
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 9, March 2021, pp 47–60.
Published online in International Academic Press (www.IAPress.org)

Inferences for Weibull lifetime model under progressively first-failure
censored data with binomial random removals
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Abstract In this paper, the Bayesian and non-Bayesian estimations of a two-parameter Weibull lifetime model in
presence of progressive first-failure censored data with binomial random removals are considered. Based on the s-normal
approximation to the asymptotic distribution of maximum likelihood estimators, two-sided approximate confidence intervals
for the unknown parameters are constructed. Using gamma conjugate priors, several Bayes estimates and associated credible
intervals are obtained relative to the squared error loss function. Proposed estimators cannot be expressed in closed forms
and can be evaluated numerically by some suitable iterative procedures. A Bayesian approach is developed using Markov
chain Monte Carlo techniques to generate samples from the posterior distributions and in turn computing the Bayes estimates
and associated credible intervals. To analyze the performance of the proposed estimators, a Monte Carlo simulation study is
conducted. Finally, a real data set is discussed for illustration purposes.
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1. Introduction

In life-testing experiments and reliability studies, experimenters wish to observe the failure times of units placed
on test. But due to time or cost or due to some other unavoidable circumstances, experimenters terminate a
study before recording the responses of all the units under study. This results to availability of censored data.
Type-I (time censoring) and Type-II (failure censoring) are the most common and popular censoring schemes in
life-testing experiments. A generalization of Type-II censoring is Type-II progressive censoring scheme (PCS).
However, when the lifetime of an item is very high and test facilities are limited but test material is relatively
less expensive, the experimenter can be test n sets with k items within each set. This life-test is then conducted
by testing each of these sets of units separately until the occurrence of first-failure in each set. Such a censoring
scheme is called first-failure censoring, see [7]. Under this scheme, one can save a considerable amount of time
as well as money. Unfortunately, the first-failure censoring is do not allow for sets to be removed from the test at
points other than the final termination point. Intermediate removal may be desirable when a compromise between
the reduced time of experimentation and the observation of at least some extreme lifetimes is sought or when some
of the surviving units in the experiment that are removed early on can be used for some other tests, see [5]. For
this reason, [26] proposed a life-test plan called progressively first-failure censored sampling (PFFCS) which is
a combination between the concepts of first-failure censoring and Type-II PCS. This censoring plan is modifies
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first-failure censoring by allowing the experimenter to remove a pre-specified number of surviving groups from a
life-test. Also, they discussed the maximum likelihood estimators (MLEs) and expected test time for the unknown
parameters of Weibull distribution (WD) based on the PFFCS.

Recently, the PFFCS has become quite popular in a life-testing problem and reliability analysis. However, the
estimation of parameters of different lifetime models based on PFFCS have been studied by several authors such
as [11, 20, 2, 4, 1]. In some practical situations, the progressive censoring schemes with random removals are
needed. For example, consider a clinical test that a doctor perform an experiment with n cancer patients but after
the death of first patient, some patient leave the experiment and go for treatment to other doctor/hospital. Similarly,
after the second death a few more leave and so on. Finally the doctor stops taking observations as soon as the
predetermined number of deaths (say m) are recorded. Hence, the number of patients drop out from a hospital at
each stage is random and cannot be pre-determined. It may be assumed that in each stage, the participating patients
may independently decide to leaving the experiment with the same probability (p) for all the patients. Hence,
the number of patients who leave the experiment at a specified stage will follow the binomial distribution with
probability of success (p). For this reason, [15, 23] have considered the problem of estimation when the number of
units removed at each stage follows a discrete uniform and binomial distributions, respectively, for progressively
first-failure censored data.

It should be noted that the discrete uniform distribution does not increase the difficulty in estimating the model
parameters as compared to the cases with a fixed removal pattern, becuase it does not introduce any additional
parameter to the likelihood function. Nevertheless, a discrete uniform removal pattern may not seem very realistic
as it assumes that each removal event occurs with an equal probability regardless of the number of units removed.
A more realistic alternative to describe the number of occurrences of an event out of n trials is the binomial
distribution as suggested by [24]. [15] discussed the estimation problems of Pareto distribution when the lifetimes
data are collected under a PFFCS with uniform removals. [23] derived the MLEs and Bayes estimators (BEs) of
a parameter of Burr-X model under progressively first-failure censoring scheme with binomial removals (PFFCS-
BR), were the number of units removed at each failure time has a discrete binomial distribution with certain
probability p. Many several authors considered the problem of statistical inference based on Type-II progressive
censoring with binomial random removals, see [24, 25, 10]. Recently, [8] discussed the Bayesian analysis of
competing risk data under Type-II PCS where the number of units removed at each stage has a binomial distribution.
For further details, an excellent book dedicate to the PCSs was proposed by [5], can be recommended to the readers.

[26] proposed PFFCS as a generalization of Type-II PCS. Suppose that n independent groups with k items
within each group are put on a life-testing experiment at time zero, m is a pre-fixed number of failures, and the
PCS R = (R1, R2, . . . , Rm), is pre-fixed. At the time of first observed failure (say X1), R1 groups and the group
in which the first failure are randomly removed from the experiment. Following the second observed failure (say
X2), R2 groups and the group in which the second failure is observed are randomly removed from the remaining
live n−R1 − 1 groups, and so on. This procedure continues until all remaining live Rm groups and the group in
which the m− th failure are removed at the time of the m− th failure has occurred. Suppose that the failure times
of n× k items originally in the test are from a continuous population with cumulative distribution function (CDF),
F (x; θ), and probability density function (PDF), f(x; θ). Let (X(i), Ri), i = 1, 2, . . . ,m denote a progressively
first-failure censored sample, where X(1) < X(2) < · · · < X(m) with pre-determined number of removals, say
R1 = r1, R2 = r2, . . . , Rm = rm. Then, the conditional likelihood function of PFFCS can be written as (see [26])

L1(θ|x,R = r) = Ckm
m∏
i=1

f(x(i); θ)[1− F (x(i); θ)]
k(ri+1)−1, (1)

where C = n(n− r1 − 1) . . . (n−
∑m

i=1(ri + 1)) and n = m+
∑m

i=1 ri. From (1), some sampling schemes can
be obtained as a special cases, such as: Type-II PCS by putting k = 1, the joint PDF of the first-failure censoring
by putting R = (0, 0, . . . , 0), Type-II censoring by putting R = (0, 0, . . . , n−m) and k = 1, and if putting
R = (0, 0, . . . , 0) and k = 1, then n = m, which yields the complete sampling.

Now, suppose that an individual group being removed from the progressively first-failure censored life-test is
independent of the others but with the same probability p. Then, the number ri of groups removed at the i− th
failure for i = 1, 2, . . . ,m− 1, where m is predetermined before the life-testing, follows a binomial distribution
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with parameters n−m−
∑i−1

j=1 rj and p, see [23]. Therefore,

P (R1 = r1) =

(
n−m

r1

)
pr1(1− p)n−m−r1 , (2)

and for i = 2, 3, . . . ,m− 1,

P (Ri = ri|Ri−1 = ri−1, . . . , R1 = r1) =

(
n−m−

∑i−1
j=1 rj

ri

)
pri(1− p)n−m−

∑i−1
j=1 rj , (3)

where 0 6 r1 6 n−m and 0 6 ri 6 n−m−
∑i−1

j=1 rj for i = 2, 3, . . . ,m− 1.
Furthermore, we assume that R = (R1, R2, . . . , Rm) is independent of X(i) for all i = 1, 2, . . . ,m. Hence the

likelihood function takes the following form

L(θ, p|x, r) = L1(θ|x,R = r)L2(R = r; p), (4)

where L2(R; p) is the joint probability distribution of binomial removals, is given by

L2(R = r; p) = P (R1 = r1)P (R2 = r2|R1 = r1)P (R3 = r3|R2 = r2, R1 = r1)

× · · · × P (Rm−1 = rm−1|Rm−2 = rm−2, . . . , R1 = r1). (5)

Substituting (2) and (3) into (5), we get

L2(R = r; p) =
(n−m)!

(n−m−
∑m−1

i=1 ri)!
∏m−1

i=1 ri!
p
∑m−1

i=1 ri(1− p)(m−1)(n−m)−
∑m−1

i=1 (m−i)ri . (6)

From (4), it can be seen that L1 does not involved the binomial parameter p and can be treated as function of θ
only, therefore, L1 can be maximizing directly by obtained the MLE of θ. On the other hand, L2 involves p only,
hence, the MLE p̂ of p can be obtained by maximizing L2 directly. The sampling procedure for a life-test based on
PFFCS-BR, is illustrated in Table 1.

Table 1. Sampling procedure for a life-test under PFFCS-BR.

Stage Failure item Removed group(s) Survived group(s)

1 X(1) r1 ∼ Bin(n−m, p) n− r1 − 1
2 X(2) r2 ∼ Bin(n−m− r1, p) n− r1 − r2 − 2
...

...
...

...
m− 1 X(m−1) rm−1 ∼ Bin(n−m−

∑m−2
j=1 rj , p) n− (m− 1)−

∑m−1
j=1 rj

m X(m) rm = n−m−
∑m−1

j=1 rj 0

The WD is one of the most widely used distributions in the reliability and survival studies due to its various
shapes of the hazard function. This model has been extensively used to model lifetimes and material strengths, see
[16]. Suppose that the observed failure times are independent identically distributed with WD(α, λ), where α and
λ are the shape and scale parameters, respectively. Then, the PDF and CDF of WD, are given, respectively, by

f(x;α, λ) = αλxα−1e−λxα

, x > 0, α, λ > 0, (7)

and
F (x;α, λ) = 1− e−λxα

, x > 0, α, λ > 0. (8)
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In this paper, our main purpose is to use the maximum likelihood method and Bayes procedure to derive both
point and interval estimates of the unknown parameters of WD under PFFCS-BR. Based on the squared error loss
(SEL) function, the BEs are developed. When both parameters are unknown, the MLEs and BEs cannot be obtained
in explicit forms, as expected, but can be evaluated numerically. Also, approximate confidence intervals (ACIs) and
Bayes credible intervals (BCIs) for the unknown parameters are constructed. Based on Markov chain Monte Carlo
(MCMC) techniques, namely Gibbs sampler and Metropolis-Hastings (M-H) algorithm, the Bayes estimates of the
unknown parameters and associated BCIs are obtained. Monte Carlo simulation study is performed to compare the
performances among various estimates in terms of their mean square error (MSE) and average confidence lengths
(ALs). Furthermore, a numerical example with real data set is discussed to illustrate our proposed methods.

The rest of the paper is organized as follows: In Sections 2 and 3, the MLEs and BEs of the unknown parameters
are investigated, respectively. In Section 4 we provide a simulation study. A real life-data set has been analyzed in
Section 5. Finally, the concluding remarks and different special cases obtained from the new results are presented
in Section 6.

2. Maximum Likelihood Estimation

This section discusses the procedures of obtaining the MLEs of the parameters α, λ and p, as well as corresponding
100(1− γ)% two-sided ACIs, based on PFFCS-BR. Suppose that n× k independent units taken from a population
are placed on a PFFCS-BR life-test with the corresponding lifetimes being identically distributed having PDF and
CDF as defined in (7) and (8), respectively. Substituting from (7) and (8) into (1), the likelihood function (1) can
be written with proportional as

L1(α, λ|x, r) ∝ (αλ)m exp

(
−λk

m∑
i=1

(ri + 1)xα
(i)

)
m∏
i=1

xα−1
(i) , (9)

where C is defined in (1). Taken the natural logarithm of (9), ℓ1(·) = logL1(·), we get

ℓ1(α, λ|x, r) ∝ m log(αλ)−λk

m∑
i=1

(ri + 1)xα
(i) + (α− 1)

m∑
i=1

log x(i). (10)

Differentiating (10) with respect to α and λ, and equating each result to zero, two normal equations must be
solving simultaneously to obtain the MLEs α̂ and λ̂ of α and λ, respectively.

Similarly, since (6) does not involve the parameters α and λ, the MLE p̂ of p can be found by maximizing (6)
directly. Hence, the natural logarithm of (6), ℓ2(·) = logL2(·) can be written up to proportional as

ℓ2(R = r; p) ∝
m−1∑
i=1

ri log (p) +

(
(m− 1)(n−m)−

m−1∑
i=1

(m− i)ri

)
log (1− p). (11)

The first order derivative of (11) with respect to p will be

∂ℓ2
∂p

=

∑m−1
i=1 ri
p

−

(
(m− 1)(n−m)−

∑m−1
i=1 (m− i)ri

)
(1− p)

. (12)

Using (12), independently, the MLE p̂ of p becomes

p̂ =

∑m−1
i=1 ri(

(m− 1)(n−m)−
∑m−1

i=1 (m− i− 1)ri

) .
Clearly, the MLEs α̂ and λ̂ cannot be solved analytically but can be evaluated numerically, therefore numerical

methods like the Newton-Raphson method are required to solve α̂ and λ̂ iteratively.

Stat., Optim. Inf. Comput. Vol. 9, March 2021



S. K. ASHOUR, A. A. EL-SHEIKH AND A. ELSHAHHAT 51

2.1. Approximate Interval Estimation

The 100(1− γ)% two-sided ACIs based on asymptotic distributions of the MLEs α̂, λ̂ and p̂ of the parameters α,
λ and p, respectively, are derived. The asymptotic variances and covariances of the MLEs are given by elements of
the inverse of Fisher information matrix. The Fisher information matrix, I(θ), associated with α, λ and p is given
by

I(θ) =
[

I1(α, λ) 0
0 I2(p)

]
= E

 −∂2ℓ1
∂α2 − ∂2ℓ1

∂α∂λ 0

− ∂2ℓ1
∂λ∂α −∂2ℓ1

∂λ2 0

0 0 −∂2ℓ2
∂p2

 , (13)

where θ = (α, λ, p)
T. Hence, from (10) and (11), the elements of (13) becomes

∂2ℓ1
∂α2

= −m

α2
− λk

m∑
i=1

(ri + 1)xα
(i)(log x(i))

2,
∂2ℓ1
∂λ2

= −m

λ2
,

∂2ℓ1
∂α∂λ

=
∂2ℓ1
∂λ∂α

= −k

m∑
i=1

(ri + 1)xα
(i)log x(i),

and

∂2ℓ2
∂p2

= −
∑m−1

i=1 ri
p2

−

(
(m− 1)(n−m)−

∑m−1
i=1 (m− i)ri

)
(1− p)2

.

Since, the exact mathematical expressions for the elements of (13) is difficult to obtain. Thus, we give the
approximate variance-covariance matrix for the MLEs, which is obtained by dropping the expectation operator E.
Practically, we usually estimate I(θ) by replaced θ with θ̂. Hence, the approximate variance-covariance matrix may
be approximated as

V(θ̂) ∼=

 Var(α̂) Cov(α̂, λ̂) 0

Cov(λ̂, α̂) Var(λ̂) 0
0 0 Var(p̂)

 , (14)

where θ̂ = (α̂, λ̂, p̂)
T

. The asymptotic distribution of the MLEs θ̂ is approximately with multivariate normal, i.e.,
θ̂ ∼ N(θ,Var(θ̂)), see [18]. Then, 100(1− γ)% two-sided ACIs for α, λ and p are given, respectively, by

α̂± zγ/2
√

Var(α̂), λ̂± zγ/2

√
Var(λ̂) and p̂± zγ/2

√
Var(p̂),

where Var(α̂), Var(λ̂) and Var(p̂) are the main diagonal elements of (14), respectively, and zγ/2 is the percentile of
the standard normal distribution with right-tail probability (γ/2)− th.

3. Bayes Procedure

In this section, we have obtained the BEs of the unknown parameters α, λ and p under progressively first-failure
censored data with binomial removals. According to [17, 23], we assume that α, λ and p are random variables
which are independently distributed having PDFs, respectively, as

π1(α) =
ba1
1

Γ(a1)
αa1−1e−b1α, α > 0, a1, b1 > 0,

π2(λ) =
ba2
2

Γ(a2)
λa2−1e−b2λ, λ > 0, a2, b2 > 0, (15)
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π3(p) =
1

B(a3, b3)
pa3−1(1− p)b3−1, 0 < p < 1, a3, b3 > 0. (16)

From (15), the joint PDF of α and λ can be written with proportional as

π(α, λ) ∝ αa1−1λb1−1e−(b1α+b2λ), α, λ > 0, a1, b1, a2, b2 > 0. (17)

In continuous Bayes’ theorem, the joint posterior PDF of α and λ will be

π∗(α, λ|x, r) = L1(α, λ|x, r)π(α, λ)∫∞
0

∫∞
0

L1(α, λ|x, r)π(α, λ)dαdλ
. (18)

Combining (9) with (17), the joint posterior distribution (18) can be written with proportional as

π∗
1(α, λ|x, r) ∝

(
A(α)αm+a1−1e−b1α

) (
λm+a2−1e−b∗2λ

)
, (19)

where A(α) =
∏m

i=1 x
α
(i) and b∗2 = (b2 + k

∑m
i=1 (ri + 1)xα

(i)). The normalizing constant, C∗
1 , of (19) is given by

C∗
1 =

∫ ∞

0

∫ ∞

0

(
A(α)αm+a1−1e−b1α

) (
λm+a2−1e−b∗2λ

)
dαdλ.

Similarly, combining (6) with (16), the posterior PDF of p becomes

π∗
2(p|R = r) =

1

B(a∗3, b
∗
3)
pa

∗
3−1(1− p)b

∗
3−1, (20)

where a∗3 = a3 +
∑m−1

i=1 ri and b∗3 = b3 + (m− 1)(n−m)−
∑m−1

i=1 (m− i)ri.
Hence, the marginal PDFs of α and λ, are given, respectively, by

f(α|x, r) = A(α)αm+a1−1e−b1α

C∗
2 (b

∗
2)

m+a2
, α > 0,

f(λ|x, r) = λm+a2−1e−b∗2λ

C∗
3

∫ ∞

0

A(α)αm+a1−1e−b1αdα, λ > 0, (21)

where C∗
2 and C∗

3 of (21), are given, respectively, by

C∗
2 =

∫ ∞

0

A(α)αm+a1−1e−b1α

(b∗2)
m+a2

dα,

C∗
3 =

∫ ∞

0

∫ ∞

0

A(α)αm+a1−1λm+a2−1e−(b1α+b∗2λ)dαdλ.

A very well-known symmetric loss function is the SEL function, where θ̃s being an estimate of θ, is defined as
ls(θ, θ̃) = (θ̃ − θ)2. Under this loss, the BE is the posterior mean of θ. Based on (19), the BEs of the parameters α
and λ against SEL function cannot be computed analytically, because they do not result in closed forms. Therefore,
we propose the use of numerical integration method by using MCMC techniques namely Gibbs sampler (see
[22]), and M-H algorithm (see [13]) can be effectively used to generate a samples from the respective posterior
distributions (19) and (20), and in turn to compute the BEs of α, λ and p as well as construct the associated
100(1− γ)% two-sided BCIs. From (19), the full conditional forms of α and λ can be written, respectively, as

π(α|x, λ) ∝ A(α)αm+a1−1e−b1α,

λ|x, α ∼ Gamma(m+ a2, b
∗
2). (22)
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From (22), the samples of λ can be easily generated using any gamma generating routine. But, the full conditional
distribution of α, cannot be reduced analytically to well-known distributions. Therefore, the M-H algorithm with
normal proposal distribution will be used. The detailed procedure can be described as
Step 1: Start with initial guess α(0), λ(0) and p(0).
Step 2: Set J = 1.
Step 3: Generate p(J) from Beta(a∗3, b

∗
3).

Step 4: Generate λ(J) from Gamma(m+ a2, b
∗
2).

Step 5: Using M-H algorithm, generate α(J) from π(α(J−1)|x, λ(J)) with the proposal distribution q(α) ≡
N(α̂,Var(α̂)) as follows:
(a) Let υ = α(J−1), here we set α(0) ≡ α̂.
(b) Generate ω from the proposal distribution q(α).

(c) Let φ(υ, ω) = min

{
1,

π(ω|x)q(υ)
π(υ|x)q(ω)

}
.

(d) Accept ω with probability φ(υ, ω) or accept υ with probability 1− φ(υ, ω).
Step 6: Set J = J + 1.
Step 7: Repeat Steps 3-6 for M times and obtain α(J), λ(J) and p(J) for J = 1, 2, ...,M .

In order to guarantee the convergence, the first simulated varieties, M0, of the algorithm may be biased by the
initial value, therefore, usually discarded in the beginning of the analysis implementation (burn-in period). Then
the selected samples are α(J), λ(J) and p(J) for J = M0 + 1, ...,M , are sufficiently large M . Then, the BEs of
the parameter vector θ, is given by θ̃s =

∑M
J=M0+1 θ

(J)/(M −M0). To compute the BCIs of θ, order θ(J) as

(θ(1), θ(2), . . . , θ(M)), then 100(1− γ)% two-sided BCIs of θ is given by
(
θ[M(γ/2)], θ[M(1−(γ/2))]

)
.

4. A Simulation Study

To study the effectiveness of the estimators obtained in previous sections, we need to simulate progressively first-
failure censored samples with binomial removals from specified WD. All necessary computational algorithms were
coded in R statistical programming language software and were done on a laptop computer with a Core(TM)
i5-2410M processor and 4.00 gigabytes of RAM. To implementing the computations, we used two useful
packages are CODA package, which provides functions for summarizing and plotting the output of MCMC
simulations, proposed by [21], and maxLik package, which using Newton-Raphson method of maximization in
the computations, proposed by [14]. To get such a sample, use the following algorithm:
Step 1: Fix the values of n, m, α, λ and p.
Step 2: Generate a value from the prior densities of α, λ and p.
Step 3: Generate a random number r1 from Bin(n−m, p).
Step 4: Generate random number ri from Bin(n−m−

∑i−1
j=1 rj , p), for i = 2, 3, . . . ,m− 1.

Step 5: Set rm according to the following relation:

rm =

{
n−m−

∑m−1
j=1 rj , if n−m−

∑m−1
j=1 rj > 0,

0, for otherwise.

Step 6: Given R = r, generate a Type-II PCS from U(0, 1) by using the algorithm described in [6].
Step 7: For given values of α and λ, set x(i) = F−1(U), i = 1, 2, . . . ,m. Then, x(i), i = 1, 2, . . . ,m is the

required progressively first-failure censored sample with binomial removals of size m from the WD.

For a different combinations of n, m and k, we generate 1000 progressively first-failure-censored samples from
the WD with arbitrarily true values (α, λ, p) = (1, 1, 0.5). we generate 1000 progressively first-failure-censored
samples from the WD with arbitrarily true values α, λ and p are estimated on the basis of Monte Carlo simulation
study of 1000 samples. Different tests are considered with n = 20(small), n = 40(moderate) and n = 80(large), as
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well as different group sizes k = 1, 3 and 5. The test is terminated when the number of failed subjects achieves or
exceeds a certain value m, where the failure proportion m/n = 30, 60 and 90%.

In Bayesian analysis, the choice of the hyper parameters is the main issue. The choice value of hyper parameters
for the unknown parameters is made by assuming two independent information, namely prior mean and prior
variance of α, λ and p. For computing the BEs, we used informative and non-informative priors for both the
shape and scale parameters. If ai = bi = 0, i = 1, 2, 3, it is called prior (0), in this case the posterior distribution is
proportional to the likelihood function. Other than prior (0), we used two different informative priors, are called,
prior (1): ai = bi = 1, i = 1, 2, 3, and prior (2): ai = bi = 5, i = 1, 2, 3. Using the simulation algorithm proposed
in Section 3, we generate 10,000 MCMC samples, and then the first 2000 iterations (burn-in period) have been
discarded from the generated sequence. The average BEs under SEL function are computed based on 8,000 MCMC
samples. The average values of the MLEs and BEs of α and λ along with their MSEs are computed and summarized
in Tables 2 and 3, respectively. Also, we report the ALs of 95% ACIs/BCIs in Table 4. Since (6) and (20) does
not depend on the group size k, then the average values of the MLEs and BEs of p along with their MSEs are
computed, for different choices of n and m and listed in Table 5. The associated ALs of 95% ACIs/BCIs of p are
listed in Table 6.

Table 2. The average estimates of α with their MSEs (in parentheses).

k n m MLE BE
Prior (0) Prior (1) Prior (2)

1 20 18 1.0934(0.0087) 0.9204(0.0063) 0.9488(0.0026) 1.0435(0.0019)
12 1.1211(0.0147) 0.9205(0.0063) 1.0616(0.0038) 1.0544(0.0029)
6 1.1259(0.0185) 0.9166(0.0069) 1.1009(0.0102) 1.0814(0.0066)

40 36 1.0407(0.0017) 0.9225(0.0055) 1.0179(0.0003) 1.0291(0.0008)
24 1.0423(0.0018) 0.9324(0.0046) 1.0309(0.0009) 1.0378(0.0014)
12 1.0685(0.0047) 0.9226(0.0059) 1.0171(0.0003) 1.0487(0.0023)

80 72 1.0198(0.0004) 0.9300(0.0049) 1.0083(0.0001) 0.9666(0.0011)
48 1.0349(0.0012) 0.9251(0.0056) 1.0208(0.0004) 1.0153(0.0002)
24 1.0355(0.0013) 0.9264(0.0054) 1.0349(0.0012) 1.0103(0.0001)

3 20 18 1.0812(0.0066) 0.8573(0.0204) 1.0390(0.0015) 1.0339(0.0012)
12 1.0271(0.0105) 0.8559(0.0207) 1.0625(0.0039) 1.0545(0.0029)
6 1.1359(0.0185) 0.8540(0.0213) 1.0487(0.0024) 1.0705(0.0049)

40 36 1.0374(0.0014) 0.8684(0.0173) 1.0313(0.0010) 1.0268(0.0007)
24 1.0437(0.0019) 0.8722(0.0163) 1.0382(0.0014) 1.0253(0.0006)
12 1.0608(0.0037) 0.8706(0.0167) 1.0385(0.0015) 1.0327(0.0011)

80 72 1.0156(0.0003) 0.8572(0.0204) 1.0084(0.0001) 0.9856(0.0002)
48 1.0315(0.0010) 0.8655(0.0181) 1.0407(0.0016) 1.0382(0.0015)
24 1.0378(0.0014) 0.8065(0.0375) 0.9736(0.0007) 1.0328(0.0011)

5 20 18 1.0767(0.0059) 0.9056(0.0089) 1.0973(0.0004) 1.0409(0.0016)
12 1.1036(0.0107) 0.9287(0.0051) 1.0549(0.0030) 1.0505(0.0026)
6 1.1359(0.0184) 0.9644(0.0013) 1.0973(0.0095) 1.0615(0.0038)

40 36 1.0280(0.0008) 0.8622(0.0189) 0.9858(0.0002) 1.0295(0.0009)
24 1.0387(0.0015) 0.8582(0.0200) 0.9839(0.0003) 1.0352(0.0012)
12 1.0596(0.0035) 0.8562(0.0207) 1.0415(0.0017) 0.9796(0.0004)

80 72 1.0156(0.0002) 0.8473(0.0233) 0.9711(0.0008) 1.0198(0.0004)
48 1.0298(0.0009) 0.8618(0.0191) 1.0227(0.0005) 0.9709(0.0008)
24 1.0353(0.0012) 0.8738(0.0159) 1.0304(0.0009) 1.0201(0.0004)
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Table 3. The average estimates of λ with their MSEs (in parentheses).

k n m MLE BE
Prior (0) Prior (1) Prior (2)

1 20 18 1.0416(0.0017) 0.8799(0.0144) 1.0407(0.0016) 1.0332(0.0011)
12 1.0902(0.0081) 0.8741(0.0158) 1.0684(0.0047) 1.0365(0.0013)
6 1.1674(0.0280) 0.8726(0.0162) 1.0661(0.0044) 1.0317(0.0010)

40 36 1.0125(0.0002) 0.8794(0.0146) 1.0108(0.0001) 0.9742(0.0007)
24 1.0460(0.0021) 0.8757(0.0155) 0.9906(0.0001) 1.0125(0.0002)
12 1.1241(0.0154) 0.8727(0.0162) 1.0931(0.0087) 1.0165(0.0003)

80 72 1.0093(0.0001) 0.8775(0.0149) 0.9859(0.0002) 0.9894(0.0001)
48 1.0175(0.0003) 0.8802(0.0143) 1.0005(0.0001) 1.0279(0.0007)
24 1.0375(0.0014) 0.8735(0.0160) 1.0354(0.0012) 1.0206(0.0004)

3 20 18 0.3395(0.4362) 0.2313(0.5909) 0.3736(0.3923) 1.0314(0.0010)
12 0.3637(0.4049) 0.2198(0.6087) 0.3561(0.4146) 1.0106(0.0001)
6 0.3891(0.3732) 0.2071(0.6287) 0.3532(0.4184) 1.0209(0.0004)

40 36 0.3374(0.4390) 0.2763(0.5237) 0.3742(0.3916) 0.9537(0.0021)
24 0.3471(0.4263) 0.2745(0.5264) 0.3734(0.3926) 0.9825(0.0003)
12 0.3809(0.3833) 0.2675(0.5365) 0.3672(0.4004) 0.9748(0.0006)

80 72 0.3354(0.3354) 0.2891(0.5054) 0.3872(0.3756) 0.8543(0.0212)
48 0.3383(0.4379) 0.2828(0.5144) 0.3764(0.3888) 0.9612(0.0015)
24 0.3445(0.4297) 0.2797(0.5188) 0.3684(0.3989) 1.0239(0.0006)

5 20 18 0.2118(0.6213) 0.2409(0.5762) 0.3780(0.3868) 0.9686(0.0009)
12 0.2105(0.6233) 0.2313(0.5909) 0.3716(0.3949) 0.9603(0.0016)
6 0.2335(0.5876) 0.2302(0.5926) 0.3671(0.4006) 1.0411(0.0017)

40 36 0.2086(0.6262) 0.2422(0.5742) 0.3787(0.3859) 0.8097(0.0362)
24 0.2087(0.6261) 0.2357(0.5841) 0.3757(0.3898) 0.9397(0.0036)
12 0.2259(0.5993) 0.2312(0.5909) 0.3741(0.3917) 1.0276(0.0008)

80 72 0.2041(0.6333) 0.2472(0.5667) 0.3833(0.3804) 0.5945(0.1644)
48 0.2040(0.6335) 0.2424(0.5739) 0.3689(0.3982) 0.6555(0.1187)
24 0.2092(0.6254) 0.2374(0.5815) 0.3686(0.3991) 0.9251(0.0056)

From the results presented in Tables 2-6, we have seen that the performance of the MLEs is quite close to that
of the BEs under prior (0), as expected. Thus, if we have no prior information on the unknown parameters, then
it is always better to use the MLEs rather than the BEs, because the BEs are computationally more expensive. In
most cases, the BEs are very good than MLEs in terms of MSEs and ALs. If the effective sample size m increases
for given sample size n, the MSEs of the estimators of α, λ and p decrease as failure proportion m/n increases,
as expect. Moreover, as the value of the group size k increases, the MSEs associated with parameter α decrease
while that associated with parameter λ increase. Also, as n increases, the ALs of 95% ACIs/BCIs of α, λ and p
tend to decrease. It is also observed that the BCIs associate with α and λ are better than ACIs in respect of ALs.
Furthermore, the ALs of ACIs for p are narrow down than BCIs. In general, it can be seen that, the BEs based
on prior (2) has perform better than prior (1) in terms of minimum MSEs and ALs for all estimates. Because,
the variance of prior (2) is smaller than prior (1), and both are more informative than the prior (0). Therefore, we
recommend Bayesian point and interval estimation of the parameters using M-H algorithm.
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Table 4. The ALs for 95% ACIs/BCIs of α and λ.

k n m α λ
ACI BCI ACI BCI

Prior Prior Prior Prior Prior Prior
(0) (1) (2) (0) (1) (2)

1 20 18 0.7398 0.2182 0.1074 0.0959 0.9673 0.1942 0.1248 0.0990
12 0.8112 0.2208 0.1270 0.1077 1.2720 0.2096 0.1094 0.0952
6 0.9025 0.2259 0.1417 0.1177 1.8861 0.2099 0.1144 0.0953

40 36 0.5242 0.2124 0.1048 0.1007 0.9363 0.2127 0.0976 0.0854
24 0.5339 0.2055 0.0849 0.1005 0.8724 0.2089 0.1095 0.0941
12 0.7905 0.2075 0.1040 0.1016 1.2756 0.2198 0.0933 0.0931

80 72 0.3707 0.2051 0.0971 0.0991 0.4881 0.2105 0.0984 0.0791
48 0.4056 0.2107 0.0861 0.1063 0.6343 0.2073 0.0727 0.0661
24 0.5272 0.2104 0.1013 0.0962 0.8309 0.2098 0.0534 0.0729

3 20 18 0.7102 0.2148 0.0977 0.0851 0.3155 0.2072 0.0949 0.0949
12 0.7594 0.2211 0.1249 0.0924 0.4134 0.2069 0.0897 0.0954
6 0.8949 0.2205 0.1363 0.0999 0.6234 0.2142 0.0885 0.0964

40 36 0.5039 0.2076 0.0943 0.0554 0.2217 0.2054 0.0898 0.0790
24 0.5419 0.2063 0.0793 0.0949 0.2806 0.2071 0.0989 0.0762
12 0.7915 0.2028 0.1006 0.0727 0.4317 0.2172 0.0948 0.0923

80 72 0.3643 0.2056 0.0869 0.0776 0.1551 0.2059 0.0752 0.0705
48 0.3776 0.2084 0.0791 0.0726 0.1924 0.2097 0.0757 0.0634
24 0.5270 0.2099 0.0999 0.0889 0.2757 0.2043 0.0629 0.0872

5 20 18 0.6867 0.2138 0.0834 0.0672 0.1958 0.2063 0.0945 0.0821
12 0.7588 0.2120 0.1218 0.0822 0.2391 0.2010 0.0866 0.0875
6 0.8943 0.2050 0.1369 0.1003 0.3737 0.2113 0.0804 0.0717

40 36 0.3977 0.2109 0.0782 0.0576 0.1373 0.2046 0.0839 0.0846
24 0.5304 0.2083 0.0731 0.0802 0.1672 0.2094 0.0959 0.0819
12 0.7749 0.2066 0.0978 0.0924 0.2565 0.2105 0.0856 0.0934

80 72 0.3553 0.2099 0.0749 0.0753 0.0945 0.2082 0.0635 0.0532
48 0.3578 0.2081 0.0760 0.0864 0.1159 0.2066 0.0790 0.0565
24 0.5236 0.2093 0.0794 0.0808 0.1675 0.2015 0.0825 0.0588

5. Real Data Analysis

Here, we consider the real-life data set presented by [19] to illustrate the proposed methods in the previous sections.
This data set consists of 30 failure times of the air conditioning system of an airplane. [12] analyzed this data set.
Recently, [9, 3] fitted the WD for this real data set and concluded that the data are coming from the WD. To
compute the MLEs, we plot the profile log-likelihood function in Figure 1 to obtain the initial guess of α. Figure 1
shows that the profile log-likelihood function is unimodal, so we suggest using α = 0.1 as an initial value to start
the iteration to obtain the MLEs. The ordered data of 30 failure times are: 1, 3, 5, 7, 11, 11, 11, 12, 14, 14, 14,
16, 16, 20, 21, 23, 42, 47, 52, 62, 71, 71, 87, 95, 90, 120, 120, 225, 246, 261. Using this sample, a progressively
first-failure censored sample is generated with binomial removals from the real data set with m = 10 and p = 0.5.
Put this ordered data are in test, simultaneously, and randomly grouped into n = 15 groups within k = 2 items in
each group. Using the algorithm discussed in Section 4, the generated sample from the real data set is presented in
Table 7. The BEs of α, λ and p can be obtained by run the chain for 6,000 iterations. Further, bun-in M0 = 1000
samples to erase the effect of the initial values.
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Table 5. The average estimates of p with their MSEs (in parentheses).

n m MLE BE
Prior (0) Prior (1) Prior (2)

20 18 0.0588(0.1946) 0.0578(0.1969) 0.0854(0.1739) 0.1561(0.1213)
12 0.0908(0.1674) 0.0920(0.1673) 0.1001(0.1608) 0.1342(0.1350)
6 0.1857(0.0988) 0.1980(0.0934) 0.2079(0.0876) 0.2371(0.0714)

40 36 0.0286(0.2222) 0.0275(0.2234) 0.0352(0.2163) 0.0587(0.1951)
24 0.0435(0.2084) 0.0437(0.2082) 0.0465(0.2058) 0.0565(0.1968)
12 0.0909(0.1674) 0.0913(0.1673) 0.0941(0.1650) 0.1035(0.1575)

80 72 0.0141(0.2361) 0.0144(0.2358) 0.0159(0.2344) 0.0229(0.2277)
48 0.0213(0.2292) 0.0214(0.2291) 0.0221(0.2284) 0.0246(0.2261)
24 0.0435(0.2084) 0.0436(0.2083) 0.0444(0.2076) 0.0469(0.2053)

Table 6. The ALs for 95% ACIs/BCIs of p.

n m ACI BCI
Prior (0) Prior (1) Prior (2)

20 18 0.1381 0.1383 0.1711 0.2096
12 0.1206 0.1204 0.1207 0.1339
6 0.1854 0.1812 0.1885 0.1913

40 36 0.0552 0.0531 0.0609 0.0754
24 0.0417 0.0415 0.0421 0.0462
12 0.0645 0.0635 0.0665 0.0684

80 72 0.0194 0.0189 0.0199 0.0239
48 0.0146 0.0140 0.0149 0.0158
24 0.0223 0.0218 0.0224 0.0232

Figure 1. Profile log-likelihood function of α

Moreover, some important characteristics such as: mean, median, mode, standard deviation (SD), standard error
(SE) and skewness (Sk.) for MCMC posterior distributions of α, λ and p after bun-in; are computed and provided
in Table 8. Since, we have no prior information about the unknown parameters, we assume that the non-informative
priors of the unknown parameters. The MLEs, BEs as well as 95% ACIs/BCIs of α, λ and p are computed and
reported in Table 9. Also, the trace plots of MCMC outputs for posterior distribution of α, λ and p for the real data
set are plotted in Figure 2, which indicates that the MCMC procedure converges very well. Table 8 shows that the
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SEs of the Bayes MCMC estimates are very close to zero. Furthermore, the histograms and the posterior density
functions for the MCMC output of α, λ and p are plotted in Figure 3. It is observed that the histograms of the
generated posteriors match quite well with the theoretical posterior density functions.

Figure 2. Trace plots of α, λ and p obtained from MCMC method.

Figure 3. Histogram of α, λ and p generated by MCMC method.

Table 7. A generated progressively first-failure censored sample with binomial removals.

i 1 2 3 4 5 6 7 8 9 10
ri 3 1 0 0 0 0 1 0 0 0
x(i) 1 14 16 21 42 52 71 90 120 246

Table 8. The MCMC results for some posterior characteristics.

Parameter Mean Median Mode SD SE Sk.
α 0.6244 0.6272 0.5894 0.060997 0.000863 −0.090209
λ 0.0574 0.0553 0.0089 0.018176 0.000257 0.649514
p 0.1114 0.1055 0.0099 0.046898 0.000663 0.742705
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Table 9. The MLEs and BEs with their 95% ACIs/BCIs.

Parameter MLE BE ACI BCI
α 0.9679 0.6244 (0.5108,1.4249) (0.5086,0.7323)
λ 0.0076 0.0574 (0.0000,0.0241) (0.0278,0.0977)
p 0.4167 0.1114 (0.1377,0.6956) (0.0378,0.2157)

6. Concluding Remarks

The purpose of this paper is to develop the estimation problems for the Weibull parameters when data are collected
under PFFCS-BR, i.e., we extend the results of [26] in the case of WD under pre-fixed removals to the random
removals, where the number of groups removed at each first-failure time follows a binomial distribution. Moreover,
we generalized many several works and may be obtained as a special cases from the new results such as: [24] if
putting k = 1, [25] results in the case of exponential distribution by putting α = 1 and replacing λ by θ−1, [10]
results in the case of Rayleigh distribution by putting α = 2. Both the classical and Bayesian inference procedures
for the parameters of WD have been discussed. Independent gamma priors are assumed for both the unknown two
parameters of WD and provide the BEs relative to the SEL function. Since the MLEs and BEs cannot be obtained
in closed forms, so the M-H algorithm and Gibbs sampler are considered. Also, 95% two-sided ACIs/BCIs of the
parameters α, λ and p are constructed. A Monte Carlo simulation study was conducted to assess the performance
of the MLEs and BEs. Using MCMC techniques with different values of k, n and m, simulation results provided
that the BEs based on non-informative prior are very similar the MLEs, but in the case of informative priors. In
terms of minimum MSEs and ALs, the Bayesian procedure provides better estimates than MLEs. Also, we have
seen that the MSEs of different BEs and MLEs of the unknown parameters are decreasing when the sample size n
and effective failure proportion n/m increasing, as expect.
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