0b]
− b′µ1

)
b′Σ1b

+

(
(b′Σ1b)(b

′µ0)−(b′Σ0b)(b
′µ1)

[b′Σ1b−b′Σ0b]
− b′µ0

)
b′Σ0b

∂LR(c)

∂c
|c=c1 = − ((b′Σ1b)(b

′µ0)− (b′Σ0b)(b
′µ1)− b′µ1 [b

′Σ1b− b′Σ0b])

b′Σ1b [b′Σ1b− b′Σ0b]

+
((b′Σ1b)(b

′µ0)− (b′Σ0b)(b
′µ1)− b′µ0 [b

′Σ1b− b′Σ0b])

b′Σ0b [b′Σ1b− b′Σ0b]

∂LR(c)

∂c
|c=c1 = − (b′µ1 − b′µ0)

[b′Σ1b− b′Σ0b]
+

(b′µ1 − b′µ0)

[b′Σ1b− b′Σ0b]

∂LR(c)

∂c
|c=c1 = 0

3. Results and Discussion

In order to demonstrate the methodology, two real datasets are used, namely MCA and ILP. Further, ILP dataset
has been split according to sex of the patients. Of which, ILP male dataset has a form of Improper ROC Curve and
the same dataset has been chosen for demonstration purpose.

3.1. ILP Male dataset

The Indian Liver Patient Male Dataset [1] contains 10 variables that are age, gender, total Bilirubin, direct Bilirubin,
total proteins, albumin, A/G ratio, SGPT, SGOT and Alkphos. Selector is a class label used to divide the subjects
into groups (liver patient or not). The intrinsic measures TPR and FPR, summary measure AUC and optimal cut
point are computed using equations (1) to (5). The AUC observed is 0.7495which provides moderate classification,
TPR and FPR are 0.6992 and 0.3008 respectively at the optimal cut point c = 1.5372. The best linear combination
is given by

UILP = 0.0172 ∗Age− 0.0556 ∗ TB + 0.3133 ∗DB + 0.0005 ∗Alkphos− 0.0104 ∗ sgpt
+ 0.0074 ∗ sgot− 0.4164 ∗ TP + 0.6726 ∗ALB − 1.1341 ∗A.G

If the test score is greater than optimal cutoff i.e., 1.5372 the individual is classified as diseased, otherwise healthy.
The MROC Curve is drawn and depicted in the Figure 2. From Figure 2, it is clear that the fitted MROC Curve
crosses the chance line and is moving towards the top right corner of the unit square plot, which generates an
improper MROC Curve. Using the proposed methodology, the inflection point and chance line cross reference
points are obtained and are highlighted in the Figure 2. Also, the inflection point and crossing points along with
their thresholds are reported in Table 1.
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Figure 2. iMROC Curve for ILP Male dataset

Table 1. Degree of improperness for the ILP Male dataset

t0 c0 t1 c1
0.6235 -0.9119 0.5221 -0.8002

In Table 1, it is observed that at the point of inflection t1 = 0.5221 along with c1 = −0.8002, the MROC
Curve becomes convex (Figure 2). That is, this MROC Curve is concave for FPR < 0.5221, but is convex
for FPR > 0.5221. Similarly, the MROC Curve crosses the chance line at crossing point t0=0.6235 along with
c0 = −0.9119. Hence, the area under the curve up to t1 = 0.5221 projects the correct accuracy of the curve and the
area from t1 = 0.5221 to 1 will be biased as the healthy and diseased individuals will be misdiagnosed from this
point forward.

3.2. MCA dataset

The neonatal dataset consists of two procedures: MCA and CPR used to check the blood flow from the womb
of the mother to the baby for identifying the growth of the baby. Three indices were measured namely pulsatility
index (PI), resistivity index (RI) and Systolic/Diastolic (S/D) ratio in all the procedures. The intrinsic measures
TPR and FPR, summary measure AUC and optimal cut point are computed using equation (1) to (5). The AUC
observed is 0.6253which provides moderate classification, TPR and FPR are 0.5968 and 0.4032at the optimal cut
point c = −3.1749.The best linear combination is given by

UMCA = −10.6711 ∗MCA.RI + 0.0226 ∗MCA.PI + 1.1733 ∗MCA.SD

The above linear combination can be used for identifying the status of new individual. If the test score is greater
than optimal cutoff i.e., -3.1749 the individual is classified as diseased, otherwise healthy. Further, the MROC
Curve is drawn and depicted in Figure 3. From Figure 3, it is clear that the fitted MROC Curve crosses the chance
line and moves towards the top right corner of the unit square plot, which leads to an improper MROC Curve.
Using the proposed methodology, the inflection point and chance line cross reference points are obtained and are
highlighted in the Figure 3. Also, the inflection point and crossing points along with their thresholds are reported
in Table 2.

In Table 2, it is observed that at the point of inflection t1 = 0.5631 along with c1 = −3.3421, the MROC
Curve becomes convex (Figure 3). That is, this MROC Curve is concave for FPR < 0.5631, but is convex for
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Figure 3. iMROC Curve for MCA dataset

Table 2. Degree of improperness for the MCA dataset

t0 c0 t1 c1
0.7131 -3.5094 0.5631 -3.3421

FPR > 0.5631 for the MCA dataset. Similarly, the MROC Curve which crosses the chance line at crossing point
t0 = 0.7131 along with c0 = −3.5094.This means that the accuracy calculated for this curve might not be accurate
as the individuals are misdiagnosed when the values range from 0.5631 to 1.

3.3. ILP Complete dataset

The Indian Liver Patient Dataset [1] contains 10 variables that are age, gender, total Bilirubin, direct Bilirubin, total
proteins, albumin, A/G ratio, SGPT, SGOT and Alkphos. Selector is a class label used to divide the subjects into
groups (liver patient or not).

The AUC is observed to be 0.7365 which provides moderate classification. For this dataset, TPR and FPR are
0.6921 and 0.3079 at optimal cut point c = 1.7773. Hence, the best linear combination is given by

UILPC = 0.0176 ∗Age− 0.0004 ∗ TB + 0.0976 ∗DB + 0.0009 ∗Alkphos+ 0.0018 ∗ sgpt
− 0.0003 ∗ sgot+ 0.3676 ∗ TP − 0.6864 ∗ALB + 0.2304 ∗A.G+ 0.2854 ∗ Sex

If the test score is greater than optimal cutoff i.e., 1.7773 the individual is classified as diseased, otherwise healthy.
Further, the MROC Curve is drawn and is depicted in the Figure 4. From Figure 4, it is very difficult to say whether
the fitted MROC Curve is proper one or improper one. But, using the proposed methodology it is clear that the
fitted MROC Curve crosses the chance line at the crossing point where FPR = TPR = 0.9602.

Table 3. Degree of improperness for the ILP Complete dataset

t0 c0 t1 c1
0.9602 0.7654 0.7406 1.2713

From Table 3, it is observed that at the point of inflection t1 = 0.7406 along with c1 = 1.2713, the MROC Curve
becomes convex from this point (Figure 4). Furthermore, this MROC Curve is concave for FPR < 0.7406, but

Stat., Optim. Inf. Comput. Vol. 9, June 2021



500 IMROC CURVE

Figure 4. iMROC Curve for ILP Complete dataset

is convex for FPR > 0.7406 for the ILP complete dataset. The MROC Curve crosses the chance line at crossing
point t0 = 0.9602 along with c0 = 0.7654.

4. Conclusion

In classification, the MROC Curve and its parameters have been estimated through the maximum likelihood
estimation procedure based on the multivariate model, this multivariate model implies that the decision variable
is not a monotone function of the likelihood ratio; hence this method produces improper MROC Curves that are
not concave everywhere and cross the chance line, implying that the test performs worse than chance for a range
of FPR values. Although in most situations the degree of improperness is so small that it cannot be seen, it is
important to be able to easily identify those MROC Curves where the improperness is visible. The main interest
of this paper is to identify the degree of improperness of the fitted MROC Curve and the same has been explained
and also visualized in the figures in the cases of considered real data sets.
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