
STATISTICS, OPTIMIZATION AND INFORMATION COMPUTING
Stat., Optim. Inf. Comput., Vol. 8, March 2020, pp 66–79.
Published online in International Academic Press (www.IAPress.org)

A Density-Based Empirical Likelihood Ratio Approach for Goodness-of-fit
Tests in Decreasing Densities

Vahid Fakoor 1, Masoud Ajami 2, S. M. A. Jahanshahi 3,∗, Ali Shariati 1

1 Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University, Mashhad, Iran
2 Department of Statistics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
3 Department of Statistics, University of Sistan and Baluchestan, Zahedan, Iran

Abstract In this paper, we propose a test for the null hypothesis that a decreasing density function belongs to a given
parametric family of distribution functions against the non-parametric alternative. This method, which is based on an
empirical likelihood (EL) ratio statistic, is similar to the test introduced by Vexler and Gurevich [23]. The consistency of the
test statistic proposed is derived under the null and alternative hypotheses. A simulation study is conducted to inspect the
power of the proposed test under various decreasing alternatives. In each scenario, the critical region of the test is obtained
using a Monte Carlo technique. The applicability of the proposed test in practice is demonstrated through a few real data
examples.
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1. Introduction

Suppose that we are interested in estimating a decreasing density function of f . We may employ a non-parametric
method to estimate the density function of interest under the decreasing constraint. Alternatively, one can postulate
a parametric model to estimate f that addresses the monotonicity restriction. In such situations, an appropriate
goodness-of-fit test is required to check the applicability of the presumed model. Therefore, the purpose of this
article is to propose a suitable test to address this problem. In other words, we aim to test that f belongs to a
given parametric family of decreasing density functions against the non-parametric alternative under the decreasing
constraint.

One of the first papers on non-parametric density estimation is Grenander [9], in which it is shown that the
non-parametric maximum likelihood estimator (NPMLE) of a decreasing density, consisting in an independent
and identically distributed (i.i.d.) sample, is the slope of the least concave majorant of the empirical distribution
function. Huang and Wellner [11] studied a Grenander-type estimator for a density function and hazard rate under
monotone constraint in a right-censoring model.

Neyman [17], which has inspired many other studies, proposed a method to test a parametric null hypothesis
against the non-parametric alternative. Another popular approach for the underlying problem is to reject the null
hypothesis if an appropriate non-parametric estimator is far enough from the parametric estimator computed under
the null hypothesis. For more information about these two approaches and the related references, Durot and Reboul
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[7] provided a comprehensive review. Durot and Tocquet [8] carried out an study on a goodness-of-fit test for a
decreasing regression model: the test suggests rejecting the null hypothesis that the monotone regression model
belongs to a parametric family against the alternative if the L1-distance between the null hypothesis and the Brunk
estimator is large enough. Ducharme and Fontez [6] adapted the smooth method of Neyman [17] to test a regression
with a positive and increasing mean. Durot and Reboul [7] developed a test for the null hypothesis indicating a
real-valued function of interest is a member of a parametric set against the non-parametric alternative within the
monotone constraint, say decreasing. They introduced a general model for the test which covers the monotone
density, regression and hazard rate with right-censoring models.

Dong and Giles [5] proposed an empirical likelihood ratio-based method for testing the normality. Considering
a comprehensive range of alternative distributions, Dong and Giles [5] drawn comparisons between the finite
sample performance of the proposed method and those of four other existing tests, indicating better performance
of their method. Another approach for testing a parametric null hypothesis against the non-parametric alternative
was introduced by Vexler and Gurevich [23], in which a goodness-of-fit (GOF) test was developed through a
density-based empirical likelihood ratio. Vexler and Gurevich [23] particularly employed this test for the normal
and uniform families of distributions as the null hypotheses, for which it was obtained that the test exhibited great
power and preserved the level of significant (α) very good. Vexler et al. [24] applied the same approach to introduce
a GOF test for the inverse Gaussian distribution.

There are many other researches in the statistical literature based on EL technique. For example, Ning and
Ngunkeng [19] investigated a goodness-of-fit test for the skew-normal distribution. Inspired by the concept of
empirical likelihood, Vexler et al. [25] proposed a likelihood ratio-based test for parametric families of distribution
functions which provide researcher by an alternative to the parametric likelihood ratio tests. By employing a
distribution-free test statistic, Vexler et al. [25] then developed a package in R that can be used for testing
symmetry of data distributions or comparing K-sample distributions. Vexler et al. [26] introduced a new non-
parametric likelihood ratio test for independence between two random variables without specifying a restricted set
of dependence structures. Using a density-based EL ratio statistic, Vexler et al. [26] obtained that the proposed
test is very powerful in detecting a variety of complex dependence structures (e.g. nonlinear and random-effect
dependence).

In addition, Safavinejad et al. [22] presented a goodness-of-fit test for the Rayleigh distribution by using sample
entropy. Then, the problem of developing an EL ratio-based test for the logistic distribution was investigated by
Alizadeh Noughabi [1]. Following this, Safavinejad et al. [21] investigated into the empirical likelihood approach
for a goodness-of-fit test for special parametric null hypothesis of the skew-Laplace distribution against against
the unknown alternative. A Monte Carlo simulation study was conducted to show that the proposed method
preserve the type I error for the skew-Laplace distribution better than the empirical distribution function tests
which are based on a measure of discrepancy between the empirical and hypothesized distributions. Marange
and Qin [14] introduced an efficient empirical likelihood ratio method for testing the normality hypothesis using
moment constraints of the half-normal distribution. It was revealed that this method can also be adapted to test
departures from half-normality.

However, there is no study on EL-based test in all the aforementioned papers with the alternative hypothesis
subject to the decreasing constraint. By ignoring the monotone assumption, the above tests still can be applied for
the situations when the density function of interest is known to be decreasing. However, the information presented
by the assumption and the question conditions are not considered. Consequently, an interesting question from
theoretical and practical points of view is to derive a novel goodness-of-fit test through empirical likelihood for the
hypotheses subject to decreasing constraint. It is anticipated to improve the power and performance of the test by
employing some statistical method that is specifically designed for decreasing density functions. There is no GOF
test in the current literature presenting an empirical likelihood method by taking the decreasing assumption into
account. Accordingly, we will present a new goodness-of-fit test that out performs the existing methods. The better
performance of the test proposed is mainly obtained by using an estimator for the density function that reduces the
deviation from the true curve.

Now, an interesting question is how to discern when a set of data belongs to a decreasing density. There have been
many studies in the literature concerning decreasing densities. Generally, the validity of the monotone assumption
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depends on the researcher prior experiences and information about the study undertaken. It is the framework of
study that suggests whether this assumption is valid or not. However, some statistical tools can be applied to
inspect the underlying density features. For instance, a descriptive study on data of interest can provide researchers
invaluable information about the underlying distribution. Comparing different methods, histogram is one of the
most suitable statistical tools for this purpose.

In this paper, we introduce a GOF test for decreasing densities based on the empirical likelihood ratio statistic.
Use a methodology similar to Vexler and Gurevich [23], we propose a GOF test for the alternative hypothesis
subject to decreasing constraint. The layout of the rest of this paper is as follows: In Section 2, we present the test
statistic and study its consistency under the null and alternative hypotheses. The results of the simulation study on
critical values and power of the test statistic will be discussed in Section 3. During Section 4, the performance of
the proposed test is compared by another existing method for a set of real data.

2. The test statistics via EL

Let X1, . . . , Xn be an i.i.d. sample of size n from an unknown density function f . For testing the simple hypothesis
H0

∗ : f = f0 versus the simple alternative H1 : f = f1, the likelihood ratio test statistic is defined as

LR =

∏n
i=1 f1(Xi)∏n
i=1 f0(Xi)

. (1)

For the simple alternative hypotheses H∗
0 and H1, the Neyman-Pearson lemma indicates that the likelihood ratio-

based test is the most powerful test when f0 and f1 both are known.
Utilizing the EL concept to make a GOF test, Vexler and Gurevich [23] proposed a density-based method for an

unknown f1 and a known f0 which may depend on some unknown parameters to test H0 versus H1. Approximating
the Neyman-Pearson test statistic non-parametrically through likelihood ratios, they introduced extensions that
possess a great power. In fact, they applied the empirical likelihood method to derive the values of fH1(·) to
maximize the numerator of Equation (1) with the constraint of

∫
f(x)dx = 1 under the alternative hypothesis. The

empirical likelihood method provides researchers with the auxiliary information, the more information comes via
the estimation equation, while have not to choose a parametric family for the data. A comprehensive overview of
the empirical likelihood method can be found in Owen [20].

Suppose that we wish to test the following parametric null hypothesis versus the non-parametric alternative that
f is decreasing.

H0 : f ∈ {fλ;λ ∈ Λ},
where Λ ⊆ R is a given set and also, for every λ, fλ is a known decreasing density function (up to the parameter
λ) on [0,∞).

To be more preside, let the alternative hypothesis be

Ha : f ∈ F ,

where F = {f : f is decreasing}. According to Grenander (1956), since F includes decreasing densities, for the
random sample X1, . . . , Xn, in this class there exists a NPMLE for the density function, which is obtained by:

f̂n(Xi) = max
i≤v≤n

min
0≤u≤i−1

v − u

n(Xv −Xu)
, (2)

in which, without loss of generality, X1, . . . , Xn are assumed to be ordered. We call this estimator the Grenander
estimator in the rest of this article.

Inspired by (1), applying the NPMLE (2), we derive a new EL ratio version of GOF test for testing H0 against
Ha as

LRn =

∏n
i=1 f̂n(Xi)∏n

i=1 fH0
(Xi; λ̂)

, (3)
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where λ̂ is the maximum likelihood estimator of the parameter λ under H0. It is expected that this technique
would lead to a GOF test which has better performance in terms of power against other proposed tests in a class
of decreasing distributions. To make decision, we define the following critical region, according to which the null
hypothesis is rejected if and only if

log(LRn) > Cα, (4)

where Cα is a test threshold.
Bear in mind that it is necessary now to find the asymptotic distribution of the proposed test statistic, LRn,

which consists in Grenander [9] estimator, and the construction of the critical region depends on this distribution.
Also, in order to make comparison in simulation study, it will observed that we need to deduce another asymptotic
distribution for another test statistic reached via the Vasicek’s entropy estimator. But, the asymptotic distributions
of these statistics are broadly identified to be analytically difficult. Indeed, it includes the estimates of parameters
of the denominator under H0 hypothesis, which affects the variance of the test statistics too.

However, similar to the method proposed in the recent literature concerning goodness-of-fit tests, such as Vexler
and Gurevich [23], Hall and Welsh [10], Mudholkar and Tian [15, 16] we will not strive to calculate the critical
regions analytically for the introduced tests here. Instead, considering the definition of the test statistic LRn, we
have estimated the values of Cα satisfying the following equation through Monte Carlo method.

sup
λ

PH0 {log(LRn) > Cα} = α. (5)

Table 2 illustrates the Monte Carlo roots of the above equation for different values of α and n based on
exponential distribution samples.

Remark 1
It is of note that the Grenander estimator defined by (2) is distribution-free (see Grenander [9]), and therefore the
numerator of LRn does not dependent on the population unknown parameter. Thus, when λ is known as λ0 under
H0, the distribution of LRn is not a function of an unknown parameter. Consequently, the LRn test is precise and
the critical value (Cα) does not depend on an unknown parameter as well.

The weak consistency of the proposed test statistic is presented in the following theorem. For this purpose, we
first define

h(x;λ) :=
d

dλ
log fH0(x;λ),

and consider the following assumptions:

1. E(| log f(X1)|) < ∞.

2. Under H0, |λ̂n − λ|
p→ 0 as n → ∞.

3. Under H1, |λ̂n − a|
p→ 0 as n → ∞, where a is a finite term.

4. Under H0 and H1, there exists a function g(·) such that |h(x, η)| ≤ g(x), for all x ∈ R, η in an open interval
containing λ and a, and E(g(X1)) < ∞

5. Suppose that the true decreasing density f has a bounded support S on which f(x) ≥ ζ > 0 is satisfied for
all x ∈ S. Also assume that f is continuously differentiable and is bounded away from zero on S.

Theorem 1
Assume that assumptions (1)− (5) are satisfied. Then, under H0,

1

n
log(LRn)

p→ 0,

as n → ∞ and, under H1,
1

n
log(LRn)

p→E

{
log

(
fH1(X1)

fH0(X1|a)

)}
> 0,

where a is a finite term.
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Proof
First, we consider the following component of 1

n log(LRn):

In :=
1

n

n∑
i=1

log f̂n(Xi).

To deal with In, first note that

In =

∫
log(f̂n(x))dFn(x)

=

∫
log(f̂n(x))dF̂n(x) (6)

=

∫
f̂n(x) log(f̂n(x))dx (7)

where F̂n is the least concave majorant of the empirical distribution function Fn. The equality in (6) follows from
the fact that log(f̂n(x)) is constant on intervals (u, v], where u, v are successive vertices of F̂n and the functions F̂n

and Fn have equal increments on these intervals. Since F̂n is absolutely continuous and is equal to the distribution
function of f̂n, the equality in (7) is reached. Also, the convention 0×∞ = 0 could be accepted because f̂n(x) is
zero for all x > X(n), where X(n) denotes the largest order statistic of the random variables X1, . . . , Xn.

By using Theorem 3 in Nickl [18], for the estimated functional entropy in (7) it is observed that

In
p→Ef [log f(X)] =

∫
f(x) log(f(x))dx. (8)

Now, the statistic (3) may be presented in the form of

1

n
log(LRn) = In − 1

n

n∑
i=1

log fH0(Xi;λ)

+
1

n

{
n∑

i=1

log fH0(Xi;λ)−
n∑

i=1

log fH0(Xi; λ̂n)

}
. (9)

Given Equation (8), under H0 it is revealed that

In
p→EfH0

[log fH0(X1)]. (10)

Considering the weak law of large numbers and Assumption (1), it could be claimed that

1

n

n∑
i=1

log fH0(Xi;λ)
p→EfH0

[log fH0(X1)], (11)

as n → ∞. Now, applying Assumptions (2) and (4), and one-term Taylor expansion, it is obtained that

1

n

{
n∑

i=1

log fH0(Xi;λ)−
n∑

i=1

log fH0(Xi; λ̂n)

}
=

1

n

n∑
i=1

h(Xi, ηn)(λ− λ̂n)
p→ 0, (12)

as n → ∞, where the value ηn falls between λ̂n and λ. Thus, under H0 and using (8)-(12), we have

1

n
log(LRn)

p→ 0. (13)
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Now, under H1, it could be deduced that

1

n
log(LRn) = In − 1

n

n∑
i=1

log fH1(Xi)+
1

n

n∑
i=1

log
fH1(Xi)

fH0(Xi; a)
+
1

n

n∑
i=1

log
fH0(Xi; a)

fH0(Xi; λ̂n)
.

Similarly to the proof of the (12), assuming Conditions (1)-(5), we can conclude that

1

n
log(LRn)

p→Ef log

(
fH1(X1)

fH0(X1; a)

)
> 0.

This completes the proof of Theorem 1.

In fact, Theorem 1 shows that the power of the test goes to 1 as n → ∞ under the alternative hypothesis, that is,
the test is consistent.

3. Simulation study

Suppose X1, . . . , Xn are i.i.d. random variables from a distribution function F with the corresponding density
function f defined over [0,∞). It is of interest to test the null hypothesis

H0 : f(x) = f0(x;λ) = λe−λx (14)

versus
Ha : f ∈ F ,

where λ could be either specified or unspecified and F = {f : f is decreasing}.
To inspect the performance of the proposed test, the nominal level of significance of α = 0.05 is considered for

each simulation scenario during this section. The tests procedure is described in Section 2 and 3.1. The performance
of the tests are evaluated in terms of the level of significance and power, and so the corresponding results are
reported in Section 3.2 and 3.3, respectively.

3.1. Tests

In this subsection, we consider simultaneously the test statistic introduced in (3) and that in Vexler and Gurevich
[23], i.e.

Gn = min
1≤m<n1−δ

∏n
i=1 2m/

{
n(X(i+m) −X(i−m))

}
λ̂n exp(−λ̂

∑n
i=1 Xi)

,

to test the null hypothesis H0 defined in (14), where X(1), . . . , X(n) represent the order statistics corresponding to
the sample X1, . . . , Xn. Note that X(j) = X(1) if j ≤ 1, and X(j) = X(n) once j ≥ n. Meanwhile, λ̂ represents the
MLE of λ and also 0 < δ < 1. Accordingly, we reject the null hypothesis if, and only if, log(Gn) > Cα, where Cα

is the critical value corresponding to level α obtained by applying (5).
After Vexler and Gurevich [23] proposed the Gn test statistic, Vexler et al. [24] and Alizadeh Noughabi [1]

revealed that this test statistic has a greater power in comparison to the other GOF tests. Our principal aim is to
compare the test statistic proposed in this article (LRn) with the Gn test statistic. For this purpose, we conduct
extensive Monte Carlo simulations to inspect the power of the proposed test for various alternatives.

3.2. Levels of Significance

To evaluate the performance of the proposed test LRn, the empirical levels of significance were calculated based
on 10, 000 replications of the tests in controlling Type I error with the given nominal level of α = 0.05. The test
statistic were calculated consisting in the various sample sizes of exponential and half normal distributions. In each
iteration of exponential distribution, we obtained the sample test statistics by means of (3) and compare them to
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Table 1. Comparing type I error of considered tests for α = 0.05

Tests n = 10 n = 20 n = 30 n = 50 n = 100
LRn 0.045 0.046 0.045 0.052 0.051
Gn 0.046 0.044 0.049 0.045 0.050

the critical values given in Table 2. It is worth mentioning that we calculated the critical regions for the half normal
distribution similarly, however, we do not present these results here owing to space limitations. The percentage of
rejecting the null hypothesis was considered as the size of the proposed test.

The simulated results for the exponential distribution are listed in Table 1. According to this table, it was observed
that the Type I error of the LRn and Gn tests are well controlled. Also, it is revealed that the empirical level of
the underlying tests were reasonably close to the nominal value, 0.05. Therefore, both of the tests had acceptable
performances in this regard.

It should be mentioned that we have calculated the Type I error of the LRn and Gn tests for the half normal
distribution practically as well. Accordingly, compared with Table 1, it was observed that the LRn and Gn tests
had absolutely comparable results and the LRn test exhibited even better performance in terms of the Type I error
in this case. However, we do not present this result due to space limitations.

3.3. Power

In this section, we investigate the empirical power of the tests. As mentioned, since obtaining the exact distribution
of the proposed test statistic is complicated, we estimated the quantiles of the distribution of the test statistic LRn

using a Monte Carlo simulation technique. For each scenario, we simulated exponential observations of size n and
calculated the LRn statistic, then we iterated this process 10, 000 times. Finally, we obtained upper α-percentiles for
values of α equal to 0.01, 0.025, 0.05 and 0.1. The estimated values of critical regions for exponential distribution
are reported in Table 2.

Table 2. Critical values of LRn statistic

α n 10 15 20 25 30 35 40 50 75 100
0.10 6.286 7.474 8.431 9.080 9.683 10.320 10.865 11.532 12.767 15.233
0.05 7.223 8.513 9.487 10.089 10.770 11.413 11.937 12.576 13.770 15.942
0.025 8.203 9.427 10.464 11.109 11.685 12.398 12.999 13.519 14.824 16.519
0.01 9.464 10.888 11.773 12.600 13.076 13.627 14.174 15.081 16.067 17.168

Table 3 and Table 4 compare the empirical power of the test proposed and that of Vexler et al. [24] for the
null hypotheses that data belongs to exponential distribution and half normal distribution, respectively. All the
considered distributions and the corresponding decreasing density functions included in this simulation study are
given in the Appendix.

Table 3 indicates that the empirical power of the tests rose by increasing in the sample sizes. In addition, the test
consisting in the LRn statistic had greater power than the Gn-based test except when the alternatives were HL,
HN(0.5) and GHN(1,2), for which the power of Gn test was moderately greater. Furthermore, the results of the
tests for PaI (2,0,1) using two methods were almost comparable. However, in comparison to the Gn test, the power
of the LRn test were substantially greater for most of the scenarios, especially when the alternatives were HC(2),
DuMouchel(5), KPI(2,2,0.2,2), Reciprocal(2,5) and Weibull(0,1,0.5).

By comparison, it is obtained in Table 4 that the proposed test exhibited implicit superiority over the Gn test for
all the alternatives when the null hypothesis indicated the data belongs to a half normal distribution. Moreover, it
was obtained that the empirical power of the tests climbed as the sample size increased.

In order to check whether or not the tests are robust, we applied both tests for exponential and half normal
distribution as the null hypotheses against four other alternatives for which the conditions 3-4 seem to be
problematic.
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Table 3. Power of considered tests for n = 10, 20 and α = 0.05

n 10 20
Distributions LRn Gn LRn Gn

DuMouchel(5) 0.6831 0.1918 0.8776 0.5155
HL 0.2645 0.3743 0.4205 0.5941
GHL1(0.5) 0.1134 0.1086 0.1353 0.1299
GHL3(2) 0.7811 0.7794 0.8881 0.8691
PaI(2,0.1) 0.9328 0.9816 0.9999 0.9999
PaII(2,1,0.5) 0.8810 0.8068 0.9999 0.9974
GDP(0,2,1) 0.8914 0.8084 0.9999 0.9976
GDP(1,2,1) 0.8440 0.3733 0.9942 0.8758
KPI(2,2,0.2,2) 0.9104 0.3155 0.9974 0.7389
BurrXII(1,1) 0.9600 0.6797 0.9999 0.9906
Recip(2,5) 0.7139 0.1332 0.9562 0.6011
Weibull(0,1,0.5) 0.5179 0.1188 0.8448 0.5435
Weibull(0.5,1,0.5) 0.8732 0.5705 0.9988 0.9700
HN(0.5) 0.1022 0.1446 0.1432 0.2104
GHN(1,2) 0.7443 0.9996 0.8564 0.9999

Table 4. Power of considered tests for n = 10, 20 and α = 0.05

n 10 20
Distributions LRn Gn LRn Gn

Exp(1) 0.2345 0.0150 0.3881 0.1050
DuMouchel(5) 0.9316 0.1601 0.9902 0.4973
HL 0.4345 0.1680 0.5491 0.2649
GHL1(0.5) 0.3235 0.0273 0.3721 0.0396
GHL3(2) 0.6065 0.5365 0.8160 0.8454
PaI(2,0.1) 0.9674 0.8916 0.9999 0.9998
PaII(2,1,0.5) 0.9794 0.5157 0.9999 0.9554
GDP(0,2,1) 0.9999 0.4157 0.9999 0.9042
GDP(1,2,1) 0.9998 0.2252 0.9999 0.6664
KPI(2,2,0.2,2) 0.9999 0.2072 0.9999 0.5833
BurrXII(1,1) 0.9996 0.4435 0.9999 0.9194
Recip(2,5) 0.9938 0.0222 0.9998 0.1344
Weibull(0,1,0.5) 0.8672 0.1046 0.9922 0.4737
Weibull(0.5,1,0.5) 0.9752 0.3289 0.9999 0.8534
GHN(1,2) 0.5173 0.0514 0.7275 0.0517

Table 5 compares the power of the proposed test with that of Gn test for the null hypothesis that data belongs
to exponential distribution while Table 6 reveals the results of similar scenarios for the null hypothesis that data
satisfies half normal distribution. Two different sample sizes, n = 10 and n = 20 were considered for the simulation
results reported in these tables. In both Table 5 and 6, it can be observed that the LRn test produced much better
results than Gn test for all the underlying alternatives.

Broadly speaking, we can conclude that the proposed LRn test had better performance and exhibited superior
power in comparison to the Gn test. According to this study, the simulation results suggest the benefits of applying
the proposed test (LRn) in practice. Moreover, we conducted a simulation study for other different levels of
significance to inspect and compare the power of LRn and Gn tests. The simulation results were comparable
to the above tables, and thus not only the proposed test indicated a good performance and high power under
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Table 5. Power of considered tests for n = 10, 20 and α = 0.05

n 10 20
Distributions LRn Gn LRn Gn

HC(2) 0.4299 0.1358 0.6722 0.3759
MOHC(3.5) 0.3211 0.1453 0.5368 0.2144
Lomax(0.5,0.5) 0.8366 0.5477 0.9820 0.7054
Dagum(0.5,1,1) 0.9472 0.7283 0.9984 0.9896

predetermined different significance levels, but also exhibited superiority over the LRn test. However, we have not
presented this results here due to space restrictions.

Table 6. Power of considered tests for n = 10, 20 and α = 0.05

n 10 20
Distributions LRn Gn LRn Gn

HC(2) 0.7754 0.1223 0.9390 0.3581
MOHC(3.5) 0.6165 0.1092 0.8562 0.3143
Lomax(0.5,0.5) 0.9642 0.5281 0.9992 0.9082
Dagum(0.5,1,1) 0.9916 0.6991 0.9999 0.9834

4. Illustration

Through three examples, we illustrate how the proposed test can be applied to the GOF test for the exponential
and Lomax distributions. The first real example is a set of data reported by Bekker et al. [3], which corresponds
to the survival time (in years) of a group of 46 patients receiving chemotherapy treatment alone. The ordered data
are: 0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 0.507,
0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581,
1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033.

As it can be seen in Figure 1, the histogram of the survival time is decreasing in a similar manner to the
exponential density function. Also, the Vasicek’s and Grenander’s estimators and corresponding exponential curves
have been plotted and added to the histogram. In comparison with Grenander’s estimator, one can infer that the
Vasicek’s estimator considerably fluctuated, whereas the former is much smoother. In this regard, based on Figure
1, Grenander’s estimator is a better estimator for density of the underlying data.

Regarding the test results for the patients data, Gn and LRn statistics were responsible for 2.3741 and 11.081
respectively, which are less than the respective critical values of 2.5168 and 12.377. Accordingly, we do not have
any reason to reject the null hypothesis, meaning the data satisfies the exponential distribution.

The second real data set represents the remission time (in months) of a random sample of 128 bladder cancer
patients reported in Lee and Wang (2003). The values recorded for these patients are as follows: 0.08, 2.09, 3.48,
4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80,
25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62,
3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83,
4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10,
1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28,
2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

It can be observed in Figure 2 that the histogram of the remission time is decreasing in a similar manner
to the exponential density function. We then added Vasicek’s and Grenander’s estimators to the histogram. By
drawing comparison between the Vasicek’s and Grenander’s estimators, it is deduced that while the former varied
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Figure 1. Histogram and Grenander (left panel) and Vasicek (right panel) estimators.
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Figure 2. Histogram and Grenander (left panel) and Vasicek (right panel) estimators.

markedly, the latter represented much smoother behavior. Consequently, based upon Figure 2, one can conclude
that Grenander’s estimator could model the density function of the underlying data better than Vasicek’s estimator.

Applying the Gn and LRn statistics for the remission data, the respective amounts of 1.6539 and 12.735 were
reached, which are less than the corresponding critical values 2.519 and 16.432, respectively. Thus, the null
hypothesis can not be rejected, indicating that the exponential distribution fits adequately.

The third set of data which was given in Hubble [12] includes the distance between extra-galactic nebulae and
Earth in mega parsecs. The observations reported in this study included the following values: 0.032, 0.034, 0.214,
0.263, 0.275, 0.275, 0.450, 0.500, 0.500, 0.630, 0.800, 0.900, 0.900, 0.900, 0.900, 1.000, 1.100, 1.100, 1.400,
1.700, 2.000, 2.000, 2.000, 2.000.
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Figure 3. Histogram and Grenander (left panel) and Vasicek (right panel) estimators.

Alshingiti et al. [2] concluded that this set of data follows the Lomax distribution. Figure 3 illustrates the
histogram of the distance data as well as the corresponding Vasicek and Grenander estimates. The histogram was
observed to follows the Lomax distribution to some degree. This fact alongside with the claim of Alshingiti et al.
[2] lead us to consider and plot in Figure 3 the Lomax curve. By contrast with the fluctuations obtained in the
Vasicek curve, the Grenander estimator exhibited better results. Compared to the former, the curve for the latter
estimates the behavior of data more reasonably.

Turning to the tests’ results obtained for the distance data, the Gn and LRn statistics accounted for respective
8.200 and 9.639, while the corresponding critical values estimated were equal to 7.987 and 8.543, respectively.
Therefore, the null hypothesis is rejected and, in contrast to the findings of Alshingiti et al. [2], the proposed test
indicated that the distance between extra-galactic nebulae and Earth does not satisfy the Lomax distribution using
this set of data.

5. Conclusion

In this paper, we have presented a test of hypothesis which is specifically designed for decreasing density functions
using an empirical likelihood ratio statistic. We have inspected the proposed GOF test for a few distributions,
including the exponential and half normal distributions, and have observed that the test outperforms the Gn

goodness-of-fit test. We have carried out an extensive power comparisons between these tests using a Monte Carlo
simulation study. According to the simulation results, we have obtained that in most of the cases for exponential
distribution and all the cases for the half normal distribution, the proposed test outperforms its counterpart. Finally,
we have presented three sets of real and have illustrated how the proposed test may be applied to evaluate the GOF
test for the exponential and Lomax distributions in practice.

Appendix

The following alternative distributions are considered to obtain power values:
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• Pareto type I distribution PaI(θ, k) with the following density function:

f(x) =
θkθ

xθ+1
, x ≥ k, θ > 0.

• Pareto type II distribution PaII(α, σ, µ) with the following density function:

f(x) =
α

σ

(
1 +

x− µ

σ

)−(α+1)

, x > µ, α, σ > 0.

• Lomax distribution Lomax(θ, b) with the following density function:

f(x) =
θbθ

(x+ b)
θ+1

, x ≥ 0, θ > 0.

• DuMouchel distribution DuMouchel(σ) with the following density function:

f(x) =
σ

(x+ σ)
2 , x > 0, σ > 0.

• Burr XII distribution BurrXII(c, k) with the following density function:

f(x) =
ckxc−1

(1 + xc)
k+1

, x > 0.

• Inverse Burr distribution InvBurr(c, k) with the following distribution function:

F (x) = 1− (1 + xc)
−k

, x > 0.

• Half-normal distribution HN(θ) with the following density function:

f(x) =
1

θ

√
2

π
exp

{
− x2

2θ2

}
, x ≥ 0, θ > 0.

• Generalized half-normal distribution GHN(θ, α) with the following density function:

f(x) =

√
2

π

(α
x

)(x
θ

)α

exp

{
− x2α

2θ2α

}
, x ≥ 0, θ > 0, α > 0.

• Half-logistic distribution HL with the following density function:

f(x) =
2ex

(1 + ex)
2 , x > 0.

• Type I generalized half-logistic distribution GHL1(α) with the following density function:

f(x) =
α

1 + ex

(
2ex

1 + ex

)α

, x > 0, α > 0.

• Type III generalized half-logistic distribution GHL3(α) with the following density function:

f(x) =
2

B(α, α)

eαx

(1 + ex)
2α , x > 0, α > 0.

• Half-cauchy distribution HC(θ) with the following density function:

f(x) =
2

πθ{1 + (x/θ)
2}

, x ≥ 0, θ > 0.
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• Marshal-Olkin Half-cauchy distribution MOHC(α) with the following density function:

f(x) =
2πα

(1 + x2)(πα+ 2(1− α) tan−1 x)2
, x > 0, α > 0.

• Reciprocal distribution Reciprocal(a, b) with the following density function:

f(x) =

(
x log

b

a

)−1

, 0 < a ≤ x ≤ b.

• Weibull distribution Weibull(a, b, c) with the following distribution function:

F (x) = 1− exp

{
−
(x− a

b

)c
}
, x ≥ a.

• Kumaraswamy pareto type I distribution KPI(a, b, k, θ) with the following distribution function:

F (x) = 1−

{
1−

[
1−

(
k

x

)θ
] a}b

, x ≥ k.

• Dagum distribution Dagum(a, b, p) with the following distribution function:

F (x) = 1−
(
1 +

(x
b

)−a
)−p

, x > 0.

• Generalized pareto distribution GPD(α, β, µ) with the following distribution function:

F (x) =

 1−
(
1 + α(x−µ)

β

)−1/α

α ̸= 0

1− exp
(
−x−µ

β

)
α = 0

, x ≥ α, µ ≤ x ≤ µ− β/α.
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