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1. Historical Perspective and Prelude

Variational inclusions plays an important role in the generalization of classical variational inequalities.
So, we have wide range of applications in many of the fields like non-linear programming, economics,
optimization, physics etc. Because of its extensive applications various variational inclusions have been
established in recent times. Iterative algorithms have been used by different researchers to solve different
classes of variational inequalities and variational inclusion problems. For further information one can see
[6, 8,9, 10, 11, 12, 13, 14, 15, 19, 20, 21, 24, 25, 26, 28] and references therein. A new problem of much more
interest which is called as system of variational inequalities (inclusions) were introduced and studied in the
literature.

In 2007, Xia and Huang [29] studied variational inclusions with a general H-monotone operator in Banach
spaces, Ahmad et al. [3, 5, 7] considered resolvent operator technique to explain a system of generalized
variational-like inclusions in Banach spaces, Verma [27] established and considered some new systems of
variational inequalities in Hilbert spaces and generate some iterative algorithms for approximating the solutions of
this system. As a generalization of some variational inequalities, Huang [16, 17] introduced Mann and Ishikawa
type perturbed iterative algorithms for generalized non-linear implicit quasi-variational inclusions. Then, Agarwal
[1] established sensitivity analysis for the new system of generalized non-linear mixed quasi-variational inclusions.

After that, S. Hussain [18] considered an Ishikawa type iterative algorithm for a generalized variational
inclusions. In this paper we study and established a system of m-variational inclusions in real Hilbert spaces
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called a new system of implicit n-variational inclusions. By using resolvent operator technique, we propose a
n-iterative algorithm with error terms for computing the approximate solutions of a new system of implicit n-
variational inclusions. We also discussed here criteria of convergence. The mathematical approach of our paper is
quite different than the methods discussed above.

Let X be a real Hilbert space whose norm and inner product are denoted by ||.| and (., .) respectively, d is the
metric induced by the norm |. |, 2% is the family of all non-empty subsets of X, C'B(X)) is the closed and bounded
subset of X and (., .) is the Hausdorff metric on C' B(X) defined by

H(A, B) = mazx (sup d(z, B),sup d(A,y))
zeA yeB

where d(z, B) = inf g d(z,y) and d(A, y) = infeq d(z,y).

We require the following definitions and theorems to achieve the main result of this paper.
Definition 1.1. A mapping g : X — X is called
(1) Lipschitz continuous if, there exists a constant A4 > 0 such that
lg(z1) = g(z2)| < Agllw1 — 22|, for all 21,25 € X;

(i1) monotone if,
(g(x1) = g(w2), 21 — x2) 20, forall x1,z5 € X;

(iii) strongly monotone if, there exists a constant £ > 0 such that

(g(x1) = g(x2), 21 — x2) > €|y — 25|?, forall z1, 25 € X;
(iv) relaxed Lipschitz continuous if, there exists a constant r > 0 such that

(g(x1) = g(x2), 1 — 22) < =121 — x||%, forall #1, 25 € X.

Definition 1.2. A mapping F': X x X x X — X is said to be Lipschitz continuous in the first argument if, there
exists a constant A, such that

| F(21,22,23) = F(y1, 22, 23) | < Ap, |21 - 1], forall 21,91, 22,25 € X.
In a similar way, we can define the Lipschitz continuity of F in the rest of the arguments.

Definition 1.3. A multivalued mapping A: X - CB(X) is said to be H-Lipschitz continuous if, there exists a
constant ¢ 4 such that
H(A((El), A(QCQ)) < 5A Hl'l ) H, for all T1,T2 € X.

Definition 1.4 [2]. Let [: X — X be an identity mapping and H : X — X be a mapping. Then for A >0 a
multivalued mapping M : X — 2% is a said to be (I — H) monotone if, M is monotone, H is relaxed Lipschitz
continuous and

[(I-H)+\M](X)=X
Definition 1.5 [2]. Let H : X - X be a relaxed Lipschitz continuous mapping and 7 : X — X be an identity
mapping. Suppose that M : X — 2% is a multivalued, (I — H) - monotone mapping. For A > 0, relaxed resolvent
operator R} 1] : X — X associated with I, H and M is defined by
Rii(x) =[(I-H)+AM] (), forall z € X, (1.1)
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The following theorems plays an important role in proving our main results which is due to [2].

Theorem 1.1 [2]. Let H : X — X be a relaxed Lipschitz continuous mapping, I : X — X be an identity mapping
and M : X - 2% be a mutivalued, (I — H)- monotone mapping. Then for \ > 0, the operator [(I — H) + AM ]!
is the single valued.

Theorem 1.2 [2]. Let [: X — X be an identity mapping, H : X - X be a r-relaxed Lipschitz continuous
mapping and M : X — 2% be a multivalued, (7 — H)- monotone mapping. Then the relaxed resolvent operator
Rﬁ‘ﬁ X > Xis % Lipschitz continuous. i.e.,

_ _ 1
| R3] (1) = RA4T (22) ] < m”ﬂﬂl - x|, Vo, e X.

2. Formulation of the Problem

We introduce a new system of implicit n-variational inclusions in Hilber spaces and develop an
iterative algorithm with error terms for solving this system. For each ¢ € {1,2,3,..n}, let X; be a real
Hilbert space, let H;,g;:X; - X;, F;, P, : X1 x X5...x X,, > X; be the single valued mappings and
A1, Aoy ooy Aiy : X; > CB(X;) be the multivalued mappings. Let I; : X; — X; be the identity mappings
and M; : X; x X; — 2% be the multivalued, (I; — H;)- monotone mappings. We consider the following system of
implicit n variational inclusions (in short, SIVI):

Find (21, T2, vy Tpy W11, U125 U3y ey Ulny -es Unls Un2s Un3s - Unp )
((El,xg, 7.’En) [S X1 X X2 X o X Xn,

Ui € Ail (x1),ui2 € Ai2($2)7 ..... Uin € Am(ccn) such that

0e Fl(xl,.’l,‘z....,l‘n) + Pl(un,ulg, ....,uln) + Ml(gl(xl),ml)
(SIVI) Oe FQ(iEh.’EQ, ,xn) + PQ(UQl,'LLQQ, ....,’LLQH) + Mg(gg(l'g),xg)

(IXS Fn(xthv 7$n) + Pn(unlvun% -~-~7Um,n) + Mn(gn(x'rL)yxn)-
Equivalently

0€Fi(xy, 22, ..., o) + Pi(win, wig, ...uin) + M;(gi (), ;).
Special Cases:

aG) If F1(2317m2,...,$n) = F1(:C1,:C2,x3), FQ(CCl,SCQ, 7mn) = F2($1,1:2,x3), F3($1,x2,..4,zrn) = F3($1,1:2,LE3),F4,
Fs,...,Fn =0, Pr(u11,u22, ..., uin) = Pi(u11,u22,u33), Pa(u21,u22, ..., u2n) = Py(u21,u22,u23),
P3(’u,31,u32,...,u3n) = Pg(ugl,u32,u33),P4,P5,...,Pn =0. Then the problem (SIVI) reduces to find
(1,2, 3, u11, Ur2, U1s, U2, U2, U23, U31, U2, uz3) such that for each ie€{1,2,3}, x1,22,235¢
Xl X XQ X Xg, Uil € Aﬂ(l’l),uig € Aig(l'g),uig € Aig(g) such that
Oe F1(90173727$3) + P1(u117u127U13) + M1(91($1),$1)
(SGIVI) Oe€ Fg(xl,xg,xg) + PQ(’U,Ql,UQQ,'LLQ:;) + Mg(gg(.’ﬂg),xg)
0 € F3(x1, w2, z3) + Py(us1, usz, uss) + Ms(g3(z3), x3).
System of generalized implicit variational inclusion (SGIVI) introduced and studied by Ahmad et al [4].
(ll) If Fl(m17x27$3) = F(xl,l'z), F2($1,$2,$3) = G(:El?xQ)a F3 = Oapl('7'a') = P('a')a P2('7'7') = Q('?')?
P3 =0. Ml(gl(l‘l),l'l) = M1 (gl(xl)),Mg(gg(l‘Q),Ig) = Mg(gg(l‘g)), M3 = O, then the problem (SGIVI)
reduces to the problem of finding (x1,z2) € X3 x X5 such that

0€ F(x1,22) + P(u,v) + My (g1(z1))

(SOMQD { 0€G(x1,22) + Q(u,v) + Ma(g2(22)),
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which is called the system of generalized mixed quasivariational inclusions with ( H, n7)-monotone operators
(SGMQI) introduced and studied by Peng and Zhu [23].

(iii) If P=Q =0, g1 = I (the identity map on X7), g2 = I>(the identity map on X5), M;(g1(z1)) = M1(x1),
M5(go(z2)) = Ma(x2) then (SGMQI) reduces to the system of variational inclusion with (H, n)-monotone
operators (SVI) which is to find (z,y) € X; x X5 such that

0e F(.rl,l‘g) + Ml(xl)
(SVD { 0€G($1,$2)+Mg($2).

Problem (SVI) was introduced and studied by Fang et al [14].

Lemma 2.1. For each i€ {1,2,..,n} let X; be a real Hilbert space, H;,g;:X; > X;, F; P;:
X1 x X9 X ...... x X, = X; be single-valued mappings and A;i, Ass,...., Ain : X; > CB(X;) be the multivalued
mappings. Let I; : X; - X; be the identity mappings and M; : X; x X; - 2% be the multivalued,, (I; - Hy)-
monotone mappings. Then, (z1,T2, ., Ty, U11, UT2,s ceee-Ulgyy UDT, U2,y veeesUpyy ooy U]y Un2y ooy Un ) With
(.%'1,.’1)2, ,.Z'n) e Xy xXogx....xX,, u; € Ail(ml),uﬂ € Aig(.’I}Q), ceey Uip € Azn(xn) is a solution of problem
(SIVI), if following equations are satisfied:

gi(w;) = Rf\ ]\Z( e, )[(Ii_Hi)(gi(xi))_/\iFi(xlax%---;xn)_)\iPi(Uihui?wuyuin)L

where, Ri ﬁ ) = [(I; - H;) + \iM;(.,2;)]™" are the relaxed resolvent operators and \; > 0 are constants.

Proof. The proof is a direct consequence of the definition of the relaxed resolvent operator (1.1).
On the basis of the above observations, we propose the following iterative algorithm with error terms for computing

the approximate solution of (SIVI).

Algorithm 2.1. For each i € {1,2,...,n}, given z7 € X;, take u$; € A;1(x9),uly € Aia(x9), ....,us, € A;n(x?) and
let

-7511 = (1—/%)1‘?4—;”[ i gZ(xO)+R)\ M( IO)((I H)(gl(xl) AilF(ad, @3, .. 7))
_)\iPi(u;')lau% ] zn)]-‘r:ul

Since, ug; € Aj(a]),ufy € Ain(25), ... uf, € A;n(22), by Nadlers theorem, there exist u}; € A (1), uly €
Aia(xd), ..., Uiy, € Ain(z,,), such that

lugy = ufi < (1+ 1M1 (A (1), Ain (7))
lugz = ufall < (1+1)Ha(Ain(23), Aiz(25))

gy, = ud, | < (1+ D) Hn(Ain (), Ain (27)).
Again, let

K
1]

z2 (1 /‘z)x +N2[ gl(.%‘ )+R>\ M( Il)((I H)(gl(:cl)) )‘F(xlaxQ 7 n)
_Aipi(uilvui%' 2 m))]"',uz
By Nadler’s theorem [22], there exists u? € Ay (23),u2 € A (23),...,u?, € A (22) such that,

Jo, = < (14 3) M (A (0, A (o)
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lud — byl < (14 3) Ha(Ain(a3), Aia(e))

Jud, bl < (14 )H (Ain(52), Ain (21)).

By induction, we obtain the sequences, {z' }, {ulb}, ..., {ul, } satisfying
I?H = (1- /Lz)x +IM[ gz(xn)""R)\ M( In)((l - H; )(gz(xn))) Ai F(I17$2 z,
=P (ufy, ugy, o ui) ] + pael! (2.1)

n " 1 n n
luftt =l | < (1 s 1)7‘[1(141'1(551“)7141‘1(9”1 ) (2:2)

1
™ ) < (14— ) Ha(Ain(a™), Aa(e3)) (23)
, 1 .
s = < (14— ) (Ao 07 A (2)), (24)
where n=0,1,2,.... for i = {1,2,,....,n}, u; >0,\; >0 are constants, e € X; for n >0, are errors to take into

account a possible inexact computation of the resolvent operator point and H,;(.,.) are the Hausdroff metrics on
CB(X;).

3. Existence and Convergence Analysis

In this section, we consider those conditions under which the solution of the problem (SIVI) exists and the
sequences of the approximate solutions obtained by Algorithm 2.1, converge strongly to the exact solution of the
problem (SIVI).

Theorem 3.1. For each i € {1,2,...,n}, consider X; is a Hilbert space, I; : X; - X; be the identity mappings and
H;,g; + X; — X; be the single-valued mappings such that g; is &;-strongly monotone, A4, -Lipschitz continuous and
H; is A\g,-Lipschitz continuous, r;-relaxed Lipschitz continuous. Suppose that A;1, A2, ..., Aip : X; = CB(X;)
are the multivalued mappings such that A;; is §4;, — D;-Lipschitz continuous and A;s is 044, — D2-Lipschitz
continuous....d 4;, — Dy-Lipschitz continuous, respectively. Let F;, P; : X3 x Xo x ... x X, = X; be the single-
valued mappings such that F;’s are Lipschitz continuous in all n-arguments with onstants Ap, >0, \p,, >

s Ap,, >0, respectively. Suppose that M; : X; x X; — 2° are the multivalued (I; — H;)-monotone mappings.
For )\; > 0 and h; > 0 assume

and

.= K 2 HiXg; +HiXH; Ag; n Nfz‘)\j/\Fji
ki =1 = pi+ pih + pin/1 =286 + A5+ === 1_+zi=lTrj<1

z n/lu)‘ )‘P 5A

=mi\Xim 1, )< b
kl+vz<1 amd2§z<1+)\2 for eachi € {1,2,...,n}
oo -1 - oo -
St el — el k1 < 0o Zq pled —eS [k < o0, B2 [led — et < oo,
limn_ﬂx,e1 = lzmn_,me2 = limpoeo€p = 0, foreach k € (0,1). (3.2)
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Then the problem (SIVI) admits a solution  (x1,T2,...Tpn, UT1, Ul2, - Uln, U1, U2, - Uy, U1,
U2, - Un, Unl, Un2, -, Uny ) and iterative sequences {x'}, {uly}, {ul},....{ull,} generated by iterative
Algorithm 2.1 strongly converge to z;, u;1, sz, ... Usp, respectively, for each i € {1,2,3,...,n}.

Proof. For each i € {1,2,....,n}, letd = [(I; - H;)(g:(z})) = NiFy (2}, 2., xl) = N P (ul cnul )]

i1 12’ 7 Tp

Using Algorithm 2.1, condition (3.1) and Theorem 2.2, we have

oyt - ot [(U = pa)a + [} = g1 (2}) + R0y (@] + el = (1= )™

P i X 1)<d”- - mer|

< (1=p)]af =2t +mlel - 27 = (a1 (@) - g (277
PRy (@) = B (@D [+ | R (437
Rill zgi( x?)(d? D+ mler —er™|
< (1- Ml)“fﬂ?—x?_l”ﬂilﬂxl—ff Y= (g1(@}) =g (a7
b | RETE (D) = Ry oy (470
+u1||RA1 ]\/[1( zn)(d?_l) —RAI,Ml(‘,x;m(d;H)\I +p e} —ef 1“
< (1—u1)\|w1—$n 1+ et =27 = (g1 (1) = 2 (2771)) |
+1+ ldy = di ™t |+ b2t =27+ pflef - e
< (L= +mh)ay ="+ p 2t = a7t = (g (et g7
eyl T RV E R (3.3)

and since g is Ay, -Lipschitz continuous and &; - strongly monotone, we obtain

Jat = ai™ = (g1(z}) —gu(ay ™ NP = 2t - 277 - 20af - 277, 1 (2]) ~ gu (27 7))
g1 (@}) - g1 (a7
< (1=26+ A7) 2t -2, (3.4)

As g1 is Ag -Lipschitz continuous, F; is Lipschitz continuous in all n-arguments with constants
ARy s Ay, s ARy, , Tespectively, P; is Lipschitz continuous in all the n-arguments with constants
APy APpss APys, - APy, Tespectively, A1y is 0 4,,-D1- Lipschitz continuous, A; is 0 4,,-D2- Lipschitz continuous,
...... Ay, 18 84, -D,,- Lipschitz continuous, respectively, we get

ldy - di ™|

(11 = H1)(g1(7)) = A Fl(;v?,xg,. 5 Tn) = AP (Ul uty, e uly,)
—(I - Hl)(gl(xrf 1)+)\1F1(x xy L. ..,mz_l

+)\1P1(u11 ,u12 . ulnl)H

lgr(at) = ga (2771 + HH(gl(ﬂf?)) Hl(gl(wn NI
+)\1||F1(ac’f7x§‘,. g n) Fl(x n 17 )”

A1 Pr(ufys uly, s ulfy) — Pl(“u July e ulnl)H

lg1(27) = gu (&7 + | Hi(g1(a7)) = Hi(g1(277H)]

M| Fr (et 2, ay) = Fr(af ™ o~ 1, )|
+)\1||F1(ac?71,x§,x3,. ") - Fl(x xy 7t x|

IA

IA
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+)\1HF1(33§L_1,3:3_1,....,xn) —Fl(x?_l,mg_l,a:g_l,...,a:z_l)H
+>\1HP1(U?1’U7112’~ u?n) Pl(u?l_17u?27u?3a"'7u7lln)H
+A1\|P1(u?{1,u?2,.. ut,) = Pr(uyy ’u?Qlﬂ" uy,) |
+)‘1HP1(U11 auﬁlw- uy,) - Pl(“u auu yee ulnl)H
< Ag a2t =27+ Am Ag, ot = 2T + Mg, 2T - 277
A1 Fuof| @l = ab 7 + MAm, 25 — a7+ .+ >\1>\F1n |y — a2
+A1 APy, Uty — U111|| + MApy, [ufy — u121H
APy, Uty = U131|| + oo+ A Prp U, — U1n1||
< Ag a2t =207+ Am Ag, ot = 277+ Mg, |2 - 277
+>‘1>‘F12 Hl‘g - (L‘g_lH + H/\l)‘Fl?. ng - lﬂ_l”
+"'+)‘1>‘F1n‘|x2_x2_1” +)‘1>‘P11Hull u?llﬂ
AP, [uly _Ugl“ + MApy, [ufy — u131\|
+...+)\1)\pln\|u1n |
< Ag 2t =207+ Agy A, 2 —93"_1”
+>‘1)‘F11H‘T1 —fﬂ? 1“ + )‘1)‘F12 ng H +>\1)\F13H5£3 —.'Bg 1“
+...+>\1)\F12||IZ H +A1/\P11 (].-‘r )Dl(All(xl) All(l‘ )
1
+)\1)\p12 (1 + — )DQ(A12(J)2,A12($ )
+mpu(1+ )173(,413(:c3 Ay(a271))
+...+ )\1>\p1n (1 + — )D (Aln(l‘n,Aln(l’n 1))
< )\91 HIL’?—J}? H +>\H1 g1 H.I;L 1“ +A )‘FuHxl _:L';L 1”
A AR, 2 = 257+ M AR, Hfﬂg -y
_ 1
et Me, = 7 Ay, (L) o = o)
1 1
ARG (14 ) =25+ Ahp g (14 ) - 237
1
ot AP Oa (17) [ — 27|
_ 1
< ()‘91 + )‘1)‘F11)Hx? _x? 1” + (/\H1>‘91 + )‘1)‘131151411 (1 + E)) Hxl _xl 1“
1 _
+ (/\1/\F12 + /\1/\P126A12 (1 + E)) ”3?; - Z‘; 1“
1 _
+ ()‘1)‘F13 + )‘1)‘P135A13 (1 + ;)) ||!Eg - xg 1“
1 _
+...+ ()‘1/\F1n + )\1>\p1n5,41n (1 + E)) HI’Z —IZ 1”
1 _
< (/\91 + )‘1)‘F11 + )‘Hl/\gl + )‘1)‘P116A11 (1 + 5)) Hl‘? —l‘? 1”

1
+ (Al)‘Fn + >‘1)‘P125A12 (1 + ;)) ||{E2 - (E2 1“
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1 n n-
+(A1AF13 + AP, 04y, (1 + ;)) a5 - 57|
1
o+ (/\1)\F1n +AAp, 04, (1 + —)) =2t
n

Using (3.4) and(3.5), equation (3.3) becomes,
n+1l

|z =2 < (1= 1+ paha + piy /128 + A2

p1(Agy + M ARy, + A Ay + MAp, 0, (T+2)
+ Mzt =277 |

1+r;
/’Ll()‘l)‘Fm + )‘1)‘P125A12(1 + %)) n n-1
+ 1 |2y — x5 |
+ 71
MAr, + MApL 0, (1+ )1 +7
e AL

Using the same arguments as for (3.6), we get

n+1

lz5™ —xy | < (1= p2+ poha + oy /1 =26 + A2,

12O + Aok, + A Ags + Ao AP0 (14 1))
1 + 79
+M2(>‘2)‘F21 + >‘2)‘P216A21 (1 + %))
1+ ]

AoAp,, + A2Ap,, 6 1+1
Laehen 2 Db U)ot st - )

a3 - 237!

lat - 277!

1+T2

Using the same arguments as for (3.6), we get

MS(/\3/\F31 + /\3/\P315A31(1 + %))

Jaytt —ap] < o ot — 277"
,UJ3(/\3)‘F32 + /\3/\P326A32(]‘ + %)) n n—1
+ |25 — 57"
1+’F3 2 2

+(1 = pz + pghs + puzy /1 = 283 + A2,

+/~L3()‘g3 + )‘3)‘F33 + )‘Hs)‘g'a + >‘3)‘P335A33(1 + %))

n _ ,n-1
1+7rs |l — 257
+pslles —e57].
Using the same arguments as for (3.6), we get
n(AnFn1 + ApAp, 0 1+2
FA] P AL TU D P
+ 7T
Mn(AnFnQ + )‘n>‘PyL26An2(1 + %)) n n-1
+ 1 ”xn Ty H
+ 7y
(1= pin + pnhin + pnn /1 =26, + A2
lu’n(>‘9n + )\n)\FnS + )\Hn )‘93 + )‘n/\Pns(;Ans(]- + %)) n n—1
+ |z =2,

1+7r,

*nllen —en .
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(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Combining (3.6) and (3.9), we get

n+1 n+l _ n”

(E i S o it

(1_/1'1+M1h1+ﬂ1\/1_2€1+)‘52;1

-|-,U/1(>\g1 * )\1>\F11 + )‘H1>\g1 + )\1)\P115A11(1 + %))

IN

_ n-1
1+ |3 I
:U’l()‘l)‘Flz + )‘1>‘P126A12(1 + %)) n-1
. 1 Jog -3
+ 7
:ul(/\l/\Fls + >‘1/\P135A13(1 + %)) n-1
. 1 Jag - a5
+ 7
el = ef T+ (1 - pa + pohg + pan /1 - 260 + X2,
IU‘2(>‘92 + >‘2>‘F22 + )‘H2>‘92 + >‘2)‘P225A22 (1 + %)) n-1
+ 1 lzy — 2577
+ 79
N2(>‘2)‘F21 + >‘2)‘P215A21 (1 + %)) n-1
. 1 Jo7 — 71
+ 79
/1’2()‘2)‘1%3 + )‘2>‘P236A23(1 + %)) n-1
. 1 o~ a5
+ 79

+pzlleh —eh | + (1 - g + pahs + pay /1 — 263 + A2,

+M3(>‘3/\F33 + >‘H3/\93 + >‘3/\P335A33(1 + %))

_ n-1
s ERES
:U'3(>‘3>‘F31 + >‘3)‘P31 51431 (1 + )) H _ gl ”
1473 !
A3AFy, + A3Apy,0a,, (1 + 2
+:U/3( 3/M\F3o 13+1;:;2 A32( n))HIEg—LII;L_l +N3H63 _eg 1”

+ --+(1—Mn+unhn+um/1—2§n+>\§n

Qg+ XA + b, Agy + AnApuaa, (14 1)

n _ n-1
- oy -2
,un(/\n/\Fnl + )‘n/\PmaAnl(l + %)) n-1
: 1 Jo -]
+ 7y
M AF, + AnAp,0a,,(1+ 1
+:un( nAFyq ln P2 An2( n))sz L 1H+,Un||€ _en 1Ha
+ 7

which implies that,

n
. et =2
i=1

n ,Ui)\gi + ,U/i)‘Hi/\gi
2(1 [+ prihy + pif1 =26 + Ag, + 1+7;

i=1

LTID W A RTI9 ¥

wy o, 5 D "‘“(1 Pl -]
j=1 1+7"j i=1

n
2 palled e
i=1

IN

n n
> (ki o)z —af T + 3 illel e,
=1 i=1
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where,
/ Hidg, + HidH; Ag, S uj)‘j/\F‘i
]ﬂi:].— i+ ihi+ i ].—27;+)\2,+—+ _
pi ¥ B . & i 1+7; J; 1+ Tj
and 1A
n P04, 1
B Z 1+r ( )
j=1 Tj
It follows that from (3.10) that,
O it —a | < Y ataf = a4+ Y willel e (3.11)
i=1 i=1 i=1

where, a” = max{ky + v}, ko + 05 ks + v}, .., k, + 0]}, Vn=1,2,3 ...
Leta = max{k:l + vy, ko + Vg, k3 + V3, 7]'{5” + Un}

where,
"N AP OA.,
vz:uizw, foreachi€l1,2,3,...,n
j=1 1+7“j

then o) - o and v}’ - v; when n — oo foreach i € {1,2,3,...,n}.
From condition (3.2), we know that 0 < o < 1, and hence there exists ng € N and «aq € (@, 1) such that o” < ag for
all n > ng. Therefore, it follows from (3.10) that,

n n n
St = €3 o o a7+ S el e ¥z g,

which implies that
n n n-ng N 1
3 gt - HsDWWWMmM+ZZMPW@%va,
i=1 =1

where (7 = ||e? — e~ for all n > ng. Hence, for any m > n > ng, we get

-1

3

m g—ng n

Hxn0+1 no” + Z Z ZMZ p— 1L;1 (p-1)

M

n
I EAEEA
i=1

IN
g

i=1 q=n p=1 i=1
m-1 n - q-no n q (p-1)
-n +
<2 Zag O apert — x| + Z 33 piad (p - (3.12)
g=n i=1 g=n p=1 i=1

Since,

Zqu 7 < o0 Zagk 7 < o0, ZLgk T<o00,..,y 1hk™ <00, Vke(0,1)and ap < 1.

q=1 g=1 q=1
It follows from (3.12), that
|1" =27 = 0, 25" — 25| = 0, |2 =2, | > 0, asn — oo,
and so {z7},{z%},,...,2] are Cauchy sequences in X, Xo, ..., X,, respectively. Thus, there exist z; € X,z €

Xs...,xy € X, such that 27 -z, 25 — z,...x) - x,, whenn — oo.
Now, we prove that u! — u;, € A; (1), u}, = ui, € Aiy(2), ..., us, = u4, € Ay, (), for each i€ 1,2,...,n. It
follows from (2.2) - (2.4) and by Lipschitz continuity of A; , A4;,, ..., 4;,

|$1 - 1” (3-13)

-1
|ug —ug HS(1+”+

1
5
1) A
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ol w7 < (1 N  — 237, (3.14)

1
0A,
n+1) Aig

-2 (3.15)

n

1
-1
-z < (1 1) o,

From (3.13)-(3.15), we know that {u },{u;,},...,{uj } are Cauchy sequences. Therefore, there exist u;, €
Xi1,u4, € Xo,...,u;, € X, such that ufl - u“uf2 = Uiy, ...,u?n - u;,, whenn — oo.
Further, for each 7 € {1,2,3,...,n}.

d(uiy, Aiy (21)) < gy = |+ d(uip, Ay, (21))
< g, = |+ Ha(Ai (27), A, (1))
1
< gy, —ul ||+ (1 + )04, ||=T —x1| = 0, when n — oo.
! n+1 'L

Since A;, is closed, we have u;, € A;, (x1). Similarly, u;, € A;,(x2),...,u;, € A; (z,), respectively. By continuity
of the mappings, thZ-,Fi,PZ-,Rf\:ﬁj and iterative Algorithm 2.1, we know that w; ,u,,,...,u;, satisfy the
following relation:

gz(xl) = Ri?ﬁj(ﬁxl)[(h - Hi)(gl({Iﬁz)) - )\»L'Fi(x17$2, ,xn) - )\Z-Pl-(uil,uiz, 7’LL1")]

By Lemma 2.1, (21,9, ..., Ty, W11, W12, - Ulp, U2, U2, +Upyy oy U], Un2y -oe, Uny ) 18 @ sOlUtion of problem (STVI).
This completes the proof.

4. Conclusion

In this paper we have considered a new system of implicit n-variational inclusions which is more general than many
existing system of variational inclusions in the literature. Firstly, we propose a new algorithm with error terms for
computing the approximate solutions of our system; and secondly, convergence of the iterative sequences generated
by the iterative algorithm is discussed. Some special cases are studied. The implementation and comparison of these
methods with other methods is a subject of the future research.
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