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Abstract This article deals with the estimation of parameters and reliability characteristics of Lindley distribution under
random censoring. Expected time on test based on randomly censored data is obtained. The maximum likelihood estimators
of the unknown parameters and reliability characteristics are derived. The asymptotic, bootstrap p and bootstrap t confidence
intervals of the parameters are constructed. The Bayes estimators of the parameters and reliability characteristics under
squared error loss function using non-informative and gamma informative priors are obtained. For computing of Bayes
estimates, Lindley approximation and MCMC methods are considered. Highest posterior density (HPD) credible intervals
of the parameters are obtained using MCMC method. Various estimation procedures are compared using a Monte Carlo
simulation study. Finally, a real data set is analyzed for illustration purposes.
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1. Introduction

In survival analysis and reliability theory, there are many situations when some subjects or items in the study have
not experienced the event of interest at the end of the study. For example, some patients may not be disease-free at
the end of the study period. The exact lifetimes (or time to event of interest) of these subjects are unknown. These
are called censored observations or censored times. There are several types of censoring schemes, for example,
conventional Type I and Type II censoring schemes. In these censoring schemes, items are removed from the test
at the final termination of the test. But these schemes do not allow removal of units before the termination of the
experiment, see, Al-Zahrani and Ali [3], Chaturvedi and Kumari [5], etc. Another type of censoring called random
censoring occurs when an item under study is lost or removed randomly from the experiment before its failure.
Random censoring is an important censoring in which the time of censoring is not fixed but taken as random. The
Type I censoring is a particular case of random censoring in which censoring takes place at some prefixed time
point, see Klein and Moeschberger [19].

The random censoring was introduced in literature by Gilbert [15]. Some early work on random censoring can
be found in Efron [10], Breslow and Crowley [4] and others. Recently, random censoring has become very popular
censoring scheme in literature, for example, exponential distribution under random censoring was considered by
Saleem and Aslam [31]. Kim [18] obtained approximate maximum likelihood estimation for the scale parameter of
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generalized exponential distribution under random censoring with known shape parameters. Kumar and Garg [23]
studied estimation of the parameters of randomly censored generalized inverted Rayleigh distribution. Krishna et al.
[21] discussed estimation in Maxwell distribution with randomly censored data. Garg et al. [13] discussed randomly
censored generalized inverted exponential distribution. Kumar [22] obtained classical and Bayes estimates of the
parameters of log-logistic distribution under random censoring. Kumar and Kumar [24] studied estimation in
inverse Weibull distribution based on randomly censored data.

The random censoring can be described as follows: suppose n identical items are put on test with their lifetimes
as X1, X2, . . . , Xn which are independent and identically distributed (iid) random variables with probability
density function (pdf) fX(x) and cumulative distribution function (cdf) FX(x). Also, let T1, T2, . . . , Tn be the
random censoring times of these items. Suppose pdf and cdf of T

′

i s are fT (t) and FT (t), respectively. Further,
let X ′

is and T ′
is be mutually independent. Note that, between X ′

is and T ′
is, only one will be observed. The actual

observed time be Yi = min(Xi, Ti); i = 1, 2, . . . , n. Also, define the indicator variable Di as Di = (1 if Xi ≤ Ti
otherwise 0). Note that Di is a random variable with Bernoulli probability mass function given by P [Di =
j] = pj(1− p)1−j ; j = 0, 1 and p = P [Xi ≤ Ti]. Since X

′

is and T
′

i s are independent, so will be Yi and Di,
∀ i = 1, 2, . . . , n. Now, it is simple to show that the joint pdf of Y and D is given by

fY,D(y, d) = {fX(y)F̄T (y)}d{fT (y)F̄X(y)}1−d ; y > 0, d = 0, 1, (1)

where, F̄T (y) = 1− FT (y) and F̄X(y) = 1− FX(y).Also, the probability of failure of an item before its censoring
is given by

p = P [An item fails] = P [d = 1] = P [X ≤ T ] =

∫ ∞

0

FX(t)dFT (t) =

∞∫
0

FX(t)fT (t)dt. (2)

Lindley [27] introduced the Lindley distribution in connection with Fiducial distribution and Bayes theorem.
In recent studies, Lindley distribution has been well established as a useful lifetime model in survival analysis
and reliability theory. For example, Ghitany et al. [14] developed different distributional properties, reliability
characteristics and some inferential procedures for the Lindley distribution in complete sample case. Krishna
and Kumar [20] discussed reliability estimation in Lindley distribution with progressively type II right censored
sample. Mazucheli and Achcar [29] described Lindley distribution applied to competing risk lifetime data. Ali et
al. [2] studied the effect of the loss function on Bayes estimate, posterior risk and hazard function for Lindley
distribution. Kumar et al. [25] discussed estimation of P (Y < X) in Lindley distribution using progressively first
failure censoring. Dube et al. [8] described maximum likelihood and Bayes estimates of parameters and reliability
characteristics of Lindley distribution under progressive first failure censoring. These studies suggest that in many
real life situations Lindley distribution serves as a better lifetime model than the so far popular distributions like
exponential, Rayleigh, gamma, Weibull etc.

The pdf and cdf of Lindley distribution (LD) with parameter θ are, respectively, given by

f(x, θ) =
θ2

(1 + θ)
(1 + x)e−θx, x > 0, θ > 0, (3)

F (x, θ) = 1− (1 + θ + θx)

(1 + θ)
e−θx, x > 0, θ > 0, (4)

and the corresponding reliability characteristics like mean time to system failure (MTSF), reliability function and
failure rate function, respectively, are given by

MTSF =
(θ + 2)

θ(1 + θ)
, x > 0, θ > 0, (5)

R(x, θ) =
(1 + θ + θx)

(1 + θ)
e−θx, x > 0, θ > 0, (6)
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Table 1. Probability of failure (p) of an item before its censoring in randomly censored Lindley distribution.

θ
λ 0.5 1 2

0.5 0.5 0.2716 0.1253
1 0.7284 0.5 0.284
2 0.8747 0.716 0.5

h(x, θ) =
θ2(1 + x)

(1 + θ + θx)
e−θx, x > 0, θ > 0, (7)

Now, let the failure time X and censoring time T follow LD(θ) and LD(λ), respectively. Then using equations
(1), (3) and (4) we get the joint pdf of randomly censored variables (Y,D) as

f(y, d, θ, λ) =
θ2d

(1 + θ)

λ2(1−d)

(1 + λ)
(1 + y)e−(θ+λ)y(1 + λ+ λy)d(1 + θ + θy)1−d; (8)

y > 0, d = 0, 1;λ, θ > 0.

Also, using (2) the probability of failure of an item before its censoring in Lindley distribution is given by

p = 1−
λ2

[
θ3 + (1 + θ)(3θ + λ2) + 2θλ(2 + θ) + λ

]
(1 + θ)(1 + λ)(θ + λ)3

. (9)

Table 1 gives the numerical values of this probability for various combinations of the true values of the parameters
θ and λ.

Rest of the paper is organized as follows: In section 2, we derive maximum likelihood estimators of the
parameters and reliability characteristics. Also, asymptotic confidence intervals of the parameters based on
expected Fisher information are constructed. Section 3 deals with the bootstrap p and bootstrap t confidence
intervals of the parameters. Section 4 describes the expected time on test based on randomly censored data from
Lindley distribution. Bayes estimates of the parameters and reliability characteristics under squared error loss
function using Lindley approximation and MCMC methods and HPD credible intervals based on MCMC method
are discussed in section 5. In section 6, a Monte Carlo simulation study is performed to compare various estimates
developed. A real data example for illustration purpose is discussed in section 7. Finally, conclusions of this article
are given in section 8.

2. Maximum likelihood estimation

Let (
˜
y,
˜
d) = (y1, d1), (y2, d2), . . . , (yn, dn) be a randomly censored sample from the model in (8). Then the

likelihood function is given by

L(
˜
y,
˜
d | θ, λ) = θ2m

(1 + θ)n
λ2(n−m)

(1 + λ)n

n∏
i=1

(1 + yi)e
−(θ+λ)S

×
n∏

i=1

(1 + λ+ λyi)
di

n∏
i=1

(1 + θ + θyi)
(1−di),

(10)
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where, m =
n∑

i=1

di and S =
n∑

i=1

yi. Thus, the log-likelihood function becomes

l(θ, λ) = 2m ln θ − n ln(1 + θ) + 2(n−m) lnλ− n ln(1 + λ) +

n∑
i=1

ln(1 + yi)−

(θ + λ)S +

n∑
i=1

di ln(1 + λ+ λyi) +

n∑
i=1

(1− di)(1 + θ + θyi). (11)

The normal equations are given by

∂l(θ, λ)

∂θ
=

2m

θ
− n

(1 + θ)
− S +

n∑
i=1

(1− di)(1 + yi)

(1 + θ + θyi)
= 0. (12)

∂l(θ, λ)

∂λ
=

2(n−m)

λ
− n

(1 + λ)
− S +

n∑
i=1

di(1 + yi)

(1 + λ+ λyi)
= 0. (13)

The equations (12) and (13) can be written as

θ = U1(θ), (14)

λ = U2(λ), (15)

where, U1 = 2m
[

n
(1+θ) + S −

∑n
i=1

(1−di)(1+yi)
(1+θ+θyi)

]−1

and U2 = 2(n−m)
[

n
(1+λ) + S −

∑n
i=1

di(1+yi)
(1+λ+λyi)

]−1

,
respectively.

To solve equation (14) we propose the use of iterative procedure. Suppose θ(0) is an initial guess value of θ. Then
successive approximations of θ are θ(1) = U1

(
θ(0)

)
, θ(2) = U1

(
θ(1)

)
, . . . , θ(k+1) = U1

(
θ(k)

)
. Stop the iterative

procedure at the kth stage if | θ(k+1) − θ(k) |< ϵ, for some pre-specified small value ϵ > 0. Let θ̂ be the estimated
value of θ obtained by solving equation (14). Similarly, we can obtain λ̂ after solving equation (15). Once MLEs
θ̂ and λ̂ are obtained, the MLEs of MTSF , R(t) and h(t) for given mission time t0 can be derived using invariance
property of MLEs as

M̂TSF =
(2 + θ̂)

θ̂(1 + θ̂)
, R̂(t0) =

(1 + θ̂ + θ̂t0)e
−θ̂t0

(1 + θ̂)
, t0 > 0 and ĥ(t0) =

θ̂2(1 + t0)

1 + θ̂ + θ̂t0
, t0 > 0.

2.1. Expected Fisher information

In this sub-section, we derive asymptotic confidence intervals of the parameters based on expected Fisher
information matrix. According to Zheng and Gastwirth [33] the expected Fisher information in randomly censored
data can be expressed in terms of hazard rate functions. The Fisher information of parameters ω = (θ, λ) contained
in randomly censored sample of size n from Lindley distribution is given by

I(ω) = n×
[
I11(ω) I12(ω)
I21(ω) I22(ω)

]
,

where,

I11(ω) =

∫ ∞

0

(
∂

∂θ
lnhX

)2

fX(1− FT )dx+

∫ ∞

0

(
∂

∂θ
lnhT

)2

fT (1− FX)dx

=
1

(1 + θ)(1 + λ)

∫ ∞

0

[
2 + θ + θx

(1 + θ + θx)

]2
(1 + x)(1 + λ+ λx)e−(θ+λ)xdx,
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I12(ω) = I21(ω) =

∫ ∞

0

(
∂

∂θ
lnhX

)(
∂

∂λ
lnhX

)
fX(1− FT )dx+

∫ ∞

0

(
∂

∂θ
lnhT

)(
∂

∂λ
lnhT

)
fT (1− FX)dx = 0,

I22(ω) =

∫ ∞

0

(
∂

∂λ
lnhX

)2

fX(1− FT )dx+

∫ ∞

0

(
∂

∂λ
lnhT

)2

fT (1− FX)dx

=
1

(1 + θ)(1 + λ)

∫ ∞

0

[
2 + λ+ λx

(1 + λ+ λx)

]2
(1 + x)(1 + θ + θx)e−(θ+λ)xdx,

here, hX and hT are the hazard rate function of X and T , respectively.
We observe that the elements of the expected Fisher information matrix I(ω) are to be computed numerically.

Thus, the variance- covariance matrix of MLEs ω̂ = (θ̂, λ̂) is the inverse of Fisher information matrix and it is given
by

I−1(ω) =
1

n

[
I−1
11 (ω) 0
0 I−1

22 (ω)

]
=

[
V ar(θ̂) 0

0 V ar(λ̂)

]
.

In practice, parameters ω = (θ, λ) are estimated by their MLEs ω̂ = (θ̂, λ̂), respectively, are given by V̂ ar(θ̂)
and V̂ ar(λ̂). The asymptotic distribution of MLEs ω̂ = (θ̂, λ̂) are normal distributions as θ̂ ∼ N(θ, V̂ ar(θ̂)) and
λ̂ ∼ N(λ, V̂ ar(λ̂)) see, Lawless [26]. Therefore, two sided equal tail 100(1− ξ)% asymptotic confidence intervals
for the parameters θ and λ are given by

(
θ̂ ± zξ/2

√
V̂ ar(θ̂)

)
and

(
λ̂± zξ/2

√
V̂ ar(λ̂)

)
,

respectively. Here, zξ/2 is the upper (ξ/2)th percentile of the standard normal distribution. Also, the Monte Carlo
simulation can be used to find the coverage probabilities (CPs) of the parameters as

CPθ = P

∣∣∣∣ θ̂ − θ√
V̂ ar(θ̂)

∣∣∣∣ ≤ zξ/2

 and CPλ = P

∣∣∣∣ λ̂− λ√
V̂ ar(λ̂)

∣∣∣∣ ≤ zξ/2

 .

3. Bootstrap confidence intervals

Here, we propose the use of two bootstrap confidence intervals for the unknown parameters. The two bootstrap
methods that are widely used in practice are (i) the percentile bootstrap (boot-p) method proposed by Efron
[11], and (ii) the bootstrap-t (boot-t) method proposed by Hall [16]. We use the following steps for two bootstrap
confidence intervals for θ and λ as suggested by Efron and Tibshirani [9].

3.1. Percentile bootstrap (boot-p) method

Step 1. Generate a randomly censored sample (
˜
y,
˜
d) = (y1, d1), (y2, d2), . . . , (yn, dn) of size n from the model

given in (8) and compute the MLEs θ̂, λ̂ of θ, λ, respectively.

Step 2. Generate a bootstrap sample (
˜
y∗,

˜
d∗) = (y∗1 , d

∗
1), (y

∗
2 , d

∗
2), . . . , (y

∗
n, d

∗
n), using θ̂, λ̂ as the true values of the

parameters. Compute the bootstrap MLEs of θ, λ say θ̂∗, λ̂∗ using the bootstrap sample.

Step 3. Repeat step 2, B times to obtain a set of bootstrap MLEs (θ̂∗i ,λ̂∗i ; i = 1, 2, . . . B).

Step 4. Let (θ̂∗1 ≤ θ̂∗2 ≤ · · · ≤ θ̂∗B) and (λ̂∗1 ≤ λ̂∗2 ≤ · · · ≤ λ̂∗B) denote the ordered values of θ̂∗i and λ̂∗i , i =
1, 2, . . . , B respectively.
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The approximate 100× (1− ξ)% boot-p confidence interval for θ is given by(
θ̂∗[(ξ/2)B], θ̂

∗
[(1−ξ/2)B]

)
.

Similarly, the approximate 100× (1− ξ)% boot-p confidence intervals for λ is given by(
λ̂∗[(ξ/2)B], λ̂

∗
[(1−ξ/2)B]

)
.

where, [a] is the intergral part of a.

3.2. Bootstrap-t (boot-t) method

Steps 1 and 2 are same as in boot-p method

Step 3. Compute the bootstrap-t statistics T ∗
θ = θ̂∗−θ̂√

V̂ ar(θ̂∗)
and T ∗

λ = λ̂∗−λ̂√
V̂ ar(λ̂∗)

for θ̂∗ and λ̂∗, respectively.

Step 4. Repeat steps 2-3, B times to obtain a set of bootstrap statistics (T ∗
θi
, T ∗

λi
); i = 1, 2, . . . , B.

Step 5. Let (T ∗
θ(1)

≤ T ∗
θ(2)

≤ · · · ≤ T ∗
θ(B)

) and (T ∗
λ(1)

≤ T ∗
λ(2)

≤ · · · ≤ T ∗
λ(B)

) denote the ordered values of T ∗
θi

and
T ∗
λi
, i = 1, 2, . . . , B respectively. The approximate 100× (1− ξ)% boot-t confidence intervals for θ is given

by

(
θ̂ − T ∗

θ[(1−ξ/2)B]

√
V̂ ar(θ̂), θ̂ − T ∗

θ[(ξ/2)B]

√
V̂ ar(θ̂)

)
.

Similarly, the approximate 100× (1− ξ)% boot-t confidence intervals for λ is given by(
λ̂− T ∗

λ[(1−ξ/2)B]

√
V̂ ar(λ̂), λ̂− T ∗

λ[(ξ/2)B]

√
V̂ ar(λ̂)

)
.

4. Expected time on test

In this section, we study the expected time on test (ETT) of a randomly censored experiment. In a life testing
experiment it is beneficial to have an idea about the expected duration of the experiment before the starting of the
test. The cost of life testing experiment directly depends on the time taken to complete the test.

Let the failure time X ∼ LD(θ) and the censoring time T ∼ LD(λ). Again, let Z = max(Y1, Y2, . . . , Yn), then
the cdf of Z is given by

FZ = P [Z ≤ z] = P [max(Y1, Y2, . . . , Yn) ≤ z] = {P [Yi ≤ z]}n ; z > 0, i = 1, 2, . . . , n,

since, Yi, i = 1, 2, . . . , n are iid. Note that, for i = 1, 2, . . . , n,

FY (z) = P [Z ≤ z] = P [min(Xi, Ti) ≤ z] = 1− P [min(Xi, Ti) > z]

= 1− P [Xi > z]P [Ti > z] = 1− {1− FX(z)}{1− FT (z)}.

For failure time LD(θ) and censoring time LD(λ),

FY (z) = 1− (1 + θ + θz)(1 + λ+ λz)

(1 + θ)(1 + λ)
e−(θ+λ)z, z > 0.

Therefore,

FZ(z) =

[
1− (1 + θ + θz)(1 + λ+ λz)

(1 + θ)(1 + λ)
e−(θ+λ)z

]n
, z > 0.
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Hence, the expected time on test becomes

ETT = E[Z] =

∫ ∞

0

[1− FZ(z)]dz

=

∫ ∞

o

[
1−

[
1− (1 + θ + θz)(1 + λ+ λz)

(1 + θ)(1 + λ)
e−(θ+λ)z

]n]
dz. (16)

The observed time on test (OBTT) is the value ofZ = max(Y1, Y2, . . . , Yn) in an observed sample. The simulated
values based on 1, 000 samples from randomly censored Lindley distribution given in (8) for OBTT with their
corresponding ETT are given in Table 2. This table shows that OBTT estimates ETT precisely for various values
of the parameters θ and λ. The MLE of ETT can be obtained using invariance property of MLEs.

Table 2. Expected time on test (ETT) and observed time on test (OBTT).

θ n λ = 0.5 λ = 1 λ = 2

ETT OBTT ETT OBTT ETT OBTT
AV MSE AV MSE AV MSE

0.5

20 5.6933 5.6921 2.5072 3.5886 3.5805 1.1258 1.9670 1.9769 0.3939
30 6.2101 6.2463 2.5589 3.9286 3.9518 1.1467 2.1646 2.1580 0.3863
50 6.8535 6.8639 2.4134 4.3529 4.3640 1.0884 2.4121 2.4114 0.3541
80 7.4381 7.4077 2.3240 4.7390 4.7579 1.1114 2.6382 2.6497 0.3862

1

20 3.5886 3.5763 1.0869 2.6229 2.6183 0.6152 1.6371 1.6229 0.2632
30 3.9286 3.9297 1.1347 2.8765 2.8961 0.6449 1.8022 1.8068 0.2695
50 4.3529 4.3663 1.0968 3.1932 3.1987 0.6202 2.0089 2.0065 0.2607
80 4.7390 4.7333 1.0422 3.4816 3.4858 0.5987 2.1978 2.1993 0.2718

2

20 1.9670 1.9545 0.3819 1.6371 1.6363 0.2639 1.1859 1.1896 0.1492
30 2.1646 2.1590 0.3885 1.8022 1.8107 0.2635 1.3079 1.3074 0.1443
50 2.4121 2.3931 0.3696 2.0089 2.0038 0.2531 1.4610 1.4672 0.1535
80 2.6382 2.6296 0.3657 2.1978 2.2062 0.2553 1.6010 1.6012 0.1436

5. Bayesian estimation

In this section, we derive the Bayes estimates of the unknown parameters of the model in (8) using randomly
censored data. There are various ways to choose the priors. Here, we consider piecewise independent gamma
priors on both parameters θ & λ and are, respectively, given by

g1(θ) =
ba1
1

Γ(a1)
θa1−1e−b1θ, θ > 0, a1, b1 > 0,

and g2(λ) =
ba2
2

Γ(a2)
λa2−1e−b2λ, λ > 0, a2, b2 > 0.

Thus, the joint prior distribution of θ and λ can be written as

g(θ, λ) ∝ θa1−1e−b1θλa2−1e−b2λ; θ, λ > 0, a1, b1, a2, b2 > 0. (17)

The assumption of gamma prior is not unreasonable. Gamma prior accommodates variety of shapes depending
upon hyper-parameter values. The family of gamma distributions is highly flexible in nature and can be used as a
suitable prior for θ as well as λ. Many authors have used gamma prior for Lindley distribution, see Krishna and
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Kumar [20], Ali et al. [2], Kumar et al. [25], Dube et al. [8]. Also, it is to be noted that the non-informative prior for
the parameter is a special case of gamma prior and can be obtained on putting hyper-parameters a = b = 0 in (17).

Based on the randomly censored data (
˜
y,
˜
d), likelihood function in (10) and joint prior distribution of (θ, λ)

in (17), the joint posterior distribution of (θ, λ) is given by

π(θ, λ |
˜
y,
˜
d) =

L(
˜
y,
˜
d | θ, λ)g(θ, λ)∫∞

0

∫∞
0
L(

˜
y,
˜
d | θ, λ)g(θ, λ)dθdλ

π(θ, λ |
˜
y,
˜
d) ∝ θ2m+a1−1

(1 + θ)n
e−θ(b1+S)

n∏
i=1

(1 + θ + θyi)
1−di

λ2(n−m)+a2−1

(1 + λ)n
e−λ(b2+S)

n∏
i=1

(1 + λ+ λyi)
di . (18)

From the joint posterior distribution of θ and λ given in equation (18), we observe that the posterior distributions
of θ and λ are independent. Thus, the marginal posterior distribution of θ given data (

˜
y,
˜
d) is given by

π1(θ |
˜
y,
˜
d) ∝ θ2m+a1−1

(1 + θ)n
e−θ(b1+S)

n∏
i=1

(1 + θ + θyi)
(1−di), θ > 0. (19)

Similarly, the marginal posterior distribution of λ given data (
˜
y,
˜
d) is given by

π2(λ | y
∼
, d
∼
) ∝ λ2(n−m)+a2−1

(1 + λ)n
e−λ(b2+S)

n∏
i=1

(1 + λ+ λyi)
di , λ > 0. (20)

Therefore, the expectation of any function of θ say ϕ1(θ) and of λ say ϕ2(λ) respectively, are given by

E[ϕ1(θ) |
˜
y,
˜
d] =

∫ ∞

0

ϕ1(θ)π1(θ |
˜
y,
˜
d)dθ (21)

and

E[ϕ2(λ) |
˜
y,
˜
d] =

∫ ∞

0

ϕ2(λ)π2(λ |
˜
y,
˜
d)dλ (22)

For the above integrals in (21) and (22), the closed form solutions are not available. The above integrals can be
solved numerically. We propose the use of Lindley’s approximation method and Metropolis-Hastings algorithm to
approximate the above integrals.

5.1. Lindley’s approximation method

Now, we compute the Bayes estimates of the parameters θ and λ using Lindley’s approximation method which is
proposed by Lindley [28]. According to this method the approximate Bayes estimates of ϕ1(θ) under squared error
loss function (SELF) is given by

ϕ̂1LB = ϕ1(θ) +
1

2

(
∂2ϕ1(θ)

∂θ2
+ 2

∂ϕ1(θ)

∂θ

∂ρ1(θ)

∂θ

)
σ2
1 +

1

2

(
∂3l(θ, λ)

∂θ3
∂ϕ1(θ)

∂θ

)
σ4
1 , (23)

where,

∂ρ1(θ)

∂θ
=
∂ ln g1(θ)

∂θ
=

(
a− 1

θ
− b

)
, σ2

1 = V ar(θ̂), σ4
1 = (σ2

1)
2, and

∂3l(θ, λ)

∂θ3
=

4m

θ3
− 2n

(1 + θ)3
+ 2

n∑
i=1

(1− di)(1 + yi)
3

(1 + θ + θyi)3
.
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When, π1(θ) = θ, the Bayes estimate of θ under SELF is given by

θ̂LB = θ +
∂ρ1(θ)

∂θ
σ2
1 +

1

2

∂3l(θ, λ)

∂θ3
σ4
1 . (24)

Similarly, the Bayes estimate of λ under SELF is given by

λ̂LB = λ+
∂ρ2(λ)

∂θ
σ2
2 +

1

2

∂3l(θ, λ)

∂λ3
σ4
2 . (25)

where,

∂ρ2(λ)

∂λ
=
∂ ln g2(λ)

∂λ
=

(
a2 − 1

λ
− b2

)
, σ2

2 = V ar(λ̂), σ4
2 = (σ2

2)
2, and

∂3l(θ, λ)

∂λ3
=

4(n−m)

λ3
− 2n

(1 + λ)3
+ 2

n∑
i=1

di(1 + yi)
3

(1 + λ+ λyi)3
.

Also, the Bayes estimates of MTSF, R(t) and h(t) under SELF are given by

M̂TSFLB =MTSF +
1

2

(
∂2MTSF

∂θ2
+ 2

∂MTSF

∂θ

∂ρ1(θ)

∂θ

)
σ2
1 +

1

2

(
∂3l(θ, λ)

∂θ3
∂MTSF

∂θ

)
σ4
1 (26)

where,

∂MTSF

∂θ
= − (θ2 + 4θ + 2)

θ2(1 + θ)2
, and

∂2MTSF

∂θ2
=

2θ3 + 12θ2 + 12θ + 4

θ3(1 + θ)3
.

R̂(t0)LB = R(t0) +
1

2

(
∂2R(t0)

∂θ2
+ 2

∂R(t0)

∂θ

∂ρ1(θ)

∂θ

)
σ2
1 +

1

2

(
∂3l(θ, λ)

∂θ3
∂R(t0)

∂θ

)
σ4
1 , (27)

where,

∂R(t0)

∂θ
=

−θt0(2 + t0 + θ + θt0)e
−θt0

(1 + θ)2
and

∂2R(t0)

∂θ2
=
t0(θt0 + θt20 + 3θ2t0 + 2θ2t20 + θ3t0 + θ3t20 − t0 − 2)e−θt0

(1 + θ)3

ĥ(t0)LB = h(t0) +
1

2

(
∂2h(t0)

∂θ2
+ 2

∂h(t0)

∂θ

∂ρ1(θ)

∂θ

)
σ2
1 +

1

2

(
∂3l(θ, λ)

∂θ3
∂h(t0)

∂θ

)
σ4
1 , (28)

where,
∂h(t0)

∂θ
=

(1 + t0)(2θ + θ2 + θ2t0)

(1 + θ + θt0)2
and

∂2h(t0)

∂θ2
=

2(1 + t0)

(1 + θ + θt0)3
.

All the values on the right hand side in equations (23), (24), (25), (26), (27) and (28) are to be computed at
MLEs (θ̂, λ̂) of (θ, λ). Although, using Lindley’s approximation methods, the Bayes estimates of the unknown
parameters can be obtained easily but we cannot construct the highest posterior density (HPD) credible intervals.
For this purpose we use the Metropolis-Hastings algorithm to compute Bayes estimates as well as HPD credible
intervals.
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5.2. Metropolis-Hastings Algorithm

Here, we consider Metropolis-Hastings (M-H) algorithm to compute Bayes estimates of the parameters and
reliability characteristics. The posterior distribution of the parameter θ given in (19) is not in a well known
distribution form and therefore random numbers from this distribution can be generated by using M-H algorithm.
To sample from posterior distribution of θ given data (

˜
y,

˜
d) in (19) we generate candidate point from a normal

distribution. The following steps are used for computation purpose:

Step 1. Start with initial guess θ(0).

Step 2. Generate a candidate point θ(j)c from the proposal density q(θ(j) | θ(j−1)).

Step 3. Generate u from Uniform(0, 1) distribution

Step 4. Calculate α(θ(j)c | θ(j−1)) = min

{
π1(θ

(j)
c |

˜
y,
˜
d)q(θ(j)|θ(j−1))

π1(θ(j−1)|
˜
y,
˜
d)q(θ

(j)
c |θ(j−1))

, 1

}
Step 5. If u ≤ α set θ(j) = θ

(j)
c with acceptance probability z otherwise θ(j) = θ(j−1).

Step 6. Repeat steps 2-5, for j = 1, 2, . . . ,M, to obtain the sequence of the parameter θ as
(
θ(1), θ(2), . . . , θ(M)

)
.

Here, we consider proposal density as normal distribution with mean MLE θ̂ and variance as observed variance
V̂ ar(θ̂), respectively, see, Ntzoufras (pp. 44-45)[30]. We discard first M0, θ(j)’s ; j = 1, 2, . . . ,M0, where, M0

(< M) is the burn-in- period, to obtain an independent sample from the stationary distribution of the Markov chain
which is typically the posterior distribution. Now, the approximate Bayes estimate of ϕ1(θ) using M-H algorithm
is obtained as

ϕ̂1MH(θ) =
1

M −M0

M∑
j=M0+1

ϕ1(θ
(j)).

Similarly, the approximate Bayes estimate of ϕ2(λ) using M-H algorithm is obtained as

ϕ̂2MH(λ) =
1

M −M0

M∑
j=M0+1

ϕ2(λ
(j)).

Therefore, the Bayes estimates of the parameters θ, λ and reliability characteristics like MTSF, reliability function
and failure rate function with mission time t0 under SELF using M-H algorithm are, respectively, given by

θ̂MH =
1

(M −M0)

M∑
j=M0+1

θ(j), λ̂MH =
1

(M −M0)

M∑
j=M0+1

λ(j),

M̂TSFMH =
1

(M −M0)

M∑
j=M0+1

(
(θ(j) + 2)

θ(j)(1 + θ(j))

)
,

R̂(t0)MH =
1

(M −M0)

M∑
j=M0+1

(
(1 + θ(j) + t0θ

(j))

(1 + θ(j))
e−θ(j)t0

)
, t0 > 0,

and ĥ(t0)MH =
1

(M −M0)

M∑
j=M0+1

(
(θ(j))2(1 + t0)

(1 + θ(j) + t0θ(j))

)
, t0 > 0.
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5.3. HPD credible intervals

Here, we construct the HPD credible intervals of θ using the generated MCMC samples. Let θ(1) < θ(2) < · · · <
θ(M−M0) denote the ordered values of θ(M0+1), θ(M0+2), . . . , θ(M). Then, using the algorithm proposed by Chen
and Shao [6], the 100(1− ξ)%, where 0 < ξ < 1, HPD credible interval for θ is given by

(θ(j), θ(j+[(1−ξ)(M−M0)])), where j is chosen such that

θ(j+[(1−ξ)(M−M0)]) − θ(j) = min
1≤i≤(M−M0)

(
θ(i+[(1−ξ)(M−M0)]) − θ(i)

)
; j = 1, 2, . . . ,M −M0,

Similarly, we can construct the 100(1− ξ)% HPD credible interval for λ.

6. Monte Carlo simulation study

A Monte Carlo simulation study is performed to compare the effects of various estimation procedures developed in
the previous sections for randomly censored samples from Lindley distribution. It is important to note that we use
the statistical software R for computations purposes in this article. We choose the value of the failure parameter
θ to be unity and three different values for the censoring parameter λ like 0.5, 1 and 2 so that probability of
uncensored observations are p = 0.7284, 0.50 and 0.2840, respectively. We generateN = 1, 000 randomly censored
samples of sizes n = 20, 30, 50 and 80 from the model in (8). Bayes estimates of the parameters are computed
using independent gamma priors and non-informative priors under SELF. Notations prior0 and prior1 are used
for non-informative and gamma informative priors, respectively. Hyper-parameters are chosen so that the prior’s
means are exactly equal to the true values of the parameters. We chose hyper-parameters (a1 = 2, b1 = 2, a2 =
2, b2 = 4), (a1 = 2, b1 = 2, a2 = 2, b2 = 2) and (a1 = 2, b1 = 2, a2 = 4, b2 = 2) according to the true values of the
parameters.

In each case, we calculate the maximum likelihood and Bayes estimates of the parameters θ, λ and reliability
characteristics, MTSF , reliability function R(t) and failure rate function h(t) with mission time t0 = 0.80. Also,
we compute the length of 95% classical confidence intervals and HPD credible intervals of the unknown parameters.
Here, we use B = 1, 000 for bootstrap samples. Bayes estimates of the parameters and reliability characteristics
are computed using Lindley approximation and M-H algorithm methods, respectively. Here, we use M = 10, 000
for M-H algorithm with burn-in-period M0 = 2, 000. We compute the average value (AV) and the corresponding
mean squared error (MSE) of different estimates, where, AV =

∑
ψ̂(θ)/N and MSE =

∑
(ψ̂(θ)− ψ(θ))2/N ,

here, ψ̂(θ) is the MLE or Bayes estimate of the parametric function ψ(θ). The results of the extensive simulation
study are presented in Tables 2, 3, 4, 5, 6, 7, 8 and 9.

According to these Tables following conclusions are made: Maximum likelihood estimation method gives almost
unbiased estimates even for small sample size 20. As the sample size n and probability of failure p increases the
bias and MSE decrease as expected. Also, as the value of the censoring parameter λ increases, bias and MSE
also increase. The coverage probabilities based on all confidence and HPD credible intervals of the parameters
attain their prescribed confidence levels almost in all cases. Average length of all types of confidence and HPD
credible intervals narrow down as sample size n and probability of failure p increase. Among the confidence and
HPD credible intervals HPD credible intervals are best in respect of average length. Bayes estimates are also very
good in respect of bias and MSE. Bayes estimates computed using M-H algorithm is better than estimates using
Lindley’s approximation method in respect of both cases bias as well as MSE. Bayes estimates are better than
MLEs in respect of bias and MSE as they include prior information about the parameters. Thus, we recommend
the Bayesian point and interval estimation methods for estimation purposes.
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Table 3. The Maximum Likelihood and Bayes estimates of θ when θ = 1.

λ n θ̂ML θ̂LB θ̂MH

prior0 prior1 prior0 prior1
AV MSE AV MSE AV MSE AV MSE AV MSE

0.5

20 1.0076 0.0422 1.0325 0.0479 1.0068 0.0357 1.0080 0.0420 0.9922 0.0350
30 1.0007 0.0183 1.0245 0.0318 1.0016 0.0165 1.0038 0.0301 0.9980 0.0166
50 0.9931 0.0161 1.0166 0.0170 0.9939 0.0151 1.0043 0.0164 0.9926 0.0150
80 0.9992 0.0105 1.0115 0.0097 0.9997 0.0101 1.0039 0.0095 0.9921 0.0100

1

20 1.0245 0.0589 1.0321 0.0637 1.0209 0.0446 0.9882 0.0596 0.9917 0.0439
30 0.9978 0.0278 1.0225 0.0412 0.9990 0.0239 0.9937 0.0393 0.9921 0.0242
50 1.0225 0.0250 1.0162 0.0233 1.0221 0.0229 0.9992 0.0226 1.0066 0.0222
80 1.0032 0.0121 1.0125 0.0136 1.0037 0.0115 1.0020 0.0133 0.9931 0.0113

2

20 1.0099 0.0719 1.0090 0.0701 1.0080 0.0499 1.0088 0.0450 0.9940 0.0424
30 1.0583 0.0610 1.0210 0.0676 1.0510 0.0465 0.9930 0.0655 1.0099 0.0439
50 0.9788 0.0245 1.0205 0.0397 0.9815 0.0213 0.9923 0.0385 0.9956 0.0210
80 0.9954 0.0197 1.0103 0.0220 0.9963 0.0180 0.9929 0.0217 0.9992 0.0174

Table 4. The Maximum Likelihood and Bayes estimates of λ when θ = 1.

λ n λ̂ML λ̂LB λ̂MH

prior0 prior1 prior0 prior1
AV MSE AV MSE AV MSE AV MSE AV MSE

0.5

20 0.5087 0.0248 0.5086 0.0245 0.5133 0.0169 0.5070 0.0155 0.5036 0.0119
30 0.5007 0.0142 0.5051 0.0147 0.4986 0.0114 0.4860 0.0147 0.5013 0.0117
50 0.4954 0.0090 0.5008 0.0086 0.5406 0.0101 0.4894 0.0087 0.5017 0.0096
80 0.5040 0.0050 0.5005 0.0052 0.5321 0.0059 0.4935 0.0052 0.5064 0.0056

1

20 1.0607 0.0628 1.0370 0.0615 1.0478 0.0488 1.0006 0.0580 1.0131 0.0446
30 1.0016 0.0368 1.0245 0.0406 0.9981 0.0322 1.0006 0.0392 0.9759 0.0318
50 1.0128 0.0227 1.0079 0.0244 1.0103 0.0209 0.9937 0.0240 0.9962 0.0202
80 1.0101 0.0124 1.0046 0.0134 1.0088 0.0118 0.9958 0.0132 0.9996 0.0117

2

20 2.0094 0.1137 2.0090 0.1130 1.9944 0.0835 2.0135 0.1301 1.9515 0.0822
30 2.0389 0.1351 2.0575 0.1303 2.0236 0.1038 2.0199 0.1296 1.9885 0.0977
50 2.0187 0.0652 2.0192 0.0826 2.0128 0.0576 1.9970 0.0809 1.9924 0.0557
80 2.0542 0.0507 2.0148 0.0462 2.0493 0.0465 2.0010 0.0455 2.0362 0.0442

Table 5. The Maximum Likelihood and Bayes estimates of MTSF when θ = 1 and MTSF = 1.5.

n M̂TSFML
M̂TSFLB M̂TSFMH

prior0 prior1 prior0 prior1

AV MSE AV MSE AV MSE AV MSE AV MSE
20 1.5649 0.1429 1.5977 0.1623 1.6298 0.1479 1.5801 0.1050 1.6470 0.1579
30 1.5062 0.2052 1.5591 0.0964 1.6098 0.2098 1.5728 0.1001 1.6291 0.2208
50 1.5429 0.0540 1.5291 0.0502 1.5689 0.0558 1.5366 0.0513 1.5749 0.0571
80 1.5202 0.0303 1.5151 0.0295 1.5367 0.0309 1.5197 0.0299 1.5413 0.0315

7. Real data analysis

In this section, we discuss a real data set for illustration purpose. The data set given below is a randomly censored
data set and has been taken from Fleming and Harrington [12]. These data belong to Group IV of the primary
biliary cirrhosis (PBC) liver study group conducted by Mayo Clinic. The event of interest is the time to death of
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Table 6. The Maximum Likelihood and Bayes estimates of reliability function R(t) when θ = 1, mission time t0 = 0.8 and
R(t0) = 0.6291.

n R̂(t0)ML R̂(t0)LB R̂(t0)MH

prior0 prior1 prior0 prior1

AV MSE AV MSE AV MSE AV MSE AV MSE
20 0.6295 0.0068 0.6233 0.0069 0.6326 0.0055 0.6325 0.0048 0.6424 0.0058
30 0.6102 0.0093 0.6240 0.0048 0.6174 0.0067 0.6311 0.0047 0.6307 0.0070
50 0.6333 0.0027 0.6250 0.0027 0.6341 0.0025 0.6293 0.0026 0.6381 0.0026
80 0.6303 0.0017 0.6260 0.0016 0.6309 0.0016 0.6286 0.0016 0.6336 0.0017

Table 7. The Maximum Likelihood and Bayes estimates of failure rate function h(t) when θ = 1, mission time t0 = 0.8 and
h(t0) = 0.6429.

n ĥ(t0)ML ĥ(t0)LB ĥ(t0)MH

prior0 prior1 prior0 prior1

AV MSE AV MSE AV MSE AV MSE AV MSE
20 0.6528 0.0325 0.6779 0.0377 0.6547 0.0275 0.6499 0.0238 0.6280 0.0264
30 0.6983 0.0475 0.6687 0.0249 0.6957 0.0363 0.6496 0.0233 0.6573 0.0333
50 0.6382 0.0122 0.6599 0.0132 0.6400 0.0115 0.6486 0.0127 0.6295 0.0113
80 0.6430 0.0081 0.6545 0.0075 0.6441 0.0078 0.6474 0.0072 0.6371 0.0077

Table 8. The average length (AL) and coverage probability (CP) of 95% classical confidence/ HPD credible intervals for θ
when θ = 1.

λ n Asymptotic Boot-p Boot-t HPD
Confidence Interval Confidence Interval Confidence Interval Credible Interval

prior0 prior1
AL CP AL CP AL CP AL CP AL CP

0.5

20 0.7717 0.925 0.8175 0.9400 0.7765 0.9520 0.4451 0.9290 0.4990 0.935
30 0.6231 0.970 0.6478 0.9600 0.6227 0.9610 0.4402 0.9380 0.4152 0.961
50 0.4782 0.926 0.4909 0.9380 0.4807 0.9590 0.3404 0.9400 0.3233 0.959
80 0.3811 0.938 0.3857 0.9580 0.3801 0.9480 0.2689 0.9560 0.2609 0.954

1

20 0.9361 0.953 0.9950 0.9590 0.9651 0.9600 0.6299 0.9600 0.5905 0.961
30 0.7345 0.961 0.7667 0.9600 0.7500 0.9580 0.5163 0.9590 0.4822 0.963
50 0.5821 0.959 0.5957 0.9570 0.5867 0.9580 0.4003 0.9470 0.3892 0.957
80 0.4527 0.962 0.4587 0.9550 0.4549 0.9550 0.3172 0.9490 0.3088 0.954

2

20 1.1193 0.940 1.2070 0.9580 1.2219 0.9600 0.6550 0.9390 0.6799 0.948
30 0.9948 0.961 1.0426 0.9590 1.0439 0.9580 0.6548 0.9400 0.6251 0.958
50 0.7286 0.955 0.7456 0.9580 0.7449 0.9570 0.5129 0.9570 0.4763 0.956
80 0.587 0.953 0.5980 0.9540 0.5960 0.9560 0.4068 0.9530 0.3927 0.952

PBC patients. The data on the survival times (in days) of 36 patients who had the highest category of bilirubin are
as follows:

400, 77, 859, 71, 1037, 1427, 733, 334, 41, 51, 549, 1170, 890, 1413, 853, 216, 1882+, 1067+, 131, 223, 1827,
2540, 1297, 264, 797, 930, 1329+, 264, 1350, 1191, 130, 943, 974, 790, 1765+, 1320+. Here, plus sign + indicates
censored observation.

For computational convenience we analyze the data set after dividing each data point by 1,000. Now, we fit
randomly censored Lindley distribution given in (8) to the real data set and compare its fitting with some well
known lifetime distributions, namely, exponential, Rayleigh, gamma and Weibull distributions. The maximum
likelihood estimation method is used to estimate the parameters of the above distributions. These estimates, along
with the data, are used to calculate estimated negative log likelihood function (−lnL), the Akaike information
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Table 9. The average length (AL) and coverage probability (CP) of 95% classical confidence/ HPD credible intervals for λ
when θ = 1.

λ n Asymptotic Boot-p Boot-t HPD
Confidence Interval Confidence Interval Confidence Interval Credible Interval

prior0 prior1
AL CP AL CP AL CP AL CP AL CP

0.5

20 0.5489 0.932 0.6132 0.939 0.6272 0.96 0.3245 0.96 0.4019 0.958
30 0.4438 0.956 0.4789 0.96 0.4789 0.958 0.315 0.959 0.2912 0.957
50 0.3409 0.939 0.3607 0.938 0.3607 0.959 0.2456 0.957 0.2456 0.953
80 0.2726 0.958 0.2853 0.945 0.2842 0.956 0.1953 0.956 0.1953 0.955

1

20 0.8809 0.941 1.0098 0.96 0.9704 0.96 0.6341 0.961 0.5987 0.959
30 0.6858 0.938 0.7689 0.958 0.7495 0.959 0.5182 0.96 0.4834 0.959
50 0.5381 0.939 0.5949 0.956 0.5868 0.957 0.3994 0.959 0.3872 0.958
80 0.4228 0.948 0.4624 0.952 0.457 0.949 0.3164 0.956 0.3093 0.953

2

20 1.4056 0.96 1.6812 0.96 1.5825 0.96 0.9629 0.96 0.9827 0.959
30 1.225 0.948 1.4518 0.961 1.3883 0.959 0.9529 0.947 0.8864 0.954
50 0.932 0.948 1.0758 0.957 1.0458 0.957 0.7309 0.948 0.6923 0.957
80 0.7492 0.949 0.8543 0.953 0.8416 0.953 0.5781 0.953 0.5623 0.952

criterion (AIC), proposed by Akaike [1], defined by AIC = 2× k − 2× ln(L), Bayesian information criterion
(BIC) proposed by Schwarz [32], defined by BIC = k × ln(n)− 2× ln(L), where k is the number of parameters
in the survival model, n is the number of observations in the given data set, and L is the maximized value of the
likelihood function for the estimated model and Kolmogorov-Smirnov (K-S) statistic with its p-value. The best
distribution corresponds to the lowest −lnL, AIC, BIC and K-S statistic values and the highest p-value. The K-S
statistic with its p-value values were obtained by using ks.test function of statistical software R. These -lnL, AIC,
BIC and K-S statistics with p-values are listed in Table 10.

Table 10. Summary fit for the real data set.

Distribution MLEs -lnL AIC BIC K-S Test
Statistic p value

Exponential θ̂ = 0.9957 45.2792 94.5584 97.7254 0.1569 0.3382
λ̂ = 0.1606

Rayleigh θ̂ = 1.5458 49.5714 103.1429 106.3099 0.2253 0.0517
λ̂ = 0.2493

Lindley θ̂ = 1.4349 43.6909 91.3818 94.5489 0.1394 0.4864
λ̂ = 0.3929

Gamma
α̂ = 1.4246

43.8315 93.6631 98.4136 0.1303 0.5738θ̂ = 1.4668

λ̂ = 0.3314

Weibull
α̂ = 1.2965

43.7228 93.4456 98.1961 0.1228 0.6491θ̂ = 0.9465

λ̂ = 0.1527

According to -lnL, AIC and BIC, the Lindley distribution is the best choice among the competing distributions
and according to K-S test gamma and Weibull distributions are slightly better than Lindley distribution. The main
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advantage of using Lindley distribution over gamma and Weibull distributions is that it involves only one parameter.
Hence, inferential procedures become simple to deal with, especially from computational point of view.

Also, we consider a graphical method for fitting the randomly censored data. The Kaplan-Meier (K-M) product
limit estimator was proposed by Kaplan and Meier [17] and for randomly censored data it is given by

Ŝ(t) =
∏
yi≤t

(
1− 1

ni

)di

, where ni = Number of items alive at time yi and di =

{
1; if item failed/ uncensored
0; if item is censored

Figure 1. Various estimates of survival function.

The graphs of the K-M estimator along with the estimates of survival functions for exponential, Rayleigh,
Lindley, gamma and Weibull distributions are given in Figure (1). From Figure (1), we observe that the estimate
of survival function for Lindley distribution is quite close to that proposed by K-M estimator. Thus, the randomly
censored Lindley distribution is the best choice among the competing models and can be used to obtain inferential
results from the considered real data set. Now, for the above data set we obtain the ML and Bayes estimates of
the parameters and reliability characteristics. Since, we do not have any prior information, the Bayes estimates
of the unknown parameters are computed with non-informative priors. For non-informative priors, we take hyper-
parameters a1 = b1 = a2 = b2 = 0 in (17). The Bayes estimates are obtained using Lindley approximation method
and M-H algorithm. For M-H algorithm we take M = 10, 000 with burn-in-period 2, 000. For the reliability
characteristics we take sample median value as the mission time t0 = 0.8745. The ML and Bayes estimates of
the parameters and reliability characteristics are given in Table (11). Also, the 95% asymptotic, boot-p, boot-t
confidence intervals and HPD credible intervals for the parameters are reported in Table (12). Also, we check the
convergence of the generated sequences of θ and λ graphically. The trace plots, autocorrelation function (ACF)
plots and histograms with density plots of the 10, 000 iterations of the parameters θ and λ are presented in Figure
(2).

From Figure (2) we observe that the trace plots look like a random scatter about their mean values (represented
by solid line) and fine mixing of the chains for the parameters. ACF plots show that chains have very low
autocorrelations. Histograms show that the densities of θ and λ are almost symmetric. Thus, from Figure (2) we
can see that M-H algorithm is convergent.
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Table 11. The ML and Bayes estimates of the parameters and reliability characteristics corresponding to the real data set.
Here, n = 36,m = 31 and mission time t0 = 0.8745.

Parameter MLE Bayes Estimates
LB M-H

θ 1.4349 1.4374 1.4165
λ 0.3929 0.3878 0.3693
MTSF 0.9831 1.0051 1.0105
R(t0) 0.4321 0.4356 0.4404
h(t0) 1.0460 1.0498 1.0297

Table 12. The 95% asymptotic, boot-p, boot-t confidence intervals and HPD credible intervals for the parameters
corresponding to the real data set.

Parameter Asymptotic CI Boot-p CI Boot-t CI HPD CI
θ (1.0460,1.8238) (1.1297,1.8718) (1.1093,1.8273) (1.1329,1.6778)
λ (0.1863,0.5995) (0.3167,0.5398) (0.2753,0.4833) (0.2200,0.5163)

Figure 2. Trace, autocorrelation plots and histograms of the parameters θ and λ.

8. Concluding remarks

This article deals with estimation of the unknown parameters and reliability characteristics of Lindley distribution
using randomly censored data. Expected time on test is an important practical issue in medical studies, especially
in clinical trials. This work is helpful to statistician in analyzing randomly censored lifetime data. The estimation of
the unknown parameters and reliability characteristics is carried out by both Bayesian and frequentist approaches.
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Maximum likelihood estimates of the parameters though not obtained analytically and found numerically using
iterative methods, are quite accurate and can be easily used in practical situations. In real data analysis confidence
intervals are found to be more useful for framing policies. Therefore, we derive three types of confidence intervals in
this article. Bayesian estimation is very popular now days as it includes the prior information about the parameters.
With squared error loss function, Bayes estimates are obtained here using Lindley’s approximation method and
Metropolis-Hastings algorithm. In most of the practical lifetime experiments complete data are almost never
realized and random censoring is most frequent. Thus, this article has direct applications in lifetime data analysis.
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