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1. Introduction

The Poisson Lomax distribution was proposed by [3], as a three-parameter lifetime distribution with upside-down
bathtub shaped failure rate and heavy tailed, and can be used in modelling many practical situation. It is a compound
distribution of the zero-truncated Poisson and the Lomax distributions.

A random variable X is said to follow the Poisson Lomax distribution (PLD) if its probability density function
(pdf ) is of the form

f(x) =
αβλ(1 + βx)−(1+α)e−λ(1+βx)−α

1− e−λ
, x > 0, α > 0, β > 0, λ > 0, (1)

and the corresponding survival function is

F̄ (x) =
1− e−λ(1+βx)−α

1− e−λ
, x > 0, α > 0, β > 0, λ > 0, (2)

where F̄ (x) = 1− F (x).

In view of (1) and (2), it can be seen that

f(x) = c1(1 + βx)−(α+1) − c2(1 + βx)−(α+1)F̄ (x). (3)

where c1 = αβλ
1−e−λ and c2 = αβλ.
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Relation (3) can also be expressed as

F̄ (x)

f(x)
=

1

αβλ

∞∑
a=0

[α(1−a)+1)]∑
b=0

λa

a!

(
[α(1− a) + 1)]

b

)
βbxb (4)

where [α(1− a) + 1)] is an integer.

1.1. Generalized order statistics

The concept of generalized order statistics was introduced and extensively studied by [17], which includes
different ordered random schemes, such as order statistics, record values, sequential order statistics, progressively
type II censored order statistics and Pfeifer’s records as its special cases.

Let n ≥ 2 be a given integer and m̃ = (m1,m2, . . . ,mn−1) ∈ Rn−1, k ≥ 1 be the parameters, such that

γi = k + n− i+

n−1∑
j=i

mj ≥ 0 for 1 ≤ i ≤ n− 1.

The random variables X(1, n, m̃, k), X(2, n, m̃, k), . . . , X(n, n, m̃, k) are said to be generalized order statistics
from an absolutely continuous distribution function F () with the probability density function (pdf ) f(), if their
joint pdf is of the form

k
( n−1∏

j=1

γj

)( n−1∏
i=1

[
1− F (xi)

]mi
f(xi)

)[
1− F (xn)

]k−1
f(xn) (5)

on the cone F−1(0) < x1 ≤ x2 ≤ . . . ≤ xn < F−1(1).

If mi = 0; i = 1 . . . n− 1, k = 1, we obtain the joint pdf of the order statistics and for mi → −1, k ∈ N , we get
joint pdf of kth upper record values.

Here we may consider two cases:

Case I. γi ̸= γj , i, j = 1, 2, . . . , n− 1, i ̸= j.

In view of (5), the pdf of rth gos X(r, n, m̃, k) is given as ([18])

fX(r,n,m̃,k)(x) = Cr−1f(x)

r∑
i=1

ai(r)[F̄ (x)]γi−1, (6)

where

Cr−1 =

r∏
i=1

γi, γi = k + n− i+

n−1∑
j=1

mj > 0,

and

ai(r) =

r∏
j=1
j ̸=i

1

(γj − γi)
, 1 ≤ i ≤ r ≤ n.

The joint pdf of X(r, n, m̃, k) and X(s, n, m̃, k), 1 ≤ r < s ≤ n, is given as ([18])

fX(r,n,m̃,k),X(s,n,m̃,k)(x, y) = Cs−1

s∑
j=r+1

aj
(r)(s)

(
F̄ (y)

F̄ (x)

)γj
[

r∑
i=1

ai(r)[F̄ (x)]γi

]
f(x)

F̄ (x)

f(y)

F̄ (y)
, x < y, (7)
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where

ai
(r)(s) =

s∏
I=r+1
I ̸=j

1

(γI − γj)
, r + 1 ≤ j ≤ s ≤ n.

Case II : mi = m, i = 1, 2, . . . , n− 1.

The pdf of rth gos X(r, n,m, k) is given as ([17])

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1 f(x) gr−1

m (F (x)), (8)
where

Cr−1 =

r∏
i=1

γi , γi = k + (n− i)(m+ 1),

hm(x) =


− 1

m+ 1
(1− x)m+1 , m ̸= −1

log
( 1

1− x

)
, m = −1

and

gm(x) = hm(x)− hm(0) =

∫ x

0

(1− t)mdt, x ∈ [0, 1).

The joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is given as ([17])

fX(r,n,m,k),X(s,n,m,k)(x, y) =
Cs−1

(r − 1)! (s− r − 1)!
[F̄ (x)]m gr−1

m (F (x))[hm(F (y))− hm(F (x))]s−r−1

× [F̄ (y)]γs−1 f(x) f(y), −∞ ≤ x < y ≤ ∞. (9)

.
Also from [23], for mi = m ̸= −1, i = 1, 2, . . . , n− 1.

ai(r) =
(−1)r−i

(m+ 1)r−1(r − 1)!

(
r − 1

i

)
(10)

a
(r)
i (s) =

(−1)s−i

(m+ 1)s−r−1(r − 1)!

(
s− r − 1

i

)
(11)

A large volume of work has been done on the study of moments and recurrence relations between moments
of generalized order statistics. The moments of ordered random schemes assume considerable importance in
the statistical literature. Many authors have investigated and derived several recurrence relations and identities
satisfied by the single as well as product moments. [24],[25] studied the recurrence relations and identities for
moments of order statistics for some specific distributions. Recurrence relations for the expected values of certain
functions of order statistics are considered by [1], [2]. [7] investigated the relations between expected values of
functions of gos. For more detailed survey, one may refer to [4], [5], [8], [12], [15], [18], [19], [26], [27], [29],
[30], [32] and references therein.

The characterization of a probability distribution has always been the important topic in statistics and
mathematical sciences. Several approaches are available to characterize a probability distribution. In this paper, first
we established recurrence relations between single and product moments of gos from PLD. Then, these relation
are used to characterize the said distribution. Also a characterization theorem based on conditional expectation is
presented. For related results on characterization, one can see [6], [9], [10], [11], [13], [20], [22] and [28] among
others.
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1.2. Gauss hypergeometric function

Gauss hypergeometric function is defined as

2F1(a, b; c;x) =

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
(12)

where c ̸= 0,−1,−2, . . .. It converges if one of the following conditions holds:
(i) |x| < 1;
(ii) |x| = 1, Re(c− a− b) > 0.

2. Single Moments

Theorem1
Let case I be satisfied. For the PLD given in (1) and for n ϵ N, m̃ ϵ R, k > 0, 1 ≤ r ≤ n, p = 1, 2, . . .

E[Xp(r, n, m̃, k)] = αCr−1

r∑
i=1

γi−1∑
j=0

∞∑
l=0

ai(r)

(
γi − 1

j

)
(−1)j+lλl(j + 1)l

βp(1− e−λ)γi l!
B(p+ 1, α+ αl − p), (13)

where B(x, y) is complete beta function.
Proof
We have

E[Xp(r, n, m̃, k)] = Cr−1

∫ ∞

0

xp
r∑

i=1

ai(r)[F̄ (x)]γi−1f(x)dx

= Cr−1

r∑
i=1

ai(r)

∫ ∞

0

xp[F̄ (x)]γi−1

×
{
αβλ(1 + βx)−(α+1)

1− e−λ
− αβλ(1 + βx)−(α+1)F̄ (x)

}
dx

= αβλCr−1

r∑
i=1

ai(r)

(1− e−λ)γi

∫ ∞

0

xp(1 + βx)−(α+1)

× {1− e−λ(1+βx)−α

}γi−1e−λ(1+βx)−α

dx

= αβλCr−1

r∑
i=1

ai(r)

(1− e−λ)γi

γi−1∑
j=0

(
γi − 1

j

)
(−1)j

∞∑
l=0

(−1)lγl(j + 1)l

l!

×
∫ ∞

0

xp(1 + βx)−(α+αl+1)dx.

Now, by using the result from [14] p. 315 given as,∫ ∞

0

xµ−1(1 + βx)−νdx = β−µB(µ, ν − µ) (14)

we get

E[Xp(r, n, m̃, k)] = αCr−1

r∑
i=1

γi−1∑
j=0

∞∑
l=0

(
γi − 1

j

)
ai(r)λ

l(j + 1)l(−1)j+l

βp(1− e−λ)γi l!
B(p+ 1, α+ αl − p). (15)
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Hence the theorem.

Corollary1
When mi = m, i = 1, 2, . . . , n− 1, relation (13) reduces to the single moment of gos for Case-II.

E[Xp(r, n,m, k)] = α Cr−1

r∑
i=1

γi−1∑
j=0

∞∑
l=0

(
γi − 1

j

)(
r − 1

i

)

× (−1)r−i+j+lλl+1(j + 1)l

(r − 1)! (m+ 1)r−1βp(1− e−λ)γi l!
B(p+ 1, α+ αl − p). (16)

Theorem2
For the conditions as stated in Theorem 1. The recurrence relation for single moments of gos for PLD is given as

E[Xp(r, n, m̃, k)]− E[Xp(r − 1, n, m̃, k)] = p Cr−2

r∑
i=1

γi∑
j=0

∞∑
l=0

(
γi
j

)

× ai(r) (−1)j+lλljl

l! βp(1− e−λ)γi
B(p, αl − p). (17)

Also,

E[Xp(r, n, m̃, k)]− E[Xp(r − 1, n, m̃, k)] =

p

γrαβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[Xp+b−1(r, n, m̃, k)]. (18)

Proof
We have by [7].

E[ξ{X(r, n, m̃, k)}]− E[ξ{X(r − 1, n, m̃, k)}] = Cr−2

∫ ∞

−∞
ξ′(x)

r∑
i=1

ai(r)[F̄ (x)]γidx. (19)

For ξ(x) = xp in (19), recurrence relation for single moments of gos is

E[Xp(r, n, m̃, k)]− E[Xp(r − 1, n, m̃, k)]

= p Cr−2

∫ ∞

0

xp−1
r∑

i=1

ai(r)[F̄ (x)]γidx.

= p Cr−2

r∑
i=1

ai(r)

∫ ∞

0

xp−1

{
1− e−λ(1+βx)−α

1− e−λ

}γi

dx.

= p Cr−2

r∑
i=1

γi∑
j=0

∞∑
l=0

(
γi
j

)
ai(r)(−1)j+lλljl

l! (1− e−λ)γi

∫ ∞

0

xp−1(1 + βx)−αldx. (20)

Now on simplification of (20) and using (14) we get the required result (17).

The expression (18) can be proved in view of [7] using (4).
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Corollary2
When mi = m, i = 1, 2, . . . , n− 1, relation (17) and (18) reduces to the single moment of gos for Case-II.

E[Xp(r, n,m, k)]− E[Xp(r − 1, n,m, k)] = p Cr−2

r∑
i=1

γi∑
j=0

∞∑
l=0

(
γi
j

)(
r − 1

i

)

× (−1)j+l+r−iλljl

(m+ 1)r−1(r − 1)! l! βp(1− e−λ)γi
B(p, αl − p). (21)

Also

E[Xp(r, n,m, k)]− E[Xp(r − 1, n,m, k)] =

p

γrαβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[Xp+b−1(r, n,m, k)]. (22)

Remark1
Putting mi = 0, i = 1, 2, . . . , n− 1 and k = 1, we get the recurrence relation for single moments of order statistics

E[Xp
r:n]− E[Xp

r−1:n] =
p

(n− r − 1)αβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[Xp+b−1

r:n ]

Remark2
When mi → −1, i = 1, 2, . . . , n− 1, the recurrence relation for single moments of kth upper record values will be

E(X
(k)
U(r))

p − E(X
(k)
U(r−1))

p =
p

kαβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E(X

(k)
U(r))

p+b−1.

3. Product Moments

Theorem3
Let case-I be satisfied For the Poisson Lomax distribution given as in (1) and for n ∈ N, m̃ ∈ R, k > 0, 1 ≤ r <
s ≤ n, p, q = 1, 2, . . . , then the (p, q)th product moment is given by

µp,q
r,s,n,m̃,k = α2 Cs−1

r∑
i=1

s∑
j=r+1

γj−1∑
l=0

∞∑
u=0

γi−γj−1∑
v=0

∞∑
w=0

ai(r) a
(r)
j (s)

×
(
γj − 1

l

)(
γi − γj − 1

v

)
(α+ αt+ 1)u (α+ αt− q)w

u! (α+ αt− q + 1)u

× (−1)l+t+v+w+u λt+w+2(l + 1)t(v + 1)w

t! (1− e−λ)γiβp+q−1(α+ αt− q)
(23)

Proof
We have

µp,q
r,s,n,m̃,k = E[Xp(r, n, m̃, k), Xq(s, n, m̃, k)]

= Cs−1

r∑
i=1

ai(r)

s∑
j=r+1

a
(r)
j (s)

∫ ∞

0

∫ ∞

x

xpyq
[
F̄ (y)

F̄ (x)

]γj

[F̄ (x)]γi
f(x)

F̄ (x)

f(y)

F̄ (y)
dx dy
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= Cs−1

r∑
i=1

ai(r)

s∑
j=r+1

a
(r)
j (s)

∫ ∞

0

∫ ∞

x

xpyq[F̄ (y)]γj−1[F̄ (x)]γi−γj−1f(x) f(y)dx dy

= Cs−1

r∑
i=1

ai(r)

s∑
j=r+1

a
(r)
j (s)

∫ ∞

0

xp[F̄ (x)]γi−γj−1f(x)dx

∫ ∞

x

yq[F̄ (y)]γj−1 f(y)dy . (24)

Consider

I(y) =

∫ ∞

x

yq[F̄ (y)]γj−1 f(y)dy

=

∫ ∞

x

yq[F̄ (y)]γj−1

{
αβλ(1 + βy)−(α+1)

1− e−λ
− αβλ(1 + βy)−(α+1) F̄ (y)

}
dy

=
αβλ

(1− e−λ)γi

∫ ∞

x

yq(1 + βy)−(α+1)[1− e−λ(1+βy)−α

]γj−1 e−λ(1+βy)−α

dy

=
αβλ

(1− e−λ)γi

γj−1∑
l=0

(
γj − 1

l

) ∞∑
t=0

(−1)l+tλt(l + 1)t

t!
×
∫ ∞

x

yq(1 + βy)−(α+αt+1)dy. (25)

Since we have from [14], p. 315.∫ ∞

u

xµ−1(1 + βx)−νdx =
uµ−ν

βν(µ− ν)
2F1

(
ν, ν − µ; ν − µ+ 1;− 1

βu

)
. (26)

Thus using (26) and (12) in (25), we get

I(y) =
α

(1− e−λ)γi

γj−1∑
l=0

(
γj − 1

l

) ∞∑
t=0

(−1)l+tλt+1(l + 1)t

t!

× xq−α−αt

βα+αt(q − α− αt)
2F1

(
α+ αt+ 1, α+ αt− q;α+ αt+ 1;− 1

βx

)
.

I(y) =
α

(1− e−λ)γi

γj−1∑
l=0

(
γj − 1

l

) ∞∑
t=0

∞∑
u=0

(−1)l+t+uλt+1(l + 1)txq−α−αt−1

t!u! βα+αt(q − α− αt)

× (α+ αt+ 1)u(α+ αt− q)u
(q − α− αt− q + 1)u

. (27)

Now using (27) in (24), we get

µp,q
r,s,n,m̃,k = α Cs−1

r∑
i=1

ai(r)

(1− e−λ)γi

s∑
j=r+1

a
(r)
j (s)

γj−1∑
l=0

(
γj − 1

l

)

×
∞∑
t=0

∞∑
u=0

(−1)l+t+uλt+1(l + 1)t

t!u! βα+αt(q − α− αt)

(α+ αt+ 1)u(α+ αt− q)u
(q − α− αt− q + 1)u

×
∫ ∞

0

xp+q−α−αt−u[F̄ (x)]γi−γj−1f(x)dx. (28)

Again consider the integral of (28) as

I(x) =

∫ ∞

0

xp+q−α−αt−u[F̄ (x)]γi−γj−1f(x)dx.

Stat., Optim. Inf. Comput. Vol. 9, September 2021
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=

∫ ∞

0

xp+q−α−αt−u[F̄ (x)]γi−γj−1

{
αβλ(1 + βx)−(α+1)

1− e−λ
− αβλ(1 + βx)−(α+1)F̄ (x)

}
dx.

=
αβλ

(1− e−λ)γi−γj

∫ ∞

0

xp+q−α−αt−u(1 + βx)−(α+1)e−λ(1+βx)−α

(1− e−λ(1+βx)−α

)γi−γj−1dx.

=
αβλ

(1− e−λ)γi−γj

γi−γj−1∑
v=0

(
γi − γj − 1

v

) ∞∑
w=0

(−1)v+wλw(v + 1)w

w!

×
∫ ∞

0

xp+q−α−αt−u(1 + βx)−(α+αt+1)dx.

=
αβλ

(1− e−λ)γi−γj

γi−γj−1∑
v=0

(
γi − γj − 1

v

) ∞∑
w=0

(−1)v+wλw(v + 1)w

w! βp+q−u−α−αt+1

×B(p+ q − u− α− αt+ 1, α(t+ w + 2)− p− q + u). (29)

Now using (29) in (28), we get the required result.

Corollary3
When mi = m, i = 1, 2, . . . , n− 1, relation (23) reduces to the product moment of gos for Case-II.

µp,q
r,s,n,m,k = α2 Cs−1

r∑
i=1

s∑
j=r+1

γj−1∑
l=0

∞∑
u=0

γi−γj−1∑
v=0

∞∑
w=0

(
r − 1

i

)(
s− r − 1

j

)
×
(
γj − 1

l

)(
γi − γj − 1

v

)
(α+ αt+ 1)u (α+ αt− h)w

u! (α+ αt− q + 1)u

× (−1)r+s−i−jl+t+v+w+u λt+w+2(l + 1)t(v + 1)w

(m+ 1)s−2 (r − 1)!2t! (1− e−λ)γiβp+q−1(α+ αt− q)

Theorem4
Under the condition as stated in Theorem 3 The recurrence relation for product moments is given as

E[Xp(r, n, m̃, k)Xq(s, n, m̃, k)]− E[Xp(r, n, m̃, k)Xq(s− 1, n, m̃, k)]

= q α Cs−1

r∑
i=1

ai(r)

s∑
j=r+1

a
(r)
j (s)

γj∑
l=0

∞∑
c=0

∞∑
d=0

γi−γj−1∑
t=0

∞∑
u=0

×
(
γj

l

)(
γi−γj−1

t

)
(1− e−λ)γi

(αc)d(αc− q)d
(αc− q + 1)d

× λc+u+1lc(t+ 1)u(−1)l+c+d+t+q

u! d! βp+q(αc− q)

×B(p+ αc− d+ 1;α− αu− p− q + αc+ d). (30)

Also,

E[Xp(r, n, m̃, k)Xq(s, n, m̃, k)]− E[Xp(r, n, m̃, k)Xq(s− 1, n, m̃, k)]

=
q

γs αβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[Xp(r, n, m̃, k)Xq+b−1(s, n, m̃, k)]. (31)

Proof
We have by [7],
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E[ξ {X(r, n, m̃, k), X(s, n, m̃, k)}] − E[ξ {X(r, n, m̃, k), X(s− 1, n, m̃, k)}]

= q Cs−1

∫ ∞

−∞

∫ ∞

x

∂

∂y
ξ(x, y)

s∑
j=r+1

a
(r)
j (s)

[
F̄ (y)

F̄ (x)

]γj r∑
i=1

ai(r)[F̄ (x)]γi
f(x)

F̄ (x)
dy dx.

Let ξ(x, y) = ξ1(x)ξ2(y) = xpyq, we get

E[Xp(r, n, m̃, k)Xq(s, n, m̃, k)]− E[Xp(r, n, m̃, k)Xq(s− 1, n, m̃, k)]

= q Cs−1

r∑
i=1

ai(r)

s∑
j=r+1

a
(r)
j (s)

∫ ∞

0

xp[F̄ (x)]γi−γj−1f(x)dx

∫ ∞

x

yq−1[F̄ (y)]γj−1 f(y)dy .

Proceeding on the lines of Theorem 3.1, the relation (30) yields on, using(26) and (12) and simplifications.

The relation (31) can be proved in view of [7] and using (4).

Corollary 4
When mi = m, i = 1, 2, . . . , n− 1, relation (30) and (31) reduces to the product moment of gos for Case-II.

E[Xp(r, n,m, k)Xq(s, n,m, k)]− E[Xp(r, n,m, k)Xq(s− 1, n,m, k)]

= q α Cs−1

r∑
i=1

s∑
j=r+1

γj∑
l=0

∞∑
c=0

∞∑
d=0

γi−γj−1∑
t=0

∞∑
u=0

(
r − 1

i

)(
s− r − 1

j

)

×
(
γj

l

)(
γi−γj−1

t

)
(m+ 1)s−2(r − 1)!2

(αc)d(αc− q)d
(αc− q + 1)d

× λc+u+1lc(t+ 1)u(−1)l+c+d+t+q+r+s−i−j

u! d! βp+q(1− e−λ)γi(αc− q)

×B(p+ αc− d+ 1;α− αu− p− q + αc+ d).

Also,

E[Xp(r, n,m, k)Xq(s, n,m, k)]− E[Xp(r, n,m, k)Xq(s− 1, n,m, k)]

=
q

γsαβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[Xp(r, n,m, k)Xq+b−1(s, n,m, k)].

Remark 3
Let mi = 0, i = 1, 2, . . . , n− 1 and k = 1, then the recurrence relation for product moments of order statistics is

E[Xp
r:nX

q
s:n]− E[Xp

r:nX
q
s−1:n] =

q

(n− s− 1)αβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[Xp

r:nX
q+b−1
s:n ].

Remark 4 When mi → −1, i = 1, 2, . . . , n− 1, the recurrence relation for product moments of kth upper record
values will be

E[(X
(k)
U(r))

p(X
(k)
U(s))

q]− E[(X
(k)
U(r))

p(X
(k)
U(s−1))

q]

=
q

k αβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[(X

(k)
U(r))

p(X
(k)
U(s))

q+b−1].
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4. Characterizations

This section contains characterization results for the given distribution through recurrence relations for single and
product moments of gos as well as through conditional moments.

Theorem 5
Fix a positive integer k and let p be a non-negative integer. A necessary and sufficient condition for a random
variable X to be distributed with pdf given by (1) is that

E[Xp(r, n,m, k)]− E[Xp(r − 1, n,m, k)] =

p

γrαβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[Xp+b−1(r, n,m, k)]. (32)

Proof
The necessary part follows from (22). On the other hand, if the relation in (32) is satisfied, then on using [7], for
ξ(x) = xp, we have

p

γr

Cr−1

(r − 1)!

∫ ∞

0

xp−1[F̄ (x)]γr gr−1
m (F (x))dx

=
p

γrαβλ

Cr−1

(r − 1)!

∫ ∞

0

xp−1[F̄ (x)]γr−1 gr−1
m (F (x))

×


∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λa(βx)b

a!
f(x)

dx

or

p

γrαβλ

Cr−1

(r − 1)!

∫ ∞

0

xp−1[F̄ (x)]γr−1 gr−1
m (F (x))

×

αβλF̄ (x)−
∞∑
a=0

[α(1−a)+1]∑
b=1

λa(βx)b

a!

(
[α(1− a) + 1]

b

)
f(x)

 = 0 (33)

Applying the extension of Müntz-Szász theorem (see, for example, [16]) to (33), we get

F̄ (x) =
1

αβλ

∞∑
a=0

[α(1−a)+1)]∑
b=0

λa

a!

(
[α(1− a) + 1)]

b

)
βbxbf(x).

which proves the theorem.

Theorem 6
Fix a positive integer k and let p and q be non-negative integers. A necessary and sufficient condition for a random
variable X to be distributed with pdf given by (1) is

E[Xp(r, n,m, k)Xq(s, n,m, k)]− E[Xp(r, n,m, k)Xq(s− 1, n,m, k)]

=
q

γsαβλ

∞∑
a=0

[α(1−a)+1]∑
b=1

(
[α(1− a) + 1]

b

)
λaβb

a!
E[Xp(r, n,m, k)Xq+b−1(s, n,m, k)]. (34)
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Proof
The necessary part follows from (31). Now, suppose that the relation in (34) is satisfied. Then, using [7], for
ξ(x, y) = xpyq, we have

q

γs

Cs−1

(r − 1)!(s− r − 1)!

∫ ∞

0

∫ ∞

x

xpyq−1[F̄ (x)]mf(x)gr−1
m (x)

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γsdydx

=
q

γsαβλ

Cs−1

(r − 1)!(s− r − 1)!

∫ ∞

0

∫ ∞

x

xpyq−1[F̄ (x)]mf(x)gr−1
m (x)

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1

×


∞∑
a=0

[α(1−a)+1]∑
b=1

λa(βy)b

a!

(
[α(1− a) + 1]

b

)
f(y)

 dydx

which implies,

q

γsαβλ

Cs−1

(r − 1)!(s− r − 1)!

∫ ∞

0

∫ ∞

x

xpyq−1[F̄ (x)]mf(x)gr−1
m (x)

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1

×

αβλF̄ (y)−
∞∑
a=0

[α(1−a)+1]∑
b=1

λa(βy)b

a!

(
[α(1− a) + 1]

b

)
f(y)

 dydx = 0. (35)

Now applying the extension of Müntz-Szász theorem (see, for example, [16]) to (35), we get

F̄ (y) =

∞∑
a=0

[α(1−a)+1]∑
b=1

λa(βy)b

a!

(
[α(1− a) + 1]

b

)
f(y),

which proves the theorem.

Theorem 7
Let X(r, n,m, k), r = 1, 2, . . . , n be the the rth gos based on continuous df F () and E(X) exists. Then for two
consecutive values r and r + 1, such that 1 ≤ r < r + 1 ≤ n,

E
[
e−λ

(
1+βX(r+1,n,m,k)

)−α∣∣X(r, n,m, k) = x] =
γr+1e

−λ
(
1+βx

)−α

+ 1

γr+1 + 1
(36)

if and only if

F̄ (x) =
1− e−λ(1+βx)−α

1− e−λ
, x > 0, α > 0, β > 0, λ > 0. (37)

Proof
[21] have shown that

E
[
h
(
X(s, n,m, k)

)
|X(r, n,m, k) = x

]
= a∗h(x) + b∗ (38)

if and only if

F̄ (x) =
[
ah(x) + b

]c (39)
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with a∗ =
∏s

j=r+1

(
cγj

1+cγj

)
and b∗ = − b

a (1− a∗).

Comparing (37) with (39), we get

a = − 1
1−e−λ , h(x) = e−λ

(
1+βx

)−α

, b = 1
1−e−λ , c = 1.

Thus, the theorem can be proved in view of (38).

Corollary 5
For the rth order statistics Xr:n, r = 1, 2, ...n and under the condition as stated under Theorem 4.3

E
[
e−λ

(
1+βXr+1:n

)−α∣∣Xr:n = x
]
=

(n− r)e−λ
(
1+βx

)−α

+ 1

(n− r + 1)
(40)

and consequently

E
[
e−λ

(
1+βXn:n

)−α∣∣Xn−1:n = x
]
= E

[
e−λ

(
1+βX

)−α

|X ≥ x
]

=
e−λ

(
1+βx

)−α

+ 1

2
(41)

if and only if

F̄ (x) =
1− e−λ(1+βx)−α

1− e−λ
, x > 0;α, β, λ > 0. (42)

It may be noted that similar characterization result can also be seen for adjacent records as

E
[
e−λ

(
1+βXU(n)

)−α∣∣XU(n−1) = x
]
= E

[
e−λ

(
1+βX

)−α

|X ≥ x
]

=
e−λ

(
1+βx

)−α

+ 1

2
. (43)

5. Conclusion

The moments of ordered random variables and recurrence relations between them have received great attention in
the past few years in statistical literature. We have obtained exact expressions and recurrence relations for single
and product moments of generalized order statistics based on Poisson Lomax distribution. Since generalized order
statistics is unified approach for several ordered random variables, thus results obtained can be easily deduced for
order statistics, record values, sequential order statistics etc. Characterization theorems that use the properties of
sample moments, order statistics, record statistics, and reliability properties can be applied to uniquely determine
the associated stochastic model.
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