
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 9, June 2021, pp 459–491.
Published online in International Academic Press (www.IAPress.org)

A Cooperation of the Multileader Fruit Fly and Probabilistic Random Walk
Strategies with Adaptive Normalization for Solving the Unconstrained

Optimization Problems

Wirote Apinantanakon 1, Khamron Sunat 2,∗,Sirapat Chiewchanwattana2

1Department of Computer Science, Faculty of Arts and Science, Rajabhat Chaiyaphum University, Chaiyaphum 36000, Thailand
2Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract A swarm-based nature-inspired optimization algorithm, namely, the fruit fly optimization algorithm (FOA), has
a simple structure and is easy to implement. However, FOA has a low success rate and a slow convergence, because FOA
generates new positions around the best location, using a fixed search radius. Several improved FOAs have been proposed.
However, their exploration ability is questionable. To make the search process smooth, transitioning from the exploration
phase to the exploitation phase, this paper proposes a new FOA, constructed from a cooperation of the multileader and the
probabilistic random walk strategies (CPFOA). This involves two population types working together. CPFOAs performance
is evaluated by 18 well-known standard benchmarks. The results showed that CPFOA outperforms both the original FOA
and its variants, in terms of convergence speed and performance accuracy. The results show that CPFOA can achieve a
very promising accuracy, when compared with the well-known competitive algorithms. CPFOA is applied to optimize two
applications: classifying the real datasets with multilayer perceptron and extracting the parameters of a very compact T-S
fuzzy system to model the Box and Jenkins gas furnace data set. CPFOA successfully find parameters with a very high
quality, compared with the best known competitive algorithms.
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cooperative algorithm.
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1. Introduction

Over the last few decades, researchers have started to adapt their knowledge of natural phenomena for
the development of optimization techniques. These techniques were successfully applied for chemical process
applications( [1], [2], [3] and [4]). The main concepts of the aptly named, sources of nature-inspired algorithms,
have been observed within the successful biological systems. Accordingly, most nature-inspired algorithms are
biologically inspired, or bio-inspired, and mimic specific behavior in nature. Examples of such popular nature-
inspired algorithms include the particle swarm optimization algorithm(PSO)( [5]),which was inspired by the social
behavior of flocking birds, or schooling fish; the ant colony optimization algorithm (ACO)( [6]),which mimics
an ant colonys behavior in their search for food; the artificial bee colony algorithm (ABC)( [7]),motivated by the
intelligent behavior of a honey bee swarm; the cuckoo search algorithm (CS)( [8]),inspired by the parasitic bio-
interactions of a cuckoo species, which lays their eggs in the nests of other host birds; and the bat-inspired algorithm
(BA)( [9]),which was inspired by the echolocation behavior of bats, to name but a few. However, each nature-
inspired algorithm has different capabilities when it comes to finding solutions, depending on the personal ability
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of the living things in nature. Developing a successful, modern nature-inspired algorithm is a challenging task, even
today, as there is no one particular nature-inspired algorithm capable of solving every scientific problem. Hence, the
continual development of a new algorithm is required. Details of the broadly classified nature-inspired algorithms,
which brought about the development of algorithms in current modern literature, have been provided( [10], [11]).

In 2011, a swarm intelligence method-based stochastic optimization technique, namely, the fruit fly optimization
algorithm (FOA) was proposed by Pan( [12]).It is based on the foraging behavior of fruit flies. FOA is very
user-friendly because of its simplicity and shortness. FOA can be easily understood by most researchers in this
field. This also means that it can be easily implemented into a program code, when compared with other well-
known algorithms, such as differential evolution (DE) ( [13]),the genetic algorithm (GA)( [13]) and particle swarm
optimization (PSO). The FOA has achieved success in several applications, including research into optimization
problems ( [15], [16], [17] and [18]), neural network parameter optimization ( [19], [20], [21]), swarm techniques
for mini autonomous surface vehicles (ASVs) ( [22]), the identification of dynamic protein complexes based on
the fruit fly optimization algorithm ( [23]), support for vector regression using the fruit fly optimization algorithm
for seasonal electricity consumption forecasting ( [24]), efficient truss optimization using the contrast-based fruit
fly optimization algorithm ( [25]) and improving the fruit fly optimization algorithm to apply it to structural
engineering design optimization problems ( [26], [27]), a prediction model for Chinas agricultural output value,
based on the optimization of the neural network ( [28]), and a novel phase angle-encoded fruit fly optimization
algorithm, with a mutation adaptation mechanism applied to UAV path planning ( [29]).

Pans FOA has a good structure and mechanism for finding the solution of optimization problems. However, the
algorithm is prone to trapping into a local extreme and premature convergence, since FOA generates a new fruit fly
swarm around the current best solution by using random uniform distribution, with a fixed radius, especially when
FOA deals with multi-dimensional and complex optimization problems.

The drawback caused by fixed radius updating has motivated many researches into various dynamic radius
updating techniques to improve the FOA, e.g., an improved fruit fly optimization algorithm for solving optimization
problems (LGMS-FOA) ( [15]), an improved fruit fly optimization algorithm for continuous function optimization
problems (IFFO) ( [16]), a novel multi-swarm fruit fly optimization algorithm (MFOA) ( [18]), a novel multi-scale
cooperative mutation fruit fly optimization algorithm (MSFOA) ( [30]), and a novel fruit fly optimization algorithm,
with trend search and co-evolution (CEFOA) ( [31]).

There is one remaining imperfection that is caused by the single leader usage, although the FOA variants showed
that dynamic radius updating can improve the quality of the produced solutions. The single leader usage causes a
lack of diversity in FOA when the search process has to deal with a multi-dimensional or a complex optimization
problem. In this paper, we proposed a novel FOA that uses a multileader, instead a single leader, and probabilistic
random walk radius updating instead of random uniform dynamic radius updating (CPFOA). The details of the
proposed CPFOA are described in Section 3.

The remainder of the paper is organized as follows: Section 2 presents the FOA; Section 3 presents the strategies
of CPFOA construction, the multileader, and the probabilistic random walk strategies; Section 4 explains the
evaluation process of algorithms and settings; Section 5 shows the experimental results and discussion; Section
6 shows two applications of CPFOA; and lastly, Section 7 concludes the paper.

2. The Fruit Fly Optimization Algorithm

The drosophila optimized algorithm or fruit fly optimization algorithm (FOA) was developed in 2011 by Pan
( [12]). FOA determines global optimization based on the foraging behavior of fruit flies. Compared to other
species, the fruit fly possesses a keener sense of smell and sight in search of food. Their drosophila olfactory organ
can detect a food source as far as 40 km away, which triggers a flight reaction toward the target location. For the
intelligent sense of fruit flies, the novel FOA optimization algorithm is inspired and established through the simple
behavior of fruit flies search for food.

The FOAs process is similar to that of other swarm optimization algorithms. The first phase of the fruit flies
quest for food is initiated with a random uniform distribution ( [10], [32], [33], [34], [35], [36]), with no specific
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position or direction. In the second phase, the fruit fly with the best sense of smell or the best fitness within the
group, from the first phase, is determined. The fruit fly with the best sense of smell, represented by X axist is used
as a center for generating new populations in the next generation. The computational steps of the FOA method are
summarized in Algorithm 1.

Algorithm 1 The FOA algorithm

Step 1: Initialize FOA’s parameters: random location (X axis, Y axis),size of population (popsize),and maximum
iteration (Max iter).

Step 2: Give the random position and fly direction of an individual fruit fly in search of food.

Xi = X axis+ rand()

Yi = Y axis+ rand()

Step 3: Calculate the distance (Dist) to the food’s origin, as the exact position of the food’s location is not known
at this stage.

Disti =
È
x2
i + y2i

Step 4: Calculate the smell concentration judgment value(Si).

Si =
1

Disti

Step 5: Calculate the fitness: the smell concentration judgment of the individual fruit fly, obtained from Step
4, is calculated by substituting Si into the smell concentration judgment function(also called the fitness
function),in order to find the optimal smell.

Smelli = objective function(Si)

Step 6: Determine the fruit fly with the optimal smell concentration judgment among the fruit fly group.

[bestSmell, bestIndex] = find the best(Smell)

Step 7: Keep the best (x,y) position and the optimal concentration value, and use this position as the flight center
towards the next location(in Step 2).

Smellbest = bestSmell

X axis = X(bestIndex)

Y axis = Y (bestIndex)

Step 8: Repeat Steps 2-7, and determine whether the smell concentration is better than the previous iterative smell
concentration. If yes, go to Step 7. The process will stop if either the smell concentration no longer changes,
or the iterative number reaches the maximum iteration number(Max iter).The outputs are X axis and
Y axis.

2.1. An Analysis of the Original FOA and the FOA Variants

2.1.1. Analysis of the Original FOA There are problems with FOA that make the algorithm unsuitable
to dealing with multi-dimensional and complex optimization problems. The problems are investigated in
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( [15], [16], [18], [30], [31], [37], [38]) and are briefly described as follows.
1. Problems regarding the smell value Si,according to Step 4, cannot appropriately evaluate the “objective
function(Si)” when there are negative numbers in the domain because Si =

1
Disti

> 0,so that the function cannot
determine Si as a negative ( [15], [18], [37], [38]).
2. The fixed radius, with random uniform distribution,rand(),within the initial process, limited the convergence of
FOA in the processes of exploration and exploitation ( [15], [16], [18], [30], [31]).

2.1.2. Analysis of the FOA Variants To overcome the disadvantages of the original FOA, researchers have
continuously developed new strategies to improve the FOA for solving high-dimensional function optimization
problems. The recently proposed FOAs can be grouped in the two categories. In the first category, each of
the fruit flies is defined through the random initial base point of X axis, Y axis and the positions of Xi

and Yi,as in the original FOA, to update the new generation of populations. The other functions, such as the
smell value(Si)and the evaluation of the objective function(Si),are modified, including the extra mechanisms.
In the second category, these the problems are solved by (i) omitting Yi;(ii) defining each of the fruit flies
through X ∈ RN×D,where D is the number of decision variables (ordimensions),and N is the population size,
i.e.,xi = (x1

i , x
1, x2, . . . , xD

i ) ∈ RD;and (iii) removing the distance Disti and the smell concentration judgment
function Si.The fitness value is now calculated by substituting xi into the smell concentration judgment function,
with Smelli = objectivefunction(xi).The position of the fruit fly with the minimal concentration value,X axis,is
the base point for flying towards the next location. A brief summary of the two categories of improved FOAs are
as follows.
The first category is as follows.

• Babalık et al. ( [39]) proposed an improvement of the fruit fly optimization algorithm using sign parameters
(SFOA). The algorithm presents the improvement method by using two sign variables, r and q vectors, in
order to determine a sign for each decision variable of fruit flies.

• CEFOA ( [31]), proposed by Han et al., revealed that the simple structure of FOA limited the search space
and easily trapped the fruit flies in a local minimum. To overcome this drawback, the CEFOA used two
mechanisms: The trend search strategy and the co-evolution mechanism. The trend search enhances the local
search capability of swarm. The co-evolution mechanism is employed to avoid premature convergence and
to improve the global searching ability. However, the key of the CEFOA is the multi-scale equation for
updating the fruit fly swarm. To set the variable capacity of each fruit fly, connected with its food quality, the
CEFOA used the variance of the multi-level evolutionary operator. The search radius is dynamically adjusted
through Xi(t) = Xi(t− 1) + LR×N(0, δi(t)) and Yi(t) = Yi(t− 1) + LR×N(0, δi(t)) where δi(t)
are the multi-scale factors of the i-th fruit fly.

The second category is as follows.

• LGMS-FOA, proposed by Shan et al.( [15]),presented two parameters to tune up the search radius by adding
the weight parameter w,when the radius is changed with respect to time. A new fruit fly location is generated
as xd

i = X axisdi +w × rand[0,1),w = w0 × αt,where w0 = 1, α = 0.95,t=iteration index, and X axis
is the best position obtained during iterations.

• IFFO, proposed by Pan et al.( [16]),introduced a new control parameter to adjust the
search radius adaptively. The search radius is dynamically changed during iterations through
λ = λmax × exp(log(λmin

λmax
)× t

tmax
),where λ is the radius variants in each iteration,λmax = UB−LB

2 ,UB

is the upper bound and LB is the lower bound of domain problems,λmin = 10−5,t is the iteration index and
tmax is the maximum iteration number (Max iter).

• MFOA, proposed by Yuan et al.( [18]), presented a multi-swarm fruit fly that employed sub-swarm to
explore the solutions in the search space simultaneously. Moreover, MFOA shrinks the search radius through

Stat., Optim. Inf. Comput. Vol. 9, June 2021



463

R(t) = (UB− LB
2 )× (Gmax − G

Gmax
)θ,where t is the iteration index,UB is the upper bound,LB is the

lower bound,G is the number of sub-swarms and Gmax is the maximum number of sub-swarms.
• MSFOA, proposed by Zhang et al.( [30]), presented a strategy to analyze the convergence and

showed that the convergence depends on the initial positions of the swarms. MSFOA used the
Gaussian mutation operator, rather than the uniform random number (more details of which can be
found in ( [30])). For a flying fruit fly, MSFOA used a linear generation mechanism, through the
equation,xt

i,j = Xt
j +w × rand(Rmin,Rmax),where w = w0 × αt,w0 = 1,α = 0.95,t is current

iteration,w is the search coefficient,α is the initial weight and Rmin,Rmax are obtained from the domain
boundary of the problem.
To recap, the improved FOAs, such as SFOA, CEFOA, LGMS-FOA, IFFO, MFOA and MSFOA, were
strategies proposed to enhance the search ability. The search radius was a main point to tackle in several
proposed strategies. However, only the dynamic mechanism of the search radius itself might be insufficiently
efficient to overcome the lack of diversity and premature convergence, because these FOA variants still
use only one leader as the flying base point. The single leader strategy might affect the FOA by easily
trapping a local optimum when optimizing a multi-dimensional optimization problem. In this paper, the
proposed CPFOA is comprised of two strategies. The first strategy focuses on the enhancement of the search
ability based on the multileader fruit fly. The latter is a probabilistic dynamic search radius, with adaptive
normalization. These two mechanisms are different from the existing FOA variants. The details of the
proposed CPFOA are presented in the next section.

3. The Proposed CPFOA

This section presents a cooperation of multileader fruit flies and a probability search of a random walk
for FOA to solve the unconstrained optimization problems (CPFOA). The CPFOA consists of (i) the
cooperation strategies, called the multileader strategies, and (ii) the probabilistic search by a random walk.
The multileader strategy used a main leader and several other leaders as the flying bases. The probabilistic
search by a random walk changes the search radius to control the search spaces of the main leader.

3.1. Multileader Strategy

Contrary to FOA, which uses a single leader fruit fly, the CPFOA uses multileader fruit flies. Suppose that
there is a swarm of fruit flies,X ∈ RN×D,where D is the number of decision variables (or dimensions), and N
is the number of fruit flies, i.e.,xi = (x1

i , x
1, x2, . . . , xD

i ) ∈ RD.The generated multileader strategy has four
computational steps, as follows.
Step 1. Sort X in ascending order, based on the individual fitness values, to be:

Ẋ = {Ẋ1, Ẋ2, . . . , ẊN}. (1)

Step 2. Divide Ẋ into the M disjoint sub-swarms, as in equation (2):

Ẋ = {Ẋ1, Ẋ2, . . . , Ẋ N
M
} ∪ {Ẋ N

M +1, Ẋ N
M +2, . . . , Ẋ 2N

M
} ∪ · · · ∪ {Ẋ (M−1)N

M +1
, Ẋ (M−1)N

M +2
, . . . , ẊN} (2)

where M is the total number of sub-swarms (aka, the number of leaders).
Step 3. Compute leader1, . . . , leaderM by equation (3):

leaderj,d =
M

N

N
MX
i=1

Ẋ (j−1)N
M +l,d

, j = 1, 2, . . . ,
N

M
, d = 1, . . . , D (3)

Step 4. Generate M new fruit flies based on leader1, . . . , leaderM by equation (4):

M Cj = β −Xaxis ⊗ leaderj × rand[0, 1), j = 1, 3, . . . ,
N

M
(4)
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where ⊗ is the Hadamard product.
The multileader strategy generates M new fruit flies from M leaders, i.e., a new fruit fly is generated from
each leader. These fruit flies are generated from the shared information and might result in the improvement
of the exploration ability. Moreover, CPFOA controls the shrinking of the search radius (β) in Step 4 through
the probability of Ps.There are two types of radius: The normal scope (Nscope) and high scope (Hscope).The
generation of β is controlled by Ps,as follows:

β =

¨
Nscope, if Ps > 0.1

Hscope, otherwise
(5)

Ps =
t

Max iter
(6)

where Max iter is the maximum number of iterations,t is the iteration index, and 0 ≤ t ≤ Max iter.

Nscope = max(UB) +min(UB) (7)

where Ub = upper − bound,and Lb = lower − bound of the domain search problems.

Hscope = max(Xaxis) +min(Xaxis) (8)

Based on Equation (6), the radius of the fruit fly search is probabilistically large,if Ps is a small value (or t
is at the early phase of the optimization). Otherwise, it is probabilistically a small value, if the iteration is in
the latter phase of the optimization.

3.2. Probabilistic Search Strategy Based on a Random Walk with Adaptive Normalization

As mentioned in Section 2.1.1, FOA uses the random uniform distribution, with a fixed radius of search. In
this paper, CPFOA will employ a random walk generation, which is inspired by the ant lion optimizer ( [40]),
and a probabilistic control of the search radius. The random walk is a mathematical equation process, which
can provide the series of consecutive random steps ( [41], [42]).
The value generated from a random walk at time n > 0 is found by a recursive formula, as follows:

Rn = Rn−1 + xn (9)

where xn is a random value extracted from a random number generator, and R0 = 0.
Equation (9) shows that the changing state of Rn is attached to the previous state of Rn−1 and every step,
obtained from current iteration to the next iteration. The details of the random walk in the CPFOA strategy
can be described in this section.
1. The fruit fly with the best fitness (X axis) is determined after the first generation of the
evaluation.(X axis) is used as a center for updating the N-M candidate solutions in the next generations.
2. As for the updating step, CPFOA uses the random walk to generate N-M individual fruit flies. The
characteristics of the populations of the random walk movements are described as:

XRt = XRt+1 + ρxt (10)

where ρ is a function that controls the direction of the fruit fly at any changing step, and XR0 = 0.In the
proposed CPFOA,ρ is either-1 or 1 and is determined as:

ρ = 2rt − 1 (11)

rt =

¨
1, if rand > 0.5

0, otherwise
(12)
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where t denotes the iteration that the random walk came to a halt,r(t) is a stochastic function, and rand is a
random uniform point in [0, 1). In order to match the values generated from Equation (10) with the boundaries
of the problem and, furthermore, to make the search process smooth, transitioning from the exploration phase
to the exploitation phase, equation (10) is adaptively normalized as follows:

P XRt
i,d =

XRt
i,d − at

bt − at
× (dt − ct) + ct, i = 1, . . . , N, and d = 1, . . . , D (13)

where a is the minimum of {XR0, . . . , XRt},b is the maximum of {XR0, . . . , XRt},b,c and d are the
minimum and maximum radii at the t-th iteration to control the scope of the search space during the
optimization steps, respectively. The value of c and d are determined through the changing values of L,as
follows:

ct =

¨
X axist + LBt, if rand < 0.5

X axist − LBt, otherwise
(14)

dt =

¨
X axist + UBt, if rand < 0.5

X axist − UBt, otherwise
(15)

where

LBt =
LBt

L
(16)

UBt =
UBt

L
(17)

L is a special constant parameter determined from the probability of the Ps variable. The parameter of L and
Ps can be calculated as follows:

Ps =
t

Max iter
(18)

where t is the current iteration,Max iter is the maximum number of iterations, and L = Ps× 102

when Ps > 0.25, L = Ps× 103 when Ps > 0.5, L = Ps× 104 when Ps > 0.75, L = Ps× 105,when Ps >
0.8, andL = Ps× 106 when Ps > 0.9.In the proposed CPFOA,L is used to adjust the accuracy level of
exploitation.
Equation (14) through Equation (18) perform the probabilistic control of the search radius for CPFOA, which
is different from the mechanism in FOA variants. The simulation state of the cooperation of FOA’s leader and
CPFOA’s co-leaders is shown in Figure 1. A graph of the search radius generated during CPFOA, optimized
as “Exponential function” (f1 in Table 1), is shown in Figure 2 (a), and the example the graph of the search
radius generated by IFFO is shown in Figure 2 (b).We have observed that the search radii in the two figures are
very different. The behavior of the search radius in CPFOA is very similar to that of the chaotic gravitational
constants in the gravitational search algorithm (GSA)( [43]). This kind of behavior should help CPFOA in
smoothly transitioning from the exploration stage to exploitation.

3.3. The Proposed CPFOA

The structure of the CPFOA is similar to that of the IFFO, in that the function Disti and the smell
concentration judgment value (Si) are eliminated. The pseudo code of CPFOA is presented in Algorithm 2.

4. The Experiments and Evaluations

There are two groups of competitive algorithms. The first group, shown in Table 2, is the FOA variants,
including FOA, LGMS, IFFO, MFOA, MSFOA, and CEFOA. The second group, shown in Table 3,
comprises CEFOA and six meta-heuristic algorithms: PSO, DE, GSA, HS, BA, and FA.
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Figure 1. The simulation state of the cooperation of FOAs leader and CPFOAs co-leaders.

Figure 2. A graph of the search radius generated from the Exponential function, (a) is generated
by CPFOA, and (b) is the example graph of the dynamic search radius generated by IFFO. The
stochastic fluctuation of the radius in (a) make CPFOA smoothly transits from the global search to
the local search

The performance of the proposed algorithm and that of the competitive algorithms are evaluated through 18
scalable functions taken from ( [31]). The definition of the functions and their global optima are listed in
Table 1: f1− f3 are the uni-modal functions, and f11− f18 are the multi-modal functions.
The experimental environment is MATLAB 9.2.0 (R2017a), which was run on a personal computer, with a
3.2 GHz CPU and 8 GB RAM. The operating system is Microsoft Windows 7 (64-bit).
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4.1. Parameters and Settings

There are two experiments, each of which is as follows:
1. In the first experiment, the proposed CPFOA is compared with the competitive algorithms from the first
group, i.e., CPFOA and the FOA variants are competing. The comparison is conducted on the 18 scalable
functions taken from ( [31]). The dimension of each problem is set to three values: 30, 50, and 1000.
2. In the second experiment, the proposed CPFOA is compared with the competitive algorithms from the
second group, i.e., CPFOA and the original version of some state-of-the-art algorithms are competing. The
comparison is based on the 18 scalable functions taken from ( [31]). The dimension of each problem is set
as those in the first experiment.
The following settings are set to comply with that of the existing CEFOA, the maximum
iteration(Max iter)of each algorithm is fixed to 500, the population size (popsize) is 30, and the
average (ave) and the standard deviations (std) of the final objective values are computed from 50
replications. The other parameters of each competitive algorithm are set in accordance with their original
literature, which are listed in Tables 2 and 3.

4.2. Performance Criteria

The criteria for performance evaluation of the competing algorithms are the quality, the robustness, the
success rate, and the statistical test, each of which is as follows:
1. The quality of the algorithms is determined by the average value (ave) and standard deviation (std) of
the final objective values. A lower value is better. Moreover, the decision can be supported by the convergence
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graph.
2. The success rate (SR) is determined by the number of successful runs over the total number of
runs. A run is successful if the algorithm finds a feasible solution x, represented by f(x)− f(x∗) ≤
1e− 5, f(x)− f(x∗) ≤ 1e− 10,within the maximum number of function calls (the terminated condition of
each run (MaxNFE),where x is a feasible optimal solution of the function, and x∗ is the best known solution
of a specific problem f .A higher average SRave indicates a better performance. The average success rate
(SRave) is written as:

SRave =
number of successful runs

total number of runs
(19)

A statistical test, to investigate the significance of difference between CPFOA’s outcome and the competitive
algorithm’s outcome, the Wilcoxon signed rank test, with the significance level of 0.05, is conducted to
judge whether the 50 runs of CPFOA are statistically better than that of its competitors. The h values,
signifying the results of the Rank-sum test, are indicated in Tables 6-13 by one of three symbols:“+”,“-” or
“=”, where the “+” symbol means that the solutions produced by the competitive algorithm are better than
those of CPFOA, the “=” symbol means the outcomes of the competitive algorithm are comparable to or
similar to those of CPFOA, and the “-” symbol means that the outcomes of the competitive algorithm are
worse than those of CPFOA. To conclude the statistical test, the total h is represented as #1/#2/#3, where #1,
#2, and #3 represent the number of wins, ties, and losses of the algorithm, respectively.

5. Results and Discussion

5.1. Convergence Behavior of CPFOA

This section will provide consistent information about the convergence behavior of CPFOA, when the
problem has an unknown number of local optima. The contours of the Egg holder function ( [55]) and
Schaffer function ( [56]) are plotted in Figures 3 and 4, respectively. In addition, the artificial fruit flies,
appearing at several iterations, are also scattered in the different plots of the two functions. The optimal
points of the two functions are located near the top right corner and at the origin. The starting points are
far from the optimal points. We have observed, from Figures 3 and 4, that CPFOA has the capability of
successfully optimizing the multimodal functions without being trapped in local optima. The experiment
has been repeated for 50 runs, and every run reaches the optimal point. Now, we can conclude that CPFOA
has a good balance between diversification (exploration) and intensification (exploitation), since it has not
been trapped in local optima.
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Figure 3. Convergence behavior of CPFOA on the Egg holder function.

Figure 4. Convergence behavior of CPFOA on the Schaffer function.

5.2. Computational Time of CPFOA

The optimization problem should be solved in a short time. Therefore, a good meta-heuristic optimization
should have a short computational time. The average computational time consumed by eights algorithms,
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when they optimized 18 of the scalable functions taken from ( [31]), is shown in Figure 5. From the figure, we
found that CPFOA consumes quite a short computational time, compared to the other algorithms, especially
when the dimension of the problem is 1000. Therefore, CPFOA can be used effectively in optimizing a large-
scale problem.

Figure 5. Comparison of the average computational time of 50 runs based on 18 benchmark
functions (500 iterations).

5.3. The First Experiment: Comparison of CPFOA and Six FOA Variants

The average (ave) and standard deviation (std) of the final objective values, as well as the h and SR values,
produced by seven algorithms performing 18 benchmark functions, with the dimensions of 30, 50 and 1000,
are shown in Tables 5-7, respectively. To conclude the table, the totals of h and the average of the SR values
are shown in the last two rows. The h values signify the results of the Rank-sum test that are used to compare
the quality between FOA, LGMS, IFFO, MFOA, MSFOA, CEFOA and CPFOA. NA mean that CPFOA was
not compared itself. The total h is represented as #1/#2/#3, where #1, #2, and #3 represent the number of
wins, ties, and losses of the algorithm when it is compared with CPFOA,respectively. For example, the total
h in the last row of Table 5, there is only the h value “+” of CEFOA = 1. It meant that from 18 benchmark
functions, CEFOA win CPFOA an only 1 function. Moreover, the h value “-”,“=” of CEFOA = 11 and 6.
It meant that from 18 benchmark functions, CEFOA losses CPFOA 11 and ties CPFOA 6, respectively.
Hence, CPFOA outperforms CEFOA. The SR is the success rate. For each function, the lowest of ave and
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std values, and the highest of SR value, are highlighted in boldface.

As can be seen from Tables 5 and 6, CPFOA has an excellent performance. It outperforms the competitive
algorithms, FOA, LGMS, IFFO, MFOA, MSFOA and CEFOA, in every function except some values of
CEFOA. For the comparison between CEFOA and CPFOA, in the uni-modal functions, f1− f10, CEFOA
has one win in function f2, and four ties in f1 and f8− f10. For the multi-modal functions, f11− f18,
CEFOA has no wins, two ties in functions f16 and f18, and six losses in functions f11− f15 and f17.
Hence, CPFOA outperforms CEFOA. Moreover, the last rows of Tables 5 and 6 show that CPFOA has the
highest average SR value (0.94).

The results in relation to a large-scale problem are shown in Table 7. CPFOA still shows a very good
performance, outperforming the competitive algorithms, FOA, LGMS, IFFO, MFOA, MSFOA and CEFOA,
in every function except some values of CEFOA. For the comparison between CEFOA and CPFOA,
for the uni-modal functions,f1− f10,CEFOA has one win in function f2, six ties in f1, f3, f5, and
f8− f10, and three losses in functions f4, f6, and f7. For the multi-modal functions, f11− f18,
CEFOA has no wins, two ties in functions f16 and f18, and six losses in functions f11− f15 and f17.
In addition, from the last row of Table 7, it can be found that CPFOA has the highest average SR value (0.83).

To confirm the efficiency of the CPFOA, the convergence graphs of all seven algorithms, when they are
optimizing 18 benchmark test functions, with dimension = 1000, are shown in Figure 6, where the red lines
represent the convergence graph of CPFOA. The graph is plotted in the log − log scale, where the x− axis
is the number of iterations, and the y − axis is the average fitness values, obtained at the corresponding
iterations, of the algorithms. From the graphs, CPFOA can reach the best solution faster than the other six
FOA variants.

5.4. The Second Experiment: Comparison of the CPFOA and Meta-Heuristics Algorithms

This section presents a comparison of the CPFOA and six meta-heuristics algorithms: PSO, DE, GSA, HS,
BA, FA, and CEFOA. The average (ave) and standard deviation (std) of the final objective values, as well as
the h and SR values, produced by the competitive algorithms performing 18 benchmark functions, with the
dimension of 30, 50 and 1000, are shown in Tables 8-10, respectively. To conclude the table, the totals of h
and the average of the SR values are shown in the last rows. The h values signify the results of the Rank-sum
test which are used to compare the quality between PSO, DE, GSA, HS, BA, FA, CEFOA and CPFOA. NA
mean that CPFOA was not compared itself. The total h is represented as #1/#2/#3, where #1, #2, and #3
represent the number of wins, ties, and losses of the algorithm, respectively. For example, the total h in the
last row of Table 8, there is only the h value “+” of CEFOA = 1. It meant that from 18 benchmark functions,
CEFOA win CPFOA an only 1 function. Moreover, the h value “-”,“=” of CEFOA = 11 and 6. It meant that
from 18 benchmark functions, CEFOA losses CPFOA 11 and ties CPFOA 6 respectively. Hence, CPFOA
outperforms CEFOA. The SR is the success rate. For each function, the lowest of ave and std values, and
the highest of SR value, are highlighted in boldface.

As can be seen from Tables 8 and 9, CPFOA has an excellent performance. It outperforms the competitive
algorithms, PSO, DE, GSA, HS, BA, FA, and CEFOA in every function except some values of CEFOA. For
the comparison between CEFOA and CPFOA, in the uni-modal functions, f1− f10, CEFOA has one win
in function f2, and four ties in f1 and f8− f10. For the multi-modal functions, f11− f18, CEFOA has
no wins, two ties in functions f16 and f18, and six losses in functions f11− f15 and f17. Hence, CPFOA
outperforms CEFOA. Moreover, the last row of both Tables 8 and 9 show that CPFOA has the highest
average SR value (0.94).
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Figure 6. Convergence curves of 18 benchmark functions that compare CPFOA, CEFOA, FOA,
LGMS, IFFO, MFOA and MSFOA. The dimension of the problem is 1000.

The results regarding a large-scale problem are shown in Table 10. CPFOA still shows a very good
performance, outperforming the competitive algorithms, PSO, DE, GSA, HS, BA, FA, and CEFOA, in
every function except some values of CEFOA. For the comparison between CEFOA and CPFOA, for the
uni-modal functions, f1− f10, CEFOA has one win in function f2, six ties in f1, f3, f5, and f8− f10,
and three losses in functions f4, f6, and f7. For the multi-modal functions, f11− f18, CEFOA has no
wins, two ties in functions f16 and f18, and six losses in functions f11− f15 and f17. Hence, CPFOA
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outperforms CEFOA. In addition, from the last row of Table 8, it can be found that CPFOA has the highest
average SR value (0.83).

6. Applications

In this section, the proposed CPFOA is applied for (i) training the Multi-Layer Perceptron (MLP) to classify
five datasets, and (ii) estimating the T-S fuzzy system parameters. MLPs and T-S fuzzy system method have
been proposed as useful tools to model complex systems for process in chemical applications ( [57], [58],
[59]).

6.1. Bio-Medical Real-Life Classification Problems

The datasets are a synthesis dataset, 3-bits XOR, a small dataset, Iris, and three bio-medical datasets:
Balloon, Breast cancer and Heart. The details of these datasets and parameter settings, including the MLP
structure for solving these datasets, are taken from the literature ( [60], [61]). Brief details of the dataset,
for the implementation and performance comparison of the algorithms, are presented in Table 11. CPFOA
is compared with six meta-heuristic algorithms in Table 4: JADE, BLPSO, CLPSO, GWO, MGWO and
HAGWO ( [61]). HAGWO was successfully tested using these five datasets. It is a hybrid nature-inspired
optimization technique that has been constructed using a hybridization of the Mean Grey Wolf Optimizer
(MGWO) and Whale Optimizer Algorithm (WOA). The parameters of GWO and HAGWO are set as in
( [60], [61]). Each algorithm is coded and run in MATLAB environment. The convergent graphs, based on
five datasets, are shown in Figure 7, where the red line represents the graph of CPFOA. From Figure 7, it
can be found that CPFOA can produce the lowest MSE in every dataset. To confirm our claim, the statistical
results, in which the minimum objective function and maximum objective function values are extracted,
are shown in Table 12. A lower objective function value is better. In addition, the average and the standard
deviation of the classification rate are shown in Table 12. A higher classification rate, with a lower standard
deviation, is better.

The results from Table 12 are as follows:
(i) The XOR dataset contains 8 training and 8 testing samples. Each sample has 3 input attributes and

1 output. The outputs of the XOR dataset are the same as those of the input values. After encoding,
the dimension of a fruit fly is 36. As can be seen in Table 12, the highest accuracy of 100% could be
obtained by GWO, MGWO, HAGWO and CPFOA. However, CPFOA is the best, as it produces the
lowest Best MSE Value (1.97× 10−9), Worst MSE Value (2.43× 10−4 ), ave (2.59× 10−5), and std
(5.45× 10−5 ), compared with those of the other algorithms.

(ii) The Iris dataset contains 150 samples. Each sample has 4 attributes and 3 classes. The training and
the testing sets are the same. This problem is harder than that of XOR, as it has three output classes.
After encoding, the dimension of a fruit fly is 75. The results show that CPFOA can produce the highest
classification rate (93.733%), which is highlighted in boldface. The second and third best competitors
are two improved versions of GWO, HAGWO and MGWO, which could obtain an accuracy of 93.00%
and 91.334%, respectively. The original GWO ranks forth, with an accuracy of (91.333%). Furthermore,
CPFOA produces the lowest average MSE (5.39× 10−2 ), compared with those of the six competitive
algorithms.

(iii) The Balloon dataset contains 18 training and 18 testing samples. Each sample has 4 input attributes
and 2 output classes. After encoding, the dimension of a fruit fly is 55. As can obviously be seen from
Table 12, this dataset is quite simple, because the several algorithms can produce the highest accuracy
of 100%, except for CLPSO’s accuracy, which is 89.75%. However, CPFOA produces the lowest Best
MSE Value (1.87× 10−20 ), Worst MSE Value (2.82× 10−8 ), ave (1.51× 10−9 ) and std (6.29× 10−9

) of MSE, compared with those of the six competitive algorithms.

Stat., Optim. Inf. Comput. Vol. 9, June 2021



476

(iv) The Breast cancer dataset contains 599 training and 100 testing samples, each of which has 9 input
attributes and 2 output classes. After encoding, the dimension of a fruit fly is 209. Therefore, the
computational time per iteration is quite long. However, the results confirm that CPFOA can produce
the highest accuracy and the lowest values of Best MSE Value (1.21× 10−3), Worst MSE Value
(1.70× 10−3), ave (1.67× 10−3) and std (1.19× 10−3) of the MSE.

(v) The Heart dataset, is the hardest problem among the four classification problems, containing 80 training
and 187 testing samples, each of which has 22 input attributes and 2 classes. After encoding, the
dimension of a fruit fly is 1081. It is a large-scale problem. As can be seen from Table 12, several
algorithms could produce low accuracies. The accuracy of JADE, BLPSO, CLPSO, GWO, MGWO
and HAGWO are 77.50%, 67.20%, 68.125%, 75.00%, 88.375%, respectively. HAGWO produces a
very low accuracy of 47.625%. However, the CPFOA showed a very promising result, as it can reach
the highest accuracy of 90.333%. Therefore, CPFOA outperforms the other algorithms.

To summarize, CPFOA has the ability and is suitable for training the Multi-Layer Perceptron (MLP) in order
to solve real-life classification problems.

6.2. T-S Fuzzy System Parameter Extraction

This T-S fuzzy system parameter estimation has been conducted in several literary works, and seven of the
existing works compare the other algorithms with CPFOA. The dataset is a Box and Jenkins gas furnace data
set ( [62]). It consists of 296 input and output measurements of a gas-furnace process. It is the collection of
recorded data from a combustion process of a methane-air mixture. At each sampling time k, the input x(k)
is the gas flow rate, and the output y(k) is the output CO2 concentration.

To compare CPFOA with the other novel algorithms, we borrow a procedure from the literature, namely, the
“parameter estimation of Takagi-Sugeno’s fuzzy system using a heterogeneous cuckoo search algorithm”
( [63]) by choosing u(k), u(k − 1), y(k − 1) and u(k − 2), as the input variables of the model. To prepare
the data, the first 148 input-output data were utilized as training data, and the last 148 were the testing data.
The individual parameter settings of the simulation and the best competitor, HeCoS, are set as in ( [63]),
which is as follows: Pa = 0.15, α = 1.3, β = 1.3, δ = 0.9, the maximum iteration (Max iter) = 2000, and
the number of agents (popsize) = 40. CPFOA solve a very compact model as the number of rules in the
model is 2–this is the smallest number of rules. After the encoding, the total number of parameters for a T-S
fuzzy system model is 26.

The training results of CPFOA are visualized in Figure 8, and the testing results are shown in Figure 9. The
blue line is the real data, and the red dashed line is the output of the model, trained by CPFOA. From those
two figures, we have observed that the real data and the output from the model are not very different.

Based on the study in ( [63]), the HeCoS optimizing iTaSuM claimed that it is the best model, with training
and testing MSE values of 0.0271 and 0.138, respectively. We also re-run the HeCoS, and there is no better
solution found. These two training and testing MSE values are not the lowest values, but the number of rules
of the T-S fuzzy system is less than or equal to that of the other six approaches (model no. 1 through no.
6). Regarding CPFOA, from Table 13, it can be found that the training and testing MSEs of CPFOA do not
obviously outperform that of HeCoS, but CPFOA can optimize a more compact model than HeCoS as the
number of rules of the T-S fuzzy system trained by CPFOA is less than that of HeCoS. The parameters of
the identified model are listed in Table 14.
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Figure 7. Convergence curves of XOR, Iris, Balloon, Cancer and Heart datasets that compare JADE,
BLPSO, CLPSO, GWO, MGWO, HAGWO and CPFOA).

7. Conclusions

This paper addresses the problem of the low exploration ability of FOA and its variants. The cooperation of
the multileader and the probabilistic random walk strategies forms the proposed CPFOA algorithm. CPFOA
can smoothly transition from the exploration stage to the intensification stage. The experimental results
show that the performance of CPFOA is improved, compared with the original FOA and the FOA variants,
in finding the optimal solution.
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The main characteristics of CPFOA in finding the optimal solution can be summarized as follows:

• The CPFOA uses the probabilistic random walk algorithm, with adaptive normalization, as the main
procedure.

• The CPFOA uses the multileader strategy to further enhance the exploration ability.
• The population with two types of behavior can prevent the search from becoming trapped in a local optimum,

whereas only one population behavior in the existing FOA variants can lead the algorithms to be easily
trapped.

• The CPFOA demonstrated its promising performance in solving unconstrained function optimization
problems, especially when the dimension of the problem is high.

We evaluated the CPFOA’s performance in 18 well-known standard benchmark functions. The experimental
results from the benchmark functions clearly illustrated that the CPFOA outperforms both the original FOA
and the FOA variants, in terms of the convergence speed, the success rate, and the solution accuracy, in
finding the optimal solution.

CPFOA is applied for training the MLPs in relation to classified real-life datasets, and the results demonstrate
that it achieves a higher level of accuracy in the classification of the proposed CPFOA trainer than the
competitive algorithms.

Moreover, CPFOA is applied for the T-S fuzzy system parameter extraction of a Box and Jenkins gas
furnace data set. The results demonstrate that CPFOA can achieve a very promising accuracy of the T-S
fuzzy system in modeling, when compared with the best known competitive algorithms.

Future work will involve applying CPFOA to optimize the multi-objective function problems, which are
very challenging problems.

Author Contributions : The authors have contributed equally to this research and to the writing of this
paper. W.A. designed the experiments, conceptualization, investigation, methodology, software and wrote
the original draft of this paper. K.S. was responsible for supervision, performing the numerical experiments,
conceptualization, investigation, methodology, software and the writing of the original draft of this paper.
S.C. analyzed the numerical results and was responsible for conceptualization, investigation, methodology,
software and the writing of the original draft of this paper. All authors have read and approved the final
version of the manuscript.

Stat., Optim. Inf. Comput. Vol. 9, June 2021



479

Figure 8. Comparison of iTaSuM optimized by CPFOA and the real system for Box and Jenkins gas
furnace training data. (A) The real values and the CPFOA outputs for the data set. (B) The error
between the real values and the CPFOA outputs).

Figure 9. Comparison of iTaSuM optimized by CPFOA and the real system for Box and Jenkins gas
furnace testing data. (A): The real values and the CPFOA outputs for the data set. (B) The error
between the real values and the CPFOA outputs).
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39. Babalık, A.; İ ş can, H.; Babaoğlu,İ.; Gündüz, M. An improvement in fruit fly optimization algorithm by using sign parameters,
Soft Computing 2017, 10.1007/s00500-017-2733-1, doi:10.1007/s00500-017-2733-1.

40. Mirjalili, S. The Ant Lion Optimizer, Advances in Engineering Software 2015, 83, 80-98,
doi:https://doi.org/10.1016/j.advengsoft.2015.01.010.

41. Yang, X.-S. Nature-inspired Metaheuristic Algorithms, Luniver Press, 2010.
42. Gupta, S.; Deep, K. A novel Random Walk Grey Wolf Optimizer, Swarm and Evolutionary Computation 2018,

https://doi.org/10.1016/j.swevo.2018.01.001, doi:https://doi.org/10.1016/j.swevo.2018.01.001.

Stat., Optim. Inf. Comput. Vol. 9, June 2021



491

43. Mirjalili, S.; Gandomi, A.H. Chaotic gravitational constants for the gravitational search algorithm, Applied Soft Computing
2017, 53, 407-419, doi:https://doi.org/10.1016/j.asoc.2017.01.008.

44. Ab. Aziz, N.A.; Ibrahim, Z.; Mubin, M.; Nawawi, S.W.; Mohamad, M.S. Improving particle swarm optimization
via adaptive switching asynchronous C synchronous update, Applied Soft Computing 2018, 72, 298-311,
doi:https://doi.org/10.1016/j.asoc.2018.07.047.

45. Pan, W.-T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example, Knowledge-Based
Systems 2012, 26, 69-74, doi:https://doi.org/10.1016/j.knosys.2011.07.001.

46. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm, Information Sciences 2009, 179,
2232-2248, doi:https://doi.org/10.1016/j.ins.2009.03.004.

47. Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: harmony
search theory and practice, Computer Methods in Applied Mechanics and Engineering 2005, 194, 3902-3933,
doi:https://doi.org/10.1016/j.cma.2004.09.007.

48. Fister, I.; Fister, I.; Yang, X.-S.; Brest, J. A comprehensive review of firefly algorithms, Swarm and Evolutionary Computation
2013, 13, 34-46, doi:https://doi.org/10.1016/j.swevo.2013.06.001.

49. Chen, X.; Tianfield, H.; Mei, C.; Du, W.; Liu, G. Biogeography-based learning particle swarm optimization; 2017; Vol. 21,
pp. 7519C7541.

50. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for global optimization
of multimodal functions, Trans. Evol. Comp 2006, 10, 281-295, doi:10.1109/tevc.2005.857610.

51. Wang, Y.; Cai, Z.; Zhang, Q. Differential Evolution With Composite Trial Vector Generation Strategies and Control
Parameters IEEE Transactions on Evolutionary Computation 2011, 15, 55-66, doi:10.1109/TEVC.2010.2087271.

52. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution With Optional External Archive, IEEE Transactions on
Evolutionary Computation 2009, 13, 945-958, doi:10.1109/TEVC.2009.2014613.

53. Singh, N.; Singh, S. A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems,
Evolutionary Bioinformatics 2017, 13, 1176934317729413, doi:10.1177/1176934317729413.

54. Nabil, E. A Modified Flower Pollination Algorithm for Global Optimization, Expert Systems with Applications 2016, 57,
192-203, doi:https://doi.org/10.1016/j.eswa.2016.03.047.

55. Liu, Z.; Liu, X.; Cai, X. A new hybrid aerodynamic optimization framework based on differential evolution and invasive weed
optimization, Chinese Journal of Aeronautics 2018, 31, 1437-1448, doi:https://doi.org/10.1016/j.cja.2018.05.002.

56. Zhao, X.; Yao, Y.; Yan, L. Learning algorithm for multimodal optimization, Computers & Mathematics with Applications
2009, 57, 2016-2021, doi:https://doi.org/10.1016/j.camwa.2008.10.008.

57. Messikh, N.; Bousba, S.; Bougdah, N. The use of a multilayer perceptron (MLP) for modelling the phenol
removal by emulsion liquid membrane, Journal of Environmental Chemical Engineering 2017, 5, 3483-3489,
doi:https://doi.org/10.1016/j.jece.2017.06.053.

58. Dı́az-Rodrłguez, P.; Cancilla, J.C.; Matute, G.; Chicharro, D.; Torrecilla, J.S. Inputting molecular weights into a multilayer
perceptron to estimate refractive indices of dialkylimidazolium-based ionic liquidsłA purity evaluation, Applied Soft
Computing 2015, 28, 394-399, doi:https://doi.org/10.1016/j.asoc.2014.12.004.

59. Qiao, J.; Li, W.; Han, H. Soft Computing of Biochemical Oxygen Demand Using an Improved TCS Fuzzy Neural Network,
Chinese Journal of Chemical Engineering 2014, 22, 1254-1259, doi:https://doi.org/10.1016/j.cjche.2014.09.023.

60. Mirjalili, S. How effective is the Grey Wolf optimizer in training multi-layer perceptrons, Applied Intelligence 2015, 43,
150-161, doi:10.1007/s10489-014-0645-7.

61. Singh, N.; Hachimi, H. A New Hybrid Whale Optimizer Algorithm with Mean Strategy of Grey Wolf Optimizer for Global
Optimization, Mathematical and Computational Applications 2018, 23, 14.

62. Box, G.E.P.; Jenkins, G. Time Series Analysis, Forecasting and Control; Holden-Day, Inc.: 1990; pp. 500.
63. Ding, X.; Xu, Z.; Cheung, N.J.; Liu, X. Parameter estimation of TakagiCSugeno fuzzy system using heterogeneous cuckoo

search algorithm, Neurocomputing 2015, 151, 1332-1342, doi:https://doi.org/10.1016/j.neucom.2014.10.063.
64. Yinghua, L.; Cunningham, G.A. A new approach to fuzzy-neural system modeling, IEEE Transactions on Fuzzy Systems

1995, 3, 190-198, doi:10.1109/91.388173.
65. Euntai, K.; Minkee, P.; Seungwoo, K.; Mignon, P. A transformed input-domain approach to fuzzy modeling, IEEE

Transactions on Fuzzy Systems 1998, 6, 596-604, doi:10.1109/91.728458.
66. Tsekouras, G.E. On the use of the weighted fuzzy c-means in fuzzy modeling, Advances in Engineering Software 2005, 36,

287-300, doi:https://doi.org/10.1016/j.advengsoft.2004.12.001.
67. Li, C.; Zhou, J.; Fu, B.; Kou, P.; Xiao, J. T-S Fuzzy Model Identification With a Gravitational Search-Based Hyperplane

Clustering Algorithm, IEEE Transactions on Fuzzy Systems 2012, 20, 305-317, doi:10.1109/TFUZZ.2011.2173693.
68. Li, C.; Zhou, J.; Xiao, J.; Xiao, H. Hydraulic turbine governing system identification using T-S fuzzy model optimized

by chaotic gravitational search algorithm, Engineering Applications of Artificial Intelligence 2013, 26, 2073-2082,
doi:https://doi.org/10.1016/j.engappai.2013.04.002.

69. Cheung, N.J.; Ding, X.; Shen, H. OptiFel: A Convergent Heterogeneous Particle Swarm Optimization Algorithm for Takagi-
Sugeno Fuzzy Modeling, IEEE Transactions on Fuzzy Systems 2014, 22, 919-933, doi:10.1109/TFUZZ.2013.2278972.

Stat., Optim. Inf. Comput. Vol. 9, June 2021


