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Abstract This paper investigates the extreme-value methodology in the case of a loss distribution with a finite mean but
infinite variance. We propose an improved estimator of the conditional tail expectation (CTE) based on the bias-reduced
estimators of high quantile for heavy-tailed distributions. The asymptotic normality of the proposed estimator is established
and checked in a simulation study. Moreover, we provided some comparison between the new estimator with the known old
estimator in terms of bias and mean squared error.The simulation results show significant improvement either in term of
bias or in term of RMSE.
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1. Introduction and Motivation

Risk management is a subject of concern in finance and actuarial science. Protecting against financial and actuarial
risks is essential in order to anticipate financial crises or major insurance claims. For this, there are many tools to
quantify and predict risk (risk measures). They make it possible to evaluate a level of danger of a risk, but also to
compare different risks between them. Quantification, prevention, comparison and prediction of risk are essential
elements of our society.
One of the best known and used risk measure is the Value-at-Risk (or V aR), it is introduced in the 1990s by Morgan
[27] (see Jorion [22] for more details). The idea of the V aR is as follows: we fixe a threshold α and calculate a
value V aR(α) which will be such that the probability that the catastrophe will occur is smaller than α. V aR(α)
can be seen as the amount of extra capital and business needs in order to reduce the probability of going bankrupt
to α.
In statistical terms, the V aR of level α ∈ ]0, 1[ corresponds to the level (1− α) quantile of the distribution function
of the losses. This risk measure has several flaws. It gives only one point information to the quantile q(α) and no
information beyond this point; it does not take into account the importance of the disaster when it occurs but only
its frequency.
To respond to the need for theoretical practical principles, Artzner et al. 1999 [5] introduced the concept of
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coherent risk measure. A risk measure is said to be coherent if it satisfies the four properties: monotony, positive
homogeneity, invariance by translation and subadditivity, (for more details see, [5]).
Unfortunately, the V aR risk measure is not subadditive which implies that it is not coherent. For this reason, many
authors proposed to replace standard V aR with alternative risk measures such as Conditional Tail Expectation
(CTE), also called in the literature on risk measure Tail Value-at-Risk (TV aR) or Expected Shortfall (ES) (see,
for example, [23], [15], [1], [2], [3], [33], [32], [37] and [38]).

This risk measures gives information of the distribution beyond the V aR(α). Thus, unlike the V aR, it takes into
account the information contained in the tail of the distributi which is essential in the finanacial context. The CTE
has been studied by many authors such that: [5], [9], [10], [35], [8], [24].
The application of these alternative measures has gained interest growing in literature and industry. In particular,
the CTE, due to its properties and its effectiveness in different fields such as finance and actuaries, its use and
studies keep increasing (see, e.g., [15], [34], [18], [16] and references therein).
In the literature, the estimation of the CTE and its asymptotic normality under the assumption that the second
moment of the loss variable is finite has been established but this assumption is very restrictive in practical
problems. For this reason, Necir et al (2010) [28] has extended that in the case of infinite variance. In this paper,
we propose an improvement of the estimator established by Necir et al. (2010) [28], our considerations are based
on the bias-reduced estimators of high quantile for heavy-tailed distributions introduced by Li (2010) [25], also we
show its efficiency and its asymptotic normality theoretically, finally we prove the performance of our estimator by
some results of simulation study. For this aim, we proceed as follow :
Let X be a loss random variable with cumulative distribution function (cdf) F . F is assumed to be continuous
throughout the present paper and defined on the entire real line, with negative loss interpreted as gain. The CTE
of the risk X is then defined, for every t ∈ (0, 1), by the function C(t) writed as follow

C(t) = E (X|X > Q(t)) , (1)

where Q(t) = inf {x : F (x) ≥ t} is the quantile function corresponding to the cdf F . Since F is continuous, we
easily check that C(t) is equal to

C(t) = 1

1− t

∫ 1

t

Q(s)ds. (2)

In this paper we are interesting by the heavy-tailed distribution. A model F is said to be heavy-tailed, with
a tail index α (α > 0), if the tail function F = 1− F ∈ RV−α, where denotes the class of regularly varying
functions with index of regular variation equal to α, i.e., non-negative measurable functions g such that, for all
x > 0, g(tx)/g(t) → xα, as t → ∞ (see, [17] for more details).

Suppose that X1, X2, ..., Xn are independent and identically distributed ( i.i.d.) random variables with common
distribution function F which has regularly varying tails with index α > 1, i.e.,

lim
t→∞

1− F (tx)

1− F (t)
= x−α, for every x > 0. (3)

This class includes a number of popular distributions such as Pareto, generalized Pareto, Burr, Fréchet, Student,
etc., which are known to be appropriate models for fitting large insurance claims, fluctuations of prices, log-returns,
etc. (see, e.g., [6]). In this paper, we restrict ourselves to this class of distributions. For more information on the
topic and, generally, on extreme value models and their manifold applications, we refer to the monographs by [12],
[29] and [31].
In particular, if the index α ∈ (1, 2), then, condition (3) is equivalent to the statement that F has infinite
second moment. In this case, in order to estimate the CTE, let X1:n < · · · < Xn:n denote the order statistics
of X1, . . . , Xn, we set

C̃n(t) =
1

1− t

[∫ 1−k/n

t

Qn(s)ds+

∫ k/n

0

Qw
n (1− s)ds

]
, (4)

where Qn(s) is the empirical estimation of the quantile function, which is equal to the ith order statistic Xi,n for
all s ∈ ((i− 1) /n, i/n) and for all i = 1, ..., n and Qw

n (1− s) is the estimation of the extreme quantile established
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by [36], this estimator is given by

Qw
n (1− s) =

(
k

n

)1/α̂n

Xn−k,ns
−1/α̂n . (5)

where α̂n is the Hill estimator [21]

α̂n =

(
1

k

k∑
i=1

logXn−i+1:n − logXn−k:n

)−1
(6)

of the tail index α ∈ (1, 2) and k = k(n) is an intermediate integer sequence satisfying the condition

k → ∞ and k/n → 0 as n → ∞. (7)

After integration, we obtain

C̃n(t) =
1

1− t

[∫ 1−k/n

t

Qn(s)ds+

(
k

n

)
α̂nXn−k,n
(α̂n − 1)

]
. (8)

the asymptotic normality of this estimator is found in [28] under some conditions.
We note that, the Hill’s estimator α̂n plays a pivotal role in statistical inference on distribution tails. This

estimator has been extensively studied, improved and even generalized to any real parameter α. Weak consistency
of α̂n was established by [26] assuming only that the underlying cdf F satisfies condition (3). The asymptotic
normality of α̂n has been established (see [14]) under the following stricter condition that characterizes Hall’s
model (see [19] and [20]), where there exist c > 0, d ̸= 0 and β > α > 0 such that

1− F (x) = cx−α + dx−β + o
(
x−β

)
, as x → ∞, (9)

Note that (9), which is a special case of a more general second-order regular variation condition (see [13]), is
equivalent to

Q(1− s) = c1/αs−1/α(1 + α−1c−β/αdsβ/α−1 + o(1)), as s ↓ 0, (10)

The constants α and β are called, respectively, first-order (tail index, shape parameter) and second-order parameters
of cdf F . In this paper, we use the bias-reduced estimator of the high quantile Q(1− s), proposed by [25] who
exploited the censored maximum likelihood (CML) based estimators α̂ and β̂ of the couple of regular variation
parameters (α, β) introduced by [30]. The CML estimators α̂, β̂ are defined as the solution of the two equations
(under the constraint β > α) :

1

k

k∑
i=1

1

Gi(α, β)
= 1 and

1

k

k∑
i=1

1

Gi(α, β)
log

Xn−i+1,n

Xn−k,n
= β−1, (11)

where

Gi(α, β) =
α

β

(
1 +

αβ

α− β
H (α)

)(
Xn−i+1,n

Xn−k,n

)β−α

− αβ

α− β
H (α) , (12)

and

H (α) =
1

α
− 1

k

k∑
i=1

log
Xn−i+1,n

Xn−k,n
. (13)

Li et al. [25] obtained their bias-reduced estimators QL
n (1− s), of the high quantiles Q(1− s), by substituting(

α̂, β̂
)

to (α, β) in (10). That is

Q̂L
n(1− s) = ĉ1/α̂s−1/α̂(1 + α̂−1c−β̂/α̂d̂sβ̂/α̂−1 + o(1)), as s ↓ 0, (14)
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where  ĉ = α̂β̂

α̂−β̂
k
nX

α̂
n−k,n

(
1

β̂
− 1

k

∑k
i=1 log

Xn−i+1,n

Xn−k,n

)
d̂ = α̂β̂

α̂−β̂
k
nX

β̂
n−k,n

(
1
α̂ − 1

k

∑k
i=1 log

Xn−i+1,n

Xn−k,n

) . (15)

The consistency and asymptotic normality of Q̂L
n(1− s) are established by the same authors. By using Qn in

formula (4), we get, after integration, the new estimator of the CTE as follows:

Cn(t) =
1

1− t

[∫ 1−k/n

t

Qn(s)ds+

(
k

n

)(
nĉ

k

)1/α̂
(

α̂

α̂− 1
+

d̂ĉ−β̂/α̂ (k/n)
β̂/α̂−1

β̂ − 1

)]
, (16)

provided that β̂ > α̂ > 1 so that Cn is finite.

The rest of the paper is organized as follows. In Section 2 we study the asymptotic normality of the new CTE
estimator. In section 3, we make a simulation study of the new estimator and we show the performance of our
estimator and compare it with the old one. We finich our paper by a conclusion given in section 4. The proof of the
main result, which is Theorem 1 in Section 2, is postponed to Section 4.

2. Main result and its practical implementation

In the field of the extreme values theory, a function denoted by U and (sometimes) called tail quantile function, is
defined by

U(t) = F←(1− 1/t) = Q (1− 1/t) , (17)

where F← represented the generalized inverse of the df F. Then, we say that F is heavy-tailed iff U ∈ RV1/α (de
Haan, 1970 [11]), i.e.

lim
t→∞

U(tx)

U(t)
= x1/α, for any x > 0. (18)

In terms of this function, Hall’s conditions (9) and (10) are equivalent to

U(t) = c1/αt1/α(1 + α−1c−β/αdt1−β/α + o(1)), as t → ∞. (19)

This implies that, there is a function A1(t), which tends to zero as t → ∞ (because β > α), determines the rate of
convergence of log (U(tx)/U(t)) to its limit α−1 log x, such that:

lim
t→∞

log (U(tx)/U(t))− α−1 log x

A1(t)
=

x1−β/α − 1

1− β/α
; for any x > 0, (20)

where
A1(t) = dα−1 (1− β/α) c−β/αt1−β/α.

Relation (20) is known as the second-order condition of regular variation (see, e.g., [12]). Unfortunately, the
second-order regular variation is not sufficient to find asymptotic distributions for the estimators defined by the
systems (11) and (15). We strengthen it with a condition, called third-order condition of regular variation and given
by (21), that specifies the rate of (20) (see, e.g., [13] or [4]).

lim
t→∞

log(U(tx)/U(t))−α−1 log x
A1(t)

− x1−β/α−1
1−β/α

A2(t)
= D (α, β, ρ)

x1−β/α − 1

1− β/α
; for any x > 0. (21)

where A2(t) → 0 as t → ∞, with constant sign near infinity and

D (α, β, ρ) =
1

ρ

(
x1−β/α+ρ − 1

1− β/α+ ρ
− x1−β/α − 1

1− β/α

)
.
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with ρ being a positive constant called third-order parameter. Peng and Qi, [30] established the asymptotic
normality of α̂, β̂ and ĉ under the following extract conditions on the sample fraction k, as n → ∞:

(i) : k1/2 |A1(n/k)| → ∞, (ii) : k1/2A2
1(n/k) → 0 and (iii) : k1/2A1(n/k)A2(n/k) → 0. (22)

As for d̂, it is asymptotically normal under the assumption k1/2 |A1(n/k)| / log(n/k) → ∞ added to (ii) and (iii).
Note that, from a theoretical point of view, assumptions (7) and (22) are realistic, as the following example shows,
indeed, let us choose

k = [n1−ε], 0 < ε < 1, (23)

then it easy to verify that these assumptions hold for any 1/5 < ε < 1/3. The notation [·] stands for the integer part
of real numbers.

Our main result, namely the asymptotic normality of new estimator of the CTE is formulated in the following
theorem.

Theorem 1
Assume that the cdf F satisfies condition (21) with α ∈ (1, 2) and β/α = λ > 1. Then for any sequence of integers
k = kn satisfying the conditions (7) and (22). Then

√
n
(
Cn(t)−C(t)

)
(1− t)

(k/n)1/2 (nc/k)
1/α

→d N
(
0, σ2 (α, β)

)
(24)

for any fixed t ∈ (0, 1), where the asymptotic variance σ2 (α, β) is given by the formula

σ2 (α, β) =
α2β4

(α− 1)4(α− β)4
+

2

2− α
+

2αβ2

(α− 1)2(α− β)2
.

3. Simulation study

In this section, the biased estimator C̃n(t) and the reduced-bias one Cn(t) are compared using simulation study. For
this reason, 1000 samples of size n ∈ {250, 500, 1000, 2000} are simulated from a two heavy-tailed distributions :

Fréchet model : defined as : F (x) = exp(−x−α) we take α = 1, 5 and α = 1, 75, respectively, and according to
the Hall’s model, we find β = 2α, c = 1, and d = −1/2.

Burr model : defined as : F (x) = 1− (1 + xτ )−λ with λ = 1, 5 and λ = 1, 75, both with τ = 1 and in this case
we have c = 1, α = τλ, d = −λ and β = λτ + τ ( For more flexibility, we can take τ = α/λ in the expression
of Burr distribution).

In all cases, we assume that α, β, c and d are unknowns, then by the resolving the equations (11) and (12) we
calculate the values of α̂ and β̂, and resolving the system (15) to calculate the estimators ĉ and d̂. We fix two values
of t, for example t = 0.90 and t = 0.95 to calculate the differents values of the two estimators, the new estimator
Cn and the old estimator C̃n. We note that, the mean, the bias and root mean squared error (RMSE) of these
estimators are estimated over the 1000 replications. We illustrate and compare the bias and the root mean square
error (RMSE) of C̃n(t) and Cn(t). Finally, we summarize the results of simulations in the tables (1, 2, 3, and 4).
We remark, on one hand, that the bias and the RMSE of the new estimator increase when the sample size increase,
and on other hands, the bias and RMSE of our estimator is smaller than the old estimator.
In order to show the influence of the choice of the integer value k to the performance of our estimator Cn(t) and
the old estimator C̃n(t), we generate 1000 samples of size 1000 of the parent model ( Fréchet and Burr) with two
values of index α = 1.5 and 1.75 and we picture the two estimators when k varied from 50 to 850. The results
are displayed in figures 1 and 2. We observe that the performance of our estimator is clearly better than the old
estimator.
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Figure 1. Behavior of the new estimator Cn and old estimator C̃n of CTE in respect to the variation of k for Fréchet
distribution.

Table 1. Comparison between the new estimator Cn and old estimator C̃n of CTE in terms of bias and RMSE respecting to
the variation of sample size n based on Fréchet distribution.

Fréchet distribution, α = 1.5

t n CTE C̄n (t) bias RMSE C̃n (t) bias RMSE
0.9 250 13.793 14.457 −0.664 0.66415 11.048 2.745 2.7454

500 14.409 −0.616 0.61578 11.418 2.375 2.3755
1000 14.287 −0.494 0.49345 11.837 1.956 1.9559
2000 14.14 −0.347 0.34733 11.852 1.941 1.941

0.95 250 21.984 22.78 −0.796 0.79685 16.115 −5.869 5.8683
500 22.703 −0.719 0.71965 16.473 −5.511 5.5105
1000 22.674 −0.69 0.69043 16.944 −5.04 5.0392
2000 22.67 −0.686 0.68661 17.247 −4.737 4.7364
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Table 2. Comparison between the new estimator Cn and old estimator C̃n of CTE in terms of bias and RMSE respecting to
the variation of sample size n based on Fréchet distribution.

Fréchet distribution, α = 1.75

t n CTE C̄n (t) bias RMSE C̃n (t) bias RMSE
0.9 250 8.6207 8.6977 −0.077 0.076993 8.2478 0.3729 0.37295

500 8.6771 −0.0564 0.05637 8.3136 0.3071 0.30711
1000 8.6586 −0.0379 0.037901 8.5085 0.1122 0.11218
2000 8.6504 −0.0297 0.029695 8.5374 0.0833 0.083322

0.95 250 12.866 12.963 −0.097 0.096298 12.185 0.681 0.68126
500 12.956 −0.09 0.089431 12.218 0.648 0.64858
1000 12.937 −0.071 0.070963 12.624 0.242 0.24248
2000 12.917 −0.051 0.050889 12.766 0.100 0.10069

Table 3. Comparison between the new estimator Cn and old estimator C̃n of CTE in terms of bias and RMSE respecting to
the variation of sample size n based on Burr distribution.

Burr distribution, α = 1.5

t n CTE C̄n (t) bias RMSE C̃n (t) bias RMSE
0.9 250 13.676 14.365 −0.689 0.68807 14.909 −1.233 1.2321

500 14.226 −0.55 0.54908 14.658 −0.982 0.98132
1000 14.124 −0.448 0.44795 14.506 −0.83 0.82922
2000 14.026 −0.35 0.34997 14.491 −0.815 0.81428

0.95 250 21.891 23.239 −1.348 1.3474 24.05 −2.159 2.1587
500 22.996 −1.105 1.1044 23.874 −1.983 1.9827
1000 22.753 −0.862 0.86155 23.709 −1.818 1.8173
2000 22.602 −0.711 0.71095 23.64 −1.749 1.7489

Table 4. Comparison between the new estimator Cn and old estimator C̃n of CTE in terms of bias and RMSE respecting to
the variation of sample size n based on Burr distribution.

Burr distribution, α = 1.75

t n CTE C̄n (t) bias RMSE C̃n (t) bias RMSE
0.9 250 8.5455 9.0332 −0.4877 0.48776 9.3583 −0.8128 0.81281

500 8.9188 −0.3733 0.37334 9.0502 −0.5047 0.5047
1000 8.8353 −0.2898 0.28979 8.9942 −0.4487 0.44873
2000 8.7708 −0.2253 0.22533 8.9115 −0.366 0.36607

0.95 250 12.811 13.697 −0.886 0.88641 14.386 −1.575 1.5751
500 13.556 −0.745 0.74521 14.082 −1.271 1.2709
1000 13.381 −0.57 0.56966 13.788 −0.977 0.97676
2000 13.246 −0.435 0.4355 13.596 −0.785 0.78538
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Figure 2. Behavior of the new estimator Cn and old estimator C̃n of CTE in respect to the variation of k for Burr distribution.

The analysis and simulation as shown in tables 1, 2, 3, 4, and figures 1, 2 indicate that the new CTE estimator
is more performant than the estimator contructed by Necir et al (2010) [28].

4. Conclusion

From the research that has undertaken, it is possible to conclude that the estimation of the CTE by the use of
extreme quantile established by Li (2010) [25] gave us a more efficient estimate compared to that introduced by
Necir et al (2010) [28]. The results of the simulations show significant improvement either in term of bias or in term
of RMSE. The next stage of our research will be the construction of a confidence interval of our CTE estimator
with the covering probability.

Appendix: Proof of Theorem 1

We start the proof of Theorem 1 with the decomposition

(1− t)C(t) = C1.n(s) + C2,n(s),

where

C1.n(s) =

∫ 1−k/n

t

Q (s) ds and C2.n(s) =

∫ k/n

0

Q (1− s) ds.

Also, we have
(1− t)C(t) = C1.n(s) + C2,n(s),
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where

C1.n(s) =

∫ 1−k/n

t

Qn(s)ds,

and

C2.n(s) =

(
k

n

)(
nĉ

k

)1/α̂
(

α̂

α̂− 1
+

d̂ĉ−β̂/α̂ (k/n)
β̂/α̂−1

β̂ − 1

)
.

First, it is easy to verify that, as n → ∞

C2.n(s) = (1 + op (1))

(
k

n

)(nc
k

)1/α ( α

α− 1

)
,

and, under the condition (6), we have

C2.n(s) = (1 + op (1))

(
k

n

)(
nĉ

k

)1/α̂(
α̂

α̂− 1

)
.

It follows that

C2.n(s)− C2.n(s) = (1 + op (1))

(
k

n

)[
α̂

α̂− 1

(
nĉ

k

)1/α̂

− α

α− 1

(nc
k

)1/α]
, (25)

let us write C2.n(s)− C2.n(s) = An,1(s) +An,2(s), where

An,1(t) = (1 + op (1))
√
k

(
α̂

α̂− 1
− α

α− 1

)
, An,2 = (1 + op (1))

√
k

(
(nĉ/k)

1/α̂

(nc/k)
1/α

− 1

)
.

We begin by showing that An,2 → 0, as n → ∞. First observe that An,2 may be rewritten into

An,2 = (1 + op (1))
√
k
(
(nc/k)

1/α̂−1/α
(ĉ/c)

1/α̂−1/α − 1
)

Assumptions (i) and (ii), imply that
√
k/ log(n/k) → ∞. Also, from Theorem 1 of [30], the asymptotic

normality of α̂ gives α̂− α = O
(
1/

√
k
)
. Therefore

(1/α̂− 1/α) log (nc/k)
P→ 0,

this implies that
(nc/k)

1/α̂−1/α P→ 1 as n → ∞.

On the other hand, from equation (4.7) in [25], we have

(ĉ/c)− 1 = α−1 (1 + op (1)) (α̂− α) log(n/k) + op

(
1√
k
log

n

k

)
.

Since ĉ is a consistent estimator of c, then Taylor’s expansion gives

(ĉ/c)
1/α̂−1/α − 1 = α−1 (α̂− α) log(n/k) (ĉ/c− 1) , as n → ∞.

It suffices now to show that
√
k
(
(ĉ/c)

1/α̂−1/α − 1
)

converges to 0 in probability. Indeed, again by using the fact

that α̂− α = Op

(
1/
√
k
)
, yield

√
k
(
(ĉ/c)

1/α̂−1/α − 1
)
= Op (1)

(
1√
k
log

n

k
+ op

(
log(n/k)√

k

))
,
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which tends in probability to 0, because we already have
√
k/ log(n/k) → ∞. Now, we consider the term An,1.

Since α̂ is a consistent estimator of α, then it is easy to show that

An,1 = − (1 + op (1))

√
k

(α− 1)
2 (α̂− α) .

From theorem 2.1 in [7], we infer that
√
n (1− t)

(k/n)1/2 (nc/k)
1/α

(
C2,n(s)− C2,n(s)

)
= − α

(α− 1)
2 [η1W1 + η2W2 + η3W3] + oP(1),

where

W1 =
√

n/kBn (1− k/n)−
√

n/k

∫ 1

0

s−1Bn(1− ks/n)ds,

W2 =
(
λ−1 − 1

)√
n/kBn (1− k/n) + (λ− 1)

√
n/k

∫ 1

0

sλ−2Bn(1− ks/n)ds,

W3 = (1− λ)
√

n/k

∫ 1

0

sλ−2(log s)Bn(1− ks/n)ds

+λ−2
√

n/kBn (1− k/n)−
√

n/k

∫ 1

0

sλ−2Bn(1− ks/n)ds,

and

η1 =
λ4

(λ− 1)
4 , η2 =

λ2 (2λ− 1) (3λ− 1)

(λ− 1)
5 , η3 =

λ3 (2λ− 1)
2

(λ− 1)
4 .

From the Proof of statement (4.2) in [28], we shall show below that there are Brownian bridges Bn such that

√
n (1− t)

(k/n)1/2Q(1− k/n)

(
C1,n(s)− C1,n(s)

)
= −

∫ 1

k/n
Bn(1− s)dQ(1− s)

(k/n)1/2Q(1− k/n)
+ oP(1) (26)

On the other hand, from (10), we have Q(1− k/n) ∼ (nc/k)
1/α , as n → ∞, it follows that

√
n (1− t)

(k/n)1/2 (nc/k)
1/α

(
C1,n(s)− C1,n(s)

)
= W4 + oP(1),

where

W4 = −

∫ 1

k/n
Bn(1− s)dQ(1− s)

(k/n)1/2Q(1− k/n)
,

Finally, we have

√
n (1− t)

(k/n)1/2 (nc/k)
1/α

(
Cn(t)−C(t)

)
= − α

(α− 1)
2 [η1W1 + η2W2 + η3W3] +W4 + oP(1).

All done, after a standard calculation we obtain
√
n (1− t)

(k/n)1/2 (nc/k)
1/α

(
Cn(t)−C(t)

)
→d N

(
0, σ2 (α, β)

)
.
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