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Abstract In this paper, a novel mathematical distributed order fractional model of multi-strain Tuberculosis is presented.
The proposed model is governed by a system of distributed order fractional differential equations, where the distributed order
fractional derivative is defined in the sense of the Grünwald−Letinkov definition. A nonstandard finite difference method is
proposed to study the resulting system . The stability analysis of the proposed model is discussed. Numerical simulations
show that, the nonstandard finite difference method can be applied to solve such distributed order fractional differential
equations simply and effectively.
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1. Introduction

In fact, the fractional calculus has been acknowledged as a promising mathematical tool to efficiently characterize
the historical memory and global correlation of complex dynamic systems, phenomena or structures. However,
various literature indicated that the memory and/or nonlocality of the system may change with time, space or
other conditions [1], [2]. The variable-order (VO) fractional operators depending on their non-stationary power-
law kernel can describe the memory and hereditary properties of many physical phenomena and processes [3],
[4].

It is known that the distributed order derivatives are fractional order derivatives that have been integrated over
the order of the derivative within a given range. The idea of fractional derivative of distributed order is stated by
[18] and later developed by Caputo himself in [19, 20] and Bagley and Torvik [21]. Many researchers used this
idea, they applied it to some interesting mathematical models of partial fractional differential equation of distributed
order. Diethelm and Ford [22] used a numerical technique along with its error analysis to solve the distributed order
differential equation and analyze the physical phenomena and engineering problems; see [22] and the references
cited therein. Recently Saberi Najafi et al. [23, 24] studied the stability analysis of distributed order fractional
differential equations with respect to the nonnegative density function.

Mathematical models can project how infectious diseases progress, to show the likely outcome of an
epidemic, and help inform public health interventions. In epidemiology, compartmental models serve as the base
mathematical framework for understanding the complex dynamics of these systems [5].
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The multi-strain TB model which incorporates three strains: drug-sensitive, emerging multi-drug resistant(MDR)
and extensively drug-resistant(XDR ) is developed by Arino and Soliman [6] in (2015). This model included several
factors of spreading TB such as the fast infection, the exogenous reinfection and secondary infection along with
the resistance factor. Sweilam and AL−Mekhlafi introduced some numerical studies for this model in ([25]-[32]).

In this paper, we will generalize the integer order multi-strain Tuberculosis model [30] to the distributed order
fractional domain. Nonstandard finite difference method (NSFDM) is introduced to solve this system. The obtained
results by the proposed method are compared with the obtained results by the standard finite difference method
(SFDM).

This paper is organized as follows: In section 2, mathematical preliminaries of the fractional and distributed
order fractional calculus theory which are required for establishing the results are given. In section 3, the proposed
model of distributed order fractional derivatives and the stability of distributed order fractional of the proposed
model are discussed. In section 4,NSFD for distributed order fractional differential equations is given. Numerical
simulations are given in section 5. In section 6, the conclusions are given.

2. Elementary Definitions

In the following, some basic definitions and properties in the theory of the distributed order fractional calculus
are presented. Moreover, we introduce the main aspects concerning nonstandard discretization methods. There are
many definitions of fractional derivatives of order α > 0 [10, 15] such as Grünwald−Letinkov’s definition (GL),
Riemann-Liouville’s definition (RL), and Caputo’s fractional derivative. The RL definition is given as:

RLDα
t z(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− τ)(n−α−1)z(τ)dτ, (1)

where n is the first integer which is not less than α, that is, n− 1 < α < n and Γ(·) is a Gamma function. The
Caputo fractional derivative of z(t) is defined as

CDα
t z(t) =

1

Γ(n− α)

∫ t

0

(t− τ)(n−α−1)z(n)(τ)dτ. (2)

It is known that Grünwald−Letinkov’s definition and Riemann-Liouville definition are equivalence, but the
Grünwald−Letinkov’s definition is very easily utilized for the numerical evaluations see [8, 11]. Hence, in order to
apply nonstandard finite difference schemes laters, we have chosen Grünwald−Letinkov’s approximation formula
for the distributed order fractional derivative [11]:

GLDα
t z(t) = lim

h→0
h−α

m∑
r=0

(−1)r(αr )z(t− rh), (3)

where, m = [xh ] denotes the integer part of x
h and h is the step-size. Equation 3 can be discretized as follows:

m∑
r=0

ωα
r z(tm−r) = g(tm, z(xm)) m = 1, 2, 3, · · ·· (4)

Where g(tm, z(xm)) =C Dα
t z(t), xm = mh , and ωα

r , are the Grünwald−Letinkov coefficients define as follows:

ωα
r = (1− 1 + α

r
)ωα

r−1, ωα
0 = h−α, r = 1, 2, 3, · · ·.

Remark 1
The approximate Grünwald−Letinkov definition is given as follows:

CDα
t z(t) ≈

m∑
r=0

ωα
r z(tm−r) m = 1, 2, 3, · · ·· (5)

where the step size of h is assumed to be very small [9, 15, 17].
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Definition 2.1
[20] For q(α ≥ 0), q ̸= 0, α ∈ (0, 1] and

∫ 1

0
q(α)dα = c0 > 0, the left and right sided fractional derivatives of

distributed orders in the Riemann-Liouville sense are defined, respectively, by:

RL
a D

q(α)
t f(t) =

∫ 1

0

q(α) RL
a Dα

t f(t)dα, (6)

RL
t D

q(α)
b f(t) =

∫ 1

0

q(α) RL
t Dα

b f(t)dα. (7)

Definition 2.2
[20] For q(0 ≤ α), q ̸= 0, α ∈ (0, 1] and

∫ 1

0
q(α)dα = c0 > 0, the left and right sided fractional derivatives of

distributed orders in the Caputo sense are defined, respectively, by:

C
a D

q(α)
t f(t) =

∫ 1

0

q(α) C
a D

α
t f(t)dα, (8)

C
t D

q(α)
b f(t) =

∫ 1

0

q(α) C
t D

α
b f(t)dα. (9)

2.1. NSFD Discretization

It is known that, the numerical scheme is called nonstandard method if at least one of the following conditions are
satisfied [30]:

1. The nonlocal approximation is used.
2. The discretization of the derivative is not traditional and uses a nonnegative function ([12], [14]).

For more details on the nonstandard method see [16] and the references cited therein.

Remark 2
Almost all of standard procedures yield schemes which are convergent with restriction of step size while NSFDM
are convergent for any step size. Also, in addition to the usual properties of consistency, stability and hence
convergence for nonstandard finite difference schemes, they produce numerical solutions which also exhibit
essential properties of the solution, for more details see ([12]-[14], [16]).

3. Distributed Order Fractional Multi-Strain TB Model

In this section, the fractional multi-strain TB model is modified by integrating over all possible orders of the
fractional time derivative. This is called a distributed order derivative. The population of interest is divided into
eight compartments depending on their epidemiological stages as follows: susceptible (S); latently infected with
drug sensitive TB (Ls); latently infected with MDR TB (Lm); latently infected with XDR TB (Lx); sensitive drug
TB infectious (Is); MDR TB infectious (Im); XDR TB infectious (Ix); recovered R. All interpretation and meaning
of parameters for this model see [28]. One of the main assumptions of this model is that, the total population
N(t), with N(t) = S(t) + Ls(t) + Lm(t) + Lx(t) + Is(t) + Im(t) + Ix(t) +R(t) is variable of the time. The new
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system is described by distributed order fractional derivatives as follows:
C
0 D

q(α)
t S =b− dS − βs

SIs
N

− βm
SIm
N

− βx
SIx
N

, (10)

C
0 D

q(α)
t Ls =λsβs

SIs
N

+ σsλsβs
RIs
N

+ γsIs − αssβs
LsIs
N

− αsmβm
LsIm
N

− αsxβx
LsIx
N

− (d+ εs + t1s)Ls, (11)

C
0 D

q(α)
t Lm =λmβm

SIm
N

+ σmλmβm
RIm
N

+ γmIm + αsmβmλm
LsIm
N

+ (1− P1)t1sLs

+ (1− P2)t2sIs − αmmβm
LmIm
N

− αmxβx
LmIx
N

− (d+ εm)Lm, (12)

C
0 D

q(α)
t Lx =λxβx

SIx
N

+ σxλxβx
RIx
N

+ γxIx + αsxβxλx
LsIx
N

+ αmxβxλx
LmIx
N

+ (1− P3)t2mIm − αxxβx
LxIx
N

− (d+ εx)Lx, (13)

C
0 D

q(α)
t Is =αssβs

LsIs
N

+ (1− λs)βs(
SIs
N

+ σs
RIs
N

) + εsLs − (d+ δs + t2s + γs)Is, (14)

C
0 D

q(α)
t Im =αmmβm

LmIm
N

+ (1− λm)βm(
SIm
N

+ σm
RIm
N

+ αsm
LsIm
N

) + εmLm

− (d+ δm + t2m + γm)Im, (15)

C
0 D

q(α)
t Ix =αxxβx

LxIx
N

+ (1− λx)βx(
SIx
N

+ σx
RIx
N

+ αsx
LsIx
N

+ αmx
LmIx
N

) + εxLx

− (d+ δx + t2x + γx)Ix, (16)

C
0 D

q(α)
t R =P1t1sLs + P2t2sIs + P3t2mIm + t2xIx − σsβs

RIs
N

− σmβm
RIm
N

− σxβx
RIx
N

− dR. (17)

Remark 3
In special case, if q(α) = δ(α− ξ), 0 < ξ ≤ 1, where, δ(α) is the Dirac delta function, then, we claim the fractional
order multi−strain TB model of order ξ.

3.1. Stability analysis of distributed order fractional systems

The linear distributed order fractional systems can be expressed as:
C
0 D

q(α)
t Y = BY (t),

Y (0) = Y0, (18)
where, Y (t) = (S(t), Ls(t), Lm(t), Lx(t), Is(t), Im(t), Ix(t), R(t)) ∈ R8, the matrix B ∈ Rn×n and q(α), the
density function, 0 < α ≤ 1. Saberi Najafi et al. [24] have obtained the general solution of the distributed order
fractional systems (18), as follows:

Y (t) = Y (0) +
1

π

∫ t

0

∫ ∞

0

∫ ∞

0

e−rt+Bτ−ρ cos(πγ)

× sin(ρ sin(πγ)) sin(BY (0))drdτdt, (19)
where, ρ = |A(s)|, γ = 1

π arg[A(s)], r = eiπ and A(s) = ρ cos(πγ) + iρ sin(πγ). Now, we will recall some
theorems and definitions on linear distributed order fractional equations and then we will show that theorem for
nonlinear distributed order fractional equations as well.

Theorem 3.1
[24] The distributed order fractional system of (18) is asymptotically stable if and only if all roots of det(A(s)I −
B) = 0, have negative real parts.

Remark 4
The value of det(A(s)I −B) = 0, is the characteristic function of the matrix B with respect to the distributed
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function A(s), where
∫ 1

0
q(α)sαdα is the distributed function with respect to the density function, where,

A(s) = sα. Also, det(A(s)I −B) = 0, is reduced to sαI −B = 0. Let λ = sα, then s = λ
1
α , and we have

| arg λ 1
α | > π

2 . Thus, all the roots λ of equation det(λI −B) = 0, satisfy | arg λ 1
α | > α

π

2
.

Definition 3.1
The inertia of the system (18) is the triple:

(ΘnA(s)B,ϑnA(s)B,ΦnA(s)B) = ΥnA(s)B,

where, ΘnA(s)B, ϑnA(s)B and ΦnA(s)B, are, respectively, the number of roots of det(A(s)I −A) = 0, with
positive, negative, and zero real parts, where A(s) = (A1(s), A2(s), ..., An(s))

T is the distributed function with
respect to the density function q(α).

Theorem 3.2
[24] The linear distributed order fractional system (18) is asymptotically stable if and only if any of the following
equivalent conditions holds:

1. ΘnA(s)(B) = ΦnA(s)B = 0,
2. all roots s of the characteristic function of B with respect to A(s) = (A1(s), A2(s), ..., An(s))

T satisfy
| arg(s)| > π

2 .

Next, we will mainly discuss the stability of a nonlinear autonomous distributed order fractional system, which
can be described by

C
0 D

q(α)
t Y = G(Y (t)),

Y (0) = Y0, (20)
with the initial value Y (0) = Y0, where,

G(Y (t)) =



g1(y1(t), y2(t), ..., yN (t))

g2(y1(t), y2(t), ..., yN (t))

.

.

.

gn(y1(t), y2(t), ..., yN (t))


,

Theorem 3.3
Let Y ∗ = (y∗1 , y

∗
2 , ..., y

∗
n)

T be the equilibrium of system 20; that is, C
0 D

q(α)
t Y ∗ = G(Y ∗) = 0 and J = (

∂G

∂Y
)|Y=Y ∗

is the Jacobian matrix at the point Y ∗ then the point Y ∗ is asymptotically stable if and only if all roots s of the
characteristic function of J with respect to A(s) = (A1(s), A2(s), ..., An(s))

T satisfy | arg(s)| > π
2 .

Proof
Let ϱ(t) = Y (t)− Y ∗(t), where ϱ(t) is a small disturbance from a fixed point. Therefore

C
0 D

q(α)
t ϱ(t) =C

0 D
q(α)
t (Y (t)− Y ∗), (21)

since, C
0 D

q(α)
t (Y (t)− Y ∗) =C

0 D
q(α)
t Y (t)−C

0 D
q(α)
t Y ∗ = 0; thus,we have

C
0 D

q(α)
t ϱ(t) =C

0 D
q(α)
t Y (t) = G(Y (t)) = G(ϱ(t) + Y ∗),

= G(Y ∗) + Jϱ(t) + higher order terms ≈ Jϱ(t). (22)
System (21) can be written as

C
0 D

q(α)
t ϱ(t) = Jϱ(t), (23)

with the initial value ϱ(0) = Y0 − Y ∗. The analytical procedure of linearization is based on the fact that if the
matrix J has no purely imaginary eigenvalues, then the trajectories of the nonlinear system in the neighborhood of
the equilibrium point have the same form as the trajectories of the linear system (23). Hence, by applying Theorem
3.2, the linear system (23) is asymptotically stable if and only if all roots s of the characteristic function of J with
respect to A(s) = (A1(s), A2(s), ..., An(s))

T satisfy | arg(s)| > π
2 , which implies that the equilibrium Y ∗ of the

nonlinear distributed order fractional system (20) is as asymptotically stable.
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Remark 5
The nonlinear distributed order fractional system (20) in the point Y ∗ is asymptotically stable if and only if
ΘnA(s)B = ΦnA(s)B = 0.

Table 1. All parameters in the system (10)− (17) and the reference of the parameters.

parameter value Reference
b 3190 Assumed
d 0.38 [33]

βs = βm = βx 14 [33]
λs = λm = λx 0.5 Assumed
εs = εm = εx 0.5 Assumed

αr1,r2 0.05 Assumed
γs = γm = γx 0.3 Assumed

t1s 0.88 [33]
t2r : r ∈ (s,m, x) t2s = 0.88;t2m = t2x = 0.034 [33]

σr 0.25 [33]
Pr 0.88 [33]
δr 0.045 [33]

4. NSFD for Distributed Order Fractional Differential Equations

NSFD schemes were introduced by Mickens in the 1980s as a powerful numerical method that preserves significant
properties of exact solutions of the involved differential equation [7]. We defined distributed order fractional
derivative using Grünwald−Letinkov’s sense and applying NSFD. Then by using the midpoint quadrature rule.
The system 10− 17 can be discretized as follows:

K∑
i=1

q(αi)

K

n+1∑
j=0

ωαi

j Sn+1−j =b− dSn+1 − βs
Sn+1Ins
Nn

− βm
Sn+1Inm
Nn

− βx
Sn+1Inx
Nn

, (24)

K∑
i=1

q(αi)

K

n+1∑
j=0

ωαi

j Ln+1−j
s =λsβs

Sn+1Ins
Nn

+ σsλsβs
Rn+1Ins
Nn

+ γsI
n
s − αssβs

Ln+1
s Ins
Nn

− αsxβx
Ln+1
s Inx
Nn

− (d+ εs + t1s)L
n+1
s − αsmβm

Ln+1
s Inm
Nn

, (25)

K∑
i=1

q(αi)

K

n+1∑
j=0

ωαi

j Ln+1−j
m =λmβm

Sn+1Inm
Nn

+ σmλmβm
Rn+1Inm

Nn
+ λmαsmβm

Ln+1
s Inm
Nn

+ γmInm

+ t1sL
n+1
s − P1t1sL

n+1
s + t2sI

n
s − P2t2sI

n
s − αmmβm

Ln+1
m Inm
Nn

− αmxβx
Ln+1
m Inx
Nn

− (d+ εm)Ln+1
m , (26)
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K∑
i=1

q(αi)

K

n+1∑
j=0

ωαi

j Ln+1−j
x =λxβx

Sn+1Inx
Nn

+ σxλxβx
Rn+1Inx
Nn

+ λxαsxβx
Ln+1
s Inx
Nn

+ γxI
n
x

+ λxαmxβx
Ln+1
m Inx
Nn

+ t2mInm − P3t2mInm − αxxβx
Ln+1
x Inx
Nn

− (d+ εx)L
n+1
x , (27)

K∑
i=1

q(αi)

K

n+1∑
j=0

ωαi

j In+1−j
s =αssβs

Ln+1
s Ins
Nn

+ (1− λs)βs(
Sn+1Ins
Nn

+ σs
Rn+1Ins
Nn

) + εsL
n+1
s

− (d+ δs)I
n+1
s − (γs + t2s)I

n
s , (28)

K∑
i=1

q(αi)

K

n+1∑
j=0

ωαi

j In+1−j
m =αmmβm

Ln+1
m Inm
Nn

+ (1− λm)βm(
Sn+1Inm
Nn

+ σm
Rn+1Inm

Nn
+ αsm

Ln+1
s Inm
Nn

)

+ εmLn+1
m − (d+ δm)In+1

m − (γs + t2m)Inm, (29)
K∑
i=1

q(αi)

K

n+1∑
j=0

ωαi

j In+1−j
x =αxxβx

Ln+1
x Inx
Nn

+ (1− λx)βm(
Sn+1Inx
Nn

+ σx
Rn+1Inx
Nn

+ αmx
Ln+1
x Inm
Nn

)

+ εxL
n+1
x − (d+ δx)I

n+1
x − (γx + t2x)I

n
x , (30)

K∑
i=1

q(αi)

K

n+1∑
j=0

ω
q(αi)
j Rn+1−j =P1t1sL

n+1
s + P2t2sI

n
s + P3t2mInm + t2xI

n
x − dRn+1 − σsβs

Rn+1Ins
Nn

− σmβm
Rn+1Inm

Nn
− σxβx

Rn+1Inx
Nn

. (31)

The discretizations for N(t) is given as:
Nn = Sn + Ln

s + Ln
m + Ln

x + Ins + Inm + Inx +Rn.

Where, ωαi
0 = (φs(h))

−αi , s = 1, 2, · · ·, 8 and 0 < αi < 1 . The nonlocal approximations are used for the
nonlinear terms and the following denominator functions are used:

φ1(h) =
edh − 1

d
, φ2(h) =

e(d+εs+t1s)h − 1

(d+ εs + t1s)
,

φ3(h) =
e(d+εm)h − 1

(d+ εm)
, φ4(h) =

e(d+εx)h − 1

(d+ εx)
,

φ5(h) =
1− e−(d+δs)h

(γs + t2s)
, φ6(h) =

1− e−(d+δm)h

(γm + t2m)
,

φ7(h) =
1− e−(d+δx)h

(γx + t2x)
, φ8(h) =

edh − 1

d
.

Then, we can obtain

Sn+1 =
b−

∑K
i=1

q(αi)
K

∑n+1
j=1 ωαi

j Sn+1−j∑K
i=1

q(αi)
K (φ1(h))−αi + d+

βsIn
s +βmIn

m+βxIn
x

Nn

, (32)

Ln+1
s =

βsI
n
s

Nn λs(S
n+1 + σsR

n+1) + γsI
n
s −

∑K
i=1

q(αi)
K

∑n+1
j=1 ωα

j L
n+1−j
s∑K

i=1
q(αi)
K q(αi)(φ2(h))−αi + (d+ t1s + εs) +

1
Nn (αssβsIns + αsmβmInm + αsxβxIx)

, (33)

Ln+1
m =

βmλmIn
m

Nn (Sn+1 + σmRn+1 + αsmLn+1
s ) + γmInm + t1sL

n+1
s (1− P1)∑K

i=1
q(αi)
K q(αi)(φ3(h))−αi + (d+ εm) + 1

Nn (αmmβmInm + αmxβxInx )

+
t2sI

n
s (1− P2)−

∑K
i=1

q(αi)
K

∑n+1
j=1 ωαi

j Ln+1−j
m∑K

i=1
q(αi)
K (φ3(h))−αi + (d+ εm) + 1

Nn (αmmβmInm + αmxβxInx )
, (34)
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Ln+1
x =

βxλxI
n
x

Nn (Sn+1 + σxR
n+1 + αsxL

n+1
s + αmxL

n+1
m ) + t2sI

n
m(1− P3)∑K

i=1
q(αi)
K (φ4(h))−αi + (d+ εx) +

1
Nn (αxxβxInx )

+
γxI

n
x −

∑K
i=1

q(αi)
K

∑n+1
j=1 ωαi

j Ln+1−j
x

(
∑K

i=1
q(αi)
K (φ4(h))−αi + (d+ εx) +

1
Nn (αxxβxInx )

, (35)

In+1
s =

φ5(h)βs
In
s

Nn (αssL
n+1
s + (1− λs)(S

n+1 + σsR
n+1))∑K

i=1
q(αi)
K (φ5(h))−αi + (d+ δs)

+
(γs − (t2s))I

n
s + εsL

n+1
s −

∑K
i=1

q(αi)
K

∑n+1
j=1 ωαi

j In+1−j
s∑K

i=1
q(αi)
K (φ5(h))−αi + (d+ δs)

, (36)

In+1
m =

βm
In
m

Nn (αmmLn+1
m + (1− λm)(Sn+1 + σmRn+1 + αsmLn+1

s ))∑K
i=1

q(αi)
K (φ6(h))−αi + (d+ δm)

+
(γm − (t2m))Inm + εmLn+1

m −
∑K

i=1
q(αi)
K

∑n+1
j=1 ωαi

j In+1−j
m∑K

i=1
q(αi)
K (φ6(h))−αi + (d+ δm)

, (37)

In+1
x =

βx
In
x

Nn (αxxL
n+1
x + (1− λx)(S

n+1 + σxR
n+1 + αsxL

n+1
s + αmxL

n+1
m ))∑K

i=1
q(αi)
K (φ7(h))−αi + (d+ δx)

+
(γx − (t2x))I

n
x + εxL

n+1
x −

∑K
i=1

q(αi)
K

∑n+1
j=1 ωαi

j In+1−j
x∑K

i=1
q(αi)
K (φ7(h))−αi + (d+ δx)

, (38)

Rn+1 =
t1sP1L

n+1
s + P2t2sI

n+1
s + t2mP3I

n
m + t2xI

n
x −

∑K
i=1

q(αi)
K

∑n+1
j=1 ωαi

j Rn+1−j∑K
i=1

q(αi)
K (φ8(h))−αi + d+ 1

Nn (σsβsIns + σmβmInm + σxβxInx )
. (39)

5. Numerical Results and Discussions

The purpose of this section is to show that NSFD designed in this paper provides good approximations for
distributed order fractional differential equations. In all simulations we use the initial conditions (S(0), Ls(0),
Lm(0), Lx(0), Is(0), Im(0), Ix(0), R(0)) = (5000,50, 50,50,30,30,30,60), with the parameters in Table 1. The
approximate solutions of the proposed system are given in figures 1-5 at different values of q(α). In Fig. 1, the effect
of different q(α) on the behavior the approximate solutions for state variables Is, Im, Ix and R with comparered
the obtianed results with integer case when q(α) = 1. This figure is given to demonstrate how the distributed order
fractional model is a generalization of the integer order model. Fig. 2, shows the behavior of the approximate
solutions for state variables S(t) and Ix(t) by using NSFDM and SFDM at h = 2, we can clearly see, NSFDM
converge to correct endemic equilibrium but the obtain soluations of SFDM is unstable. Fig. 3, shows the behavior
of the approximate solutions of the state variables Im, Ix, R at different Dirac delta function by using NSFDM.
Fig. 4 show that, the obtianed solutions when q(α) = δ(α− 0.75) are excellent agreement with q(α) = 0.75. Fig.
5, shows the relationship between S(t) with Ix(t) and R(t) with Im(t) when q(α) = δ(α− 0.5) using NSFDM. For
analyzing the stability of the proposed system, we compute ΥnA(s)

(J) in the case that the density varies. The results
are shown in Table 2. Numerical results are provided to show that NSFD is computationally efficient. From the
numerical experiments, we observed that NSFD schemes allow to replicate quite well the behavior of the solution
in the classical problems with integer-order. Hence, we can conclude that the developed NSFD schemes are useful
for solving distributed order fractional equations.
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Figure 1. The numerical simulations of Is, Im, Ix, R at different q(α) using NSFDM.

Figure 2. The numerical simulations of S(t), Ix at q(α) = δ(α− 0.6) and h = 2 using NSFDM and SFDM.

Stat., Optim. Inf. Comput. Vol. 8, March 2020



184 ON THE DISTRIBUTED ORDER FRACTIONAL MULTI-STRAIN TUBERCULOSIS MODEL

Figure 3. The numerical simulations of Im, Ix, R at different values of q(α) and h = 2 using NSFDM.

Table 2. Stability analysis of system 10− 17 for various density functions.

q(α) ΥnA(s)
(J)

q(α) = δ(α− 0.7) (352.7115, 0.5683, 326.5762, 1.8557× 103, 1.2735, 588.8249, 3.5922× 103, 53.7212)

q(α) = δ(α− 0.8) (349.1680, 0.4315, 281.8769, 1.9830× 103, 1.0480, 512.1312, 3.9448× 103, 57.5041)

q(α) = δ(α− 0.9) (345.8485, 0.2510, 215.4739, 2.0867× 103, 0.6521, 391.6610, 4.2592× 103, 60.1127)

q(α) = δ(α− 0.95) (344.2361, 0.1454, 175.8648, 2.1297× 103, 0.3890, 318.8696, 4.4010× 103, 61.0091)

6. Conclusions

In this paper, a distributed order fractional multi-strain TB model has been presented as a general model. A
nonstandard numerical scheme has been introduced to numerically study the approximate solution of proposed
model problem. Some figures are given to demonstrate how the distributed order fractional model is a generalization
of the integer and fractional order models where this dynamical model is more suitable to describe the biological
phenomena with memory than the integer and fractional order model. The stability of the equilibrium points is
investigated. It is concluded that NSFDM can be applied to solve such distributed order differential equations
simply and given the large stability regions.
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Figure 4. The numerical simulations of S,Lm, Lx at q(α) = δ(α− 0.75), q(α) = 0.75 using NSFDM.

Figure 5. Relation between S(t) with Ix(t) and R(t) with Im(t) when q(α) = δ(α− 0.5) using NSFDM.
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