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Abstract We propose results of the investigation of properties of the random sums of random variables. We consider the
case, where the number of summands is the first moment of an event occurrence. An integral equation is presented that
determines distributions of random sums. With the help of the obtained results we analyse the distribution function of the
time during which the Geiger-Muller counter will not lose any particles, the distribution function of the busy period of a
redundant system with renewal, and the distribution function of the sojourn times of a single-server queueing system.
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1. Introduction

Let ζi, i ≥ 1, be independent identically distributed (i.i.d.) random variables, Let ν be a discrete random variable
that takes integer positive values. Consider the random sum

Sν =

ν∑
i=1

ζi. (1)

In many applied problems of reliability theory, queueing theory, some statistical problems of physics and biology,
there is a need to find the distribution of the random variable Sν or at least its main characteristics. If the random
variable ν is a Markov moment, then the most famous result here is Wald’s identity

ESν = Eν Eζ1, (2)

(see [2], [3], [5], [16], [23], [13], [14], [20], [21] where you can also find a number of related results and
applications).

Similar problems that arise in the mathematical theory of reliability, were discussed on lectures delivered by
B. V. Gnedenko at Taras Shevchenko National University of Kyiv, back in 80-th years of the last century, as well
as in a number of his works (see, for example, his preface to the book [19]).

The case where the random variable ν and the sequence (ζi) are independent, is studied in details (see [5], [19]).
Unfortunately in practice quite often the random variable ν and the sequence (ζi) are dependent, which significantly
complicates the problems.
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In this paper we consider one important case of such dependence, where ν is the first moment of an event
occurrence. In fact ours analysis is a definite generalization of the methods developed by B. V. Gnedenko in his
works [9], [10] when studying the problem of reliability of redundant systems with renewal.

2. Distribution of random sums. Main proposition

Let ζ and ϵ be random variables such that

P(ϵ = 1) = q, P(ϵ = 0) = 1− q, 0 < q < 1,

P(ζ ≥ 0) = 1, P(ζ = 0) < 1.

In general case the random variables ζ and ϵ depend on each other.
Consider the sequence (ζn, ϵn) of independent copies of (ζ, ϵ). Define a random variable ν in the following way

ν = min(n ≥ 1 : ϵn = 1).

It is well known, that the random variable ν has the geometrical distribution

P(ν = n) = q(1− q)n−1, n ≥ 1, (3)

and
Eν =

1

q
, Dν =

1− q

q2
.

Consider the random variable Sν determined by equality (1).
We introduce the following notations

Fζ,0(t) = P(ζ < t, ϵ = 0), Fζ,1(t) = P(ζ < t, ϵ = 1),

Fζ(t) = Fζ,0(t) + Fζ,1(t) = P(ζ < t),

FS(t) = P(Sν < t), PS(t) = 1− FS(t). (4)

Let

ψ(z) =

∫ ∞

0

exp(−zt)dFζ(t), ψ0(z) =

∫ ∞

0

exp(−zt)dFζ,0(t),

φ(z) =

∫ ∞

0

exp(−zt)dFS(t).

be the Laplace transforms of the corresponding distribution functions.
Introduce the notations

a = Eζ, σ2 = Dζ, a0 = EζI(ϵ = 0) =

∫ ∞

0

tdFζ,0(t),

where I(A) is the indicator of the event A.

Proposition 2.1. (i). The function PS(t) satisfies the integral equation

PS(t) = 1− Fζ(t) +

∫ t

0

PS(t− x)dFζ,0(x). (5)

(ii). The Laplace transform φ(z) satisfies the equality

φ(z) =
ψ(z)− ψ0(z)

1− ψ0(z)
; (6)
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(iii). Under the condition σ2 <∞ we have the following relations

ESν =
a

q
, (7)

DSν =
σ2

q
+
a2(q − 1) + 2aa0

q2
. (8)

Proof
(i). Let

A = {Sν ≥ t}, A1 = {ζ1 ≥ t},

A2 = {ζ1 < t, ϵ1 = 0,

ν∑
i=2

ζi ≥ t− ζ1}.

Then
A = A1

∪
A2, A1

∩
A2 = ∅,

and
P(A) = P(A1) +P(A2). (9)

The first term in equality (9) is quite simple

P(A1) = 1− Fζ(t). (10)

Let ν
′
= min(n ≥ 2 : ϵn = 1) and we know that event {ϵ1 = 0} occurred. Then ν = ν

′
. The random variable ν

′

does not depend on the random variables ϵ1 and ζ1. Therefore, the relation

P(

ν∑
i=2

ζi ≥ y/ϵ1 = 0, ζ1 = x) = P(

ν
′∑

i=2

ζi ≥ y/ϵ1 = 0, ζ1 = x) = P(

ν
′∑

i=2

ζi ≥ y)

= P(

ν∑
i=1

ζi ≥ y) = PS(y).

holds true and we have

P(A2) =

∫ t

0

P(

ν∑
i=2

ζi ≥ t− x/ϵ1 = 0, ζ1 = x)dFζ,0(x)

=

∫ t

0

PS(t− x)dFζ,0(x). (11)

Equalities (9) – (11) together give equality (5).
(ii). Equality (6) follows from (5), if we use properties of the Laplace transform. Really, in terms of the Laplace

transform equation (5) may be written in the form

1

z
− φ(z)

z
=

1

z
− ψ(z)

z
+

(
ψ0(z)

z
− φ(z)ψ0(z)

z

)
,

which gives (6) (similar reasoning can be found in [11], p.331 ).
(iii). Equality (7) is a particular case of Wald’s identity (see also relation (3)).
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Now prove (8). Differentiating equation (6) twice we get

φ
′′
(z) =

(ψ
′′
(z)− ψ

′′

0 (z))(1− ψ0(z)) + ψ
′′

0 (z)(ψ(z)− ψ0(z))

(1− ψ0(z))2

+
2(1− ψ0(z))ψ

′

0(z)
(
(ψ

′
(z)− ψ

′

0(z))(1− ψ0(z)) + ψ
′

0(z)(ψ(z)− ψ0(z))
)

(1− ψ0(z))4
.

Take here z = 0 and use the know equalities

ψ0(0) = P(ϵ = 0) = 1− q, ψ
′
(0) = −Eζ = −a, ψ

′

0(0) = −a0,

we will have

φ
′′
(0) =

ψ
′′
(0)

q
+

2ψ
′
(0)ψ

′

0(0)

q2
=
σ2 + a2

q
+

2aa0
q2

.

If we additionally use the relations

ES2
ν = φ

′′
(0), DSν = ES2

ν − a2

q2
,

then we get (8).

The following Corollary is very useful in applications (see [11], p.333)

Corrolary 2.1
Let under the conditions of Proposition 2.1 the quantity a = Eζ <∞ is fixed and let

q = P(ϵ = 1) → 0.

Then

lim
q→0

P(qSν < t) = 1− exp

(
− t

a

)
. (12)

Proof
If

ψ1(z) = ψ(z)− ψ0(z) =

∫ ∞

0

exp(−zt)dFζ,1(t),

then
ψ1(0) = P(ϵ = 1) = q.

From the estimate
1− exp(−x) ≤ x, x > 0

we get

ψ1(0)− ψ1(qz) =

∫ ∞

0

(1− exp(−qzt)) dFζ,1(t) ≤ qz

∫ ∞

0

tdFζ,1(t)

≤ qz

[
K

∫ K

0

dFζ,1(t) +

∫ ∞

K

tdFζ,1(t)

]
≤ qz [Kq +EζI(ζ > K)I(ϵ = 1)] .

Inserting K = 1√
q , we get

0 ≤ ψ1(0)− ψ1(qz) ≤ qz(
√
q + o(1)).
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That is why

lim
q→0

ψ1(qz)

q
= 1 (13)

uniformly on z ∈ (0, C), ∀C > 0.
Making use of the relations

P(qSν < t) = FS

(
t

q

)
,

∫ ∞

0

exp(−zt) dFS

(
t

q

)
= φ(qz),

and the convergence of the Laplace transform ([6], p.431), we come to conclusion that in order to prove equality
(12) it is sufficient to show that

lim
q→0

φ(qz) =
1

1 + az
. (14)

We have
φ(qz) =

ψ(qz)− ψ0(qz)

1− ψ0(qz)
=

ψ1(qz)/q

(1− ψ(qz))/q + ψ1(qz)/q
. (15)

From relation
lim
q→0

(1− ψ(qz))

qz
= −ψ

′
(0) = a

and relations (13) and (15), relation (14) follows.

Remark 2.1. In the recent paper [24] the limit theorems for some regenerative processes were proved based on
asymptotic relations of the (12) type. The asymptotic relations (12) can be applied when investigating the length of
the queue in stochastic networks (see, for example, [15], [7], [8]).

Corrolary 2.2
Let τ and η be independent random variables, let

F (t) = P(τ < t) = 1− exp(−λt), t ≥ 0, G(t) = P(η < t), G(+0) = 0,

ϵ = I(τ < η), P(ϵ = 1) = q, 0 < q < 1.

Denote by (τi, ηi, ϵi) a sequence of independent copies of (τ, η, ϵ),

ν = min(n ≥ 1 : ϵn = 1),

Sν =

ν∑
i=1

min(τi, ηi).

Then
PS(t) = P(Sν ≥ t) = exp(−λt). (16)

Proof
If we take ζ = min(τ, η), then in notations of Proposition 2.1 we have

1− Fζ(t) = P(min(τ, η) ≥ t) = exp(−λt)(1−G(t)),

Fζ,0(t) = P(min(τ, η) < t, τ ≥ η) =

∫ t

0

exp(−λx)dG(x).

Substituting these functions into equation (5) we get

PS(t) = exp(−λt)(1−G(t)) +

∫ t

0

PS(t− x) exp(−λx)dG(x). (17)
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By Proposition 2.1 the Laplace transform of the function FS(t) = 1− PS(t) is represented by formula (6). We
have to find the functions ψ(z) and ψ0(z).
Take ϕ(z) =

∫∞
0

exp(−zt)dG(t). Then

ψ0(z) =

∫ ∞

0

exp(−zt) exp(−λt)dG(t) = ϕ(z + λ),

and

ψ(z) =

∫ ∞

0

exp(−zt)d(− exp(−λt)(1−G(t))

= λ

∫ ∞

0

exp(−(z + λ)t)(1−G(t))dt+

∫ ∞

0

exp(−(z + λ)t)dG(t)

=
λ

z + λ
− λ

∫ ∞

0

exp(−(z + λ)t)G(t)dt+ ϕ(z + λ)

=
λ

z + λ
(1− ϕ(z + λ)) + ϕ(z + λ).

Making use of the functions ψ(z) and ψ0(z) from the formula (6), we get

φ(z) =
λ

z + λ
.

This means that equality (16) is correct.
It is easy to make sure that substitution PS(t) = exp(−λt) in equation (17) converts it into identity.

Remark 2.2. If under conditions of Proposition 2.1 the random variables ϵ and ζ are independent, then

Fζ,0(t) = (1− q)Fζ(t), ψ0(z) = (1− q)ψ(z)

and equality (6) is of the form

φ(z) =
qψ(z)

1− (1− q)ψ(z)
. (18)

Ofcourse, under this condition, equality (18) can be deduced directly from the definition.
If, additionally, the random variable ζ has the exponential distribution, Fζ(t) = 1− exp(−λt), t ≥ 0, then

ψ(z) =
λ

z + λ
, φ(z) =

qλ

z + qλ
.

The last equality means that the random variable Sν has the exponential distribution with parameter λq,

FS(t) = 1− exp(−λqt), t ≥ 0.

Remark 2.3. For independent random variables ν and ζ in the book [1] the following formula is proposed

DSν = DζEν + (Eζ)2Dν. (19)

Unfortunately, as follows from Proposition 2.1, for arbitrary Markov moments this simple formula (19) is incorrect.
In general case similar formulas are known only for the values E(Sν − νEζ)2 (see books [1], [16])
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3. Applications

3.1. Application 1. Geiger-Muller counter of type 1.

Such a counter is used to calculate cosmic particles which have arrived in some area of space. It acts as follows
([22], p.273, [6], p.372). A particle reaching the counter when it is free is registered but locks the counter for a
random time η. Particles reaching the counter during the locked period are not registered. Denote by T the time
during which the Geiger-Muller counter will not lose any particles, and let PT (t) = P(T > t).

To simplify recordings, we assume that at the moment t0 = 0 a particle reaching the counter, and t1, t2, . . . , tk, . . .
are the next moments of particle reaching, and denote τk = tk − tk−1.

Let ηk be the discharge time of the particle reaching the counter at the moment tk−1, and let (τk) and (ηk) be
independent random sequences with continuous distribution functions,

P(τk < t) = F (t), P(ηk < t) = G(t), F (+0) = 0, G(+0) = 0,

and
ϵk = I(τk < ηk), k ≥ 1, ν = min(k ≥ 1 : ϵk = 1).

Then it is clear that

T =

ν∑
i=1

τi. (20)

In order to apply Proposition 2.1 here, we take

ζi = τi, i ≥ 1, Fζ(t) = F (t),

Fζ,0(t) = P(τ1 < t, τ1 > η1) =

∫ t

0

G(x)dF (x),

q = P(τ1 < η1) =

∫ ∞

0

F (t)dG(t).

The equality (5) in this case is of the form

PT (t) = 1− F (t) +

∫ t

0

PT (t− x)G(x)dF (x). (21)

The Laplace transform φ(z) for distribution of the random variable T is determined by formula (6), in which

ψ(z) =

∫ ∞

0

exp(−zt)dF (t), ψ0(z) =

∫ ∞

0

exp(−zt)G(t)dF (t).

The mean value of ET and the variance DT can be calculated by formulas (7) and (8).
In the most important case when there is a Poisson flow of particles with parameter λ,

F (t) = 1− exp(−λt), t ≥ 0,

we have
ψ(z) =

λ

z + λ
, ψ0(z) =

λϕ(z + λ)

z + λ
, φ(z) =

λ(1− ϕ(z + λ))

z + λ(1− ϕ(z + λ))
,

where

ϕ(z) =

∫ ∞

0

exp(−zt)dG(t).

It follows from (3), (7) and (8) that

ET =
1

λq
, DT =

2(q + λa0)− 1

λ2q2
,

where

q = 1− ϕ(λ), a0 = λ

∫ ∞

0

t exp(−λt)G(t)dt.
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3.2. Application 2. Redundant system with renewal.

The problem of reliability of redundant systems with renewal is devoted to a fairly large number of works, among
which we note the works [11], [17], [18]. Here we consider a simple renewal case, namely, duplication, when each
operating unit is associated with a single standby unit, which replaces the operating unit in case the latter fails. The
element that failed is repaired, and after repair its characteristics equivalent to the original characteristics. Suppose
that there is one repair unit in the system. In addition, we consider that the standby unit is in a partially energized
state until it is connected instead of the primary unit (light standby). During the period it is in standby, it can fail
but the probability of this is less than the same probability for the basic unit ( [11], p. 324-330). This is redundant
system of type (iii/2/1) in terms of the paper [4]. Denote by ξ(t) the total number of defective units in the system
at a moment t. We assume that ξ(0) = 0 almost surely and say that the system is in a state k at a moment t, if
ξ(t) = k, k = 0, 1, 2. A busy period is understood as a continuous period when the system is functioning properly
(at least one element is functioning). Every busy period is followed by an idle period when both units fail.

We will assume that the failure-free time of the primary unit τ , and the failure-free time of the standby unit τ ′

have exponential distributions

P(τ < t) = 1− e−λt, P(τ ′ < t) = 1− e−λ′t, t ≥ 0, (22)

while the renewal time (repairing time) η has an arbitrary distribution G(t) = P(η < t), G(0+) = 0.
We suppose that τ , τ ′ and η are independent random variables. Let

q = P(τ < η) = 1−
∫ ∞

0

e−λxdG(x).

Denote by Wk the k-th busy period. When the system is in the state 2 then the system fails, so W1 is the time to
first fail. For k-th busy period we have simple formulas for the first moments ([11], [4] )

EW1 =
1

λ
+

1

(λ+ λ′)q
EWk =

λ+ qλ′

λ(λ+ λ′)q
, k ≥ 2.

Based on Proposition 2.1 we can deduce exact formulas for calculation the variation DWk. Really, let (τi, τ ′i , ηi)
be independent copies of (τ, τ ′, η), let

ϵi = I(τi < ηi), i ≥ 1, ν = min(i ≥ 1 : ϵi = 1).

In the paper [4] we can find the representation

W1
d
=

ν∑
i=1

ζi, (23)

where ξ1
d
= ξ2 means equality of distributions of the random variables ξ1 and ξ2.

In this formula ζi = min(τi, ηi) + τ̃i, random variables τ̃i do not depend on τi and ηi, and so do not depend on ν,
P(τ̃i < t) = 1− e−(λ+λ

′
)t, t ≥ 0.

Then by formula (8)

DW1 =
σ2

q
+
a2(q − 1) + 2aa0

q2
,

where
a = Emin(τ, η) +Eτ̃ =

q

λ
+

1

(λ+ λ′)
,

σ2 = Dmin(τ, η) +Dτ̃ = Emin(τ, η)2 − q2

λ2
+

1

(λ+ λ′)2
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=
2− q2

λ2
+

1

(λ+ λ′)2
− 2

∫ ∞

0

te−λtG(t)dt,

a0 = E[min(τ, η) + τ̃ ]I(τ > η) =

∫ ∞

0

te−λtdG(t) +
1− q

(λ+ λ′)
.

For k ≥ 2

W1
d
=Wk + τ̃ ,

(see [4]), moreover Wk, τ̃ are independent. That is why

DWk = DW1 −
1

(λ+ λ′)2
.

B. V. Gnedenko [9], [10] found an integral equation which the function P(W1 > t) satisfies, and derived a formula
for the Laplace transform of this function. Unfortunately, under the general assumptions concerning the distribution
G(t), the explicit form of a function P(W1 > t) is not known. In the case G(t) = 1− e−µt, t ≥ 0, the function
P(W1 > t) is known (see, for example, [12]), but has a rather cumbersome form. Therefore, the following equations
seem rather unexpected.

Consider the first busy period and denote by α0 and α1 times of stay of the system in the states 0 and 1
correspondingly. Therefore

W1 = α0 + α1,

moreover (see [4])

α0
d
=

ν∑
i=1

τ̃i, α1
d
=

ν∑
i=1

min(τi, ηi).

These representations together with the Corollary 2.2 of Proposition 2.1 and Remark 2.2 give the following
equalities:

P(α0 > t) = e−(λ+λ
′
)qt, P(α1 > t) = e−λt, t ≥ 0.

It is clear that random variables α0 and α1 are strongly dependent, which does not allow to find a simple formula
for distribution P(W1 > t).

3.3. Application 3. Single-server queueing system

Consider a single-server queueing system (SSQS) on the interval [0,∞). Let t0 = 0, t1, . . . , tn, . . . be the customer
random arrival times. The arrived customer starts to be served, if the service channel is not occupied. Otherwise,
the customer joins a queue whose size is not limited. The channel serves the n-th customer during a random time
ηn. After the end of the service, the channel or takes the next customer, if the queue is not empty, or is waiting for
a new customer.

Suppose that τn−1 = tn − tn−1, n ≥ 1, are independent identically distributed random variables with the
distribution function F (t) = P(τn < t) = 1− e−λt, t ≥ 0. It means that there is a Poisson frow of customer
arrives to SSQS system (see [12]). Let ηn, n ≥ 1, be independent identically distributed random variables with
the distribution function G(t) = P(ηn < t), G(+0) = 0.

Denote by ξ(t) the number of customers in the SSQS system at a moment of time t, ξ(0) = 0 a.s. We say that at
a moment t SSQS system is in the state k, if ξ(t) = k.

We define the regeneration moments Sk for the process ξ(t) in the following way.
Let S0 = t1 be the moment when the first customer arrives. Let S1 be the first transition moment from the state

2 to the state 1.
For k > 1 the beginning of k-the regeneration cycle Sk−1 we take k − 1-th transition moment from the state 2 to

the state 1 while its end Sk is k-th such a moment.
Denote, as in the previous application,

ϵi = I(τi < ηi), i ≥ 1, ν = min(i ≥ 1 : ϵi = 1).

Figure 1 demonstrates the first regeneration cycle.
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. . . . . . . . .
τ0 τ1 τ̃1 τ2 τ̃2 τν−1 τ̃ν−1 τν

t=0 S0
η1 η2 ην−1 ην S1

Figure 1.

The random variables τ̃i on Figure 1 do not depend on τi and ηi, and P(τ̃i < t) = 1− e−λt.
We describe the work of the SSQS in the first period of regeneration. Let T = S1 − S0 be its duration, let S0 + α

be the first transition moment to the state 2. On the interval [S0, S0 + α) the system can only be in states 0 or 1, the
queue is absent. Next is the interval [S0 + α, S0 + α+ β) of length β, on which the queue is always ≥ 1,

T = α+ β. (24)

We find some basic characteristics of the random variables α and β.
Denote by α0 and α1 be sojourn times in states 0 and 1 on [S0, S1). It is clear that

α = α0 + α1. (25)

We can find distributions of random variables α0 and α1 based on results of Proposition 2.1

P(α0 > t) = (1− q)e−λqt, t > 0,

P(α0 = 0) = q. (26)

P(α1 > t) = e−λt, t > 0. (27)

Proof of equality (26). We can conclude from Figure 1 that

α0 =

ν−1∑
i=1

τ̃i.

As we noted before the random variable ν and the sequence (τ̃i) are independent, τ̃i have the exponential
distribution with parameter λ, that is why

E exp(−zα0) =

∞∑
k=1

q(1− q)k−1[E exp(−zτ̃1)]k−1 =

∞∑
k=1

q(
λ(1− q)

z + λ
)k−1 =

q(z + λ)

z + qλ
.

It is also not difficult to check that the distribution function

H(t) =

{
0, t < 0,

1− (1− q) exp(−λqt), t > 0,

satisfies the equality ∫ ∞

0

exp(−zt)dH(t) =
q(z + λ)

z + qλ
.

This means that equality (26) is correct.
Let’s move to equality (27). It follows from Figure 1 that

α1 =

ν∑
i=1

min(τi, ηi).
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So (27) follows from Corollary 2.1 of Proposition 2.1.
In the following we will assume that

b = Eηi <∞, ρ = λb < 1.

It is known [12] that in this case there exist stationary probabilities of states

lim
t→∞

P(ξ(t) = i) = pi, i = 0, 1, 2, . . . ,

and
p0 = 1− ρ. (28)

From (26), (27) we get

Eα0 =
1− q

λq
, Eα1 =

1

λ
. (29)

We need also equalities

p0 =
Eα0

ET
, p1 =

Eα1

ET
, (30)

(see [4]).
From equalities (24), (28) – (30) it follows that

Eα = Eα0 +Eα1 =
1

λq
,

ET =
Eα0

p0
=

1− q

λq(1− ρ)
,

Eβ =
ρ− q

λq(1− ρ)
.

We also note that from the derived equations the following simple formula follows

p1 =
q(1− ρ)

1− q
.

4. Conclusions

We propose results of the investigation of properties of the random sums of random variables under the condition
that the random summands (i.i.d. random variables) are not independent on the (random) number of summands.
We consider the case, where the number of summands is the first moment of an event occurrence. We propose
integral equation and some relations that determine distributions of random sums, their Laplace transforms and
main characteristics (first and second moments). Some applications of the obtained results are described. We, first,
analyse the distribution function of the time during which the Geiger-Muller counter of type 1 does not lose any
particles. Then, the distribution function and its main characteristics of the busy period of a redundant system with
renewal is nalysed. And, third, the distribution function of the sojourn times of a single-server queueing system is
analysed.
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