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Abstract We introduce and study general mathematical properties of a new generator of continuous distributions with
two extra parameters called the Ristic-Balakrishnan odd log-logistic family of distributions. We present some special
models. We investigate the asymptotes. The new density function can be expressed as a linear combination of exponentiated
densities based on the same baseline distribution. Explicit expressions for the ordinary and incomplete moments, generating
functions and order statistics, which hold for any baseline model, are determined. Further. We discuss the estimation of the
model parameters by maximum likelihood and we studied a simulation study based on maximum likelihood estimation. A
regression model based on the proposed model was introduced. We illustrate the potentiality of the family utilizing three
applications to real data.
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1. Introduction

The statistics literature is filled with hundreds of continuous univariate distributions: see Johnson et al. [13], [14].
Adding parameters to a well-known distribution is widely used to obtain a more flexible new family of distributions.
The different characteristics of the data sets have been made to define new generated families of distributions to
control skewness and kurtosis through the tail weights and provide much more flexibility in modeling skewed data,
including the two-piece approach introduced by Hansen [12] and the generators pioneered by Eugene et al. [6],
Cordeiro and de Castro [5] and Alexander et al. [2]. Many articles apply these techniques to induce skewness into
well-known symmetric distributions such as the symmetric Student t; see, Aas and Haff [1], for a review.

We study several general mathematical properties of the gamma generated (“Gamma-G” for short) family of
distributions. This family was motivated by a pioneered work by Ristic and Balakrishnan [23]. It is also important
to mention that the results presented in this paper follow similar lines of the results developed by Nadarajah et al.
[19], although their model is completely different from that one discussed in this paper.

The proposed family can extend several common distributions such as normal, Weibull and Gumbel distributions
by adding two extra generator parameters. Indeed, for any baseline G distribution, we can define the associated
RBOLL-G (“RBOLL-G”) distribution. The main characteristics of the GE family, such as moments and generating
and quantile functions, have tractable mathematical properties. The role of the generator parameters has been
investigated and is related to the skewness and kurtosis of the generated distribution. The family studied here can
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be considered a special subfamily of that one proposed recently by Ristic and Balakrishnan [23] (“RB-G” from
now on). The Gamma-G family can be constructed as follows. Let G(x) be any continuous distribution defined on
a finite or an infinite interval. The RB family of distributions is defined from the cumulative distribution function
(cdf) (for α > 0)

FRB−G(x) =
1

Γ(β)

∫ − log[1−G(x;τ )]

0

tβ−1 e−tdt, x ∈ R, (1)

where Γ(α) =
∫∞
0

ta−1 e−tdt denotes the gamma function, G(x; τ ) (x ∈ R), denote the baseline cdf and τ denotes
the parameters in the parent G(.).

Gleatn and Lynch [7], introduced odd log-logistic family (OLL-G) with cdf

FOLL−G(x;α, τ ) =
G(x; τ )α

G(x; τ )α + Ḡ(x; τ )α
, (2)

where α > 0 and Ḡ(x; τ ) = 1−G(x; τ ) is the baseline survival function. By compounding RB-G and OLL-G we
define the cdf given by

F (x;α, β, τ ) = 1− 1

Γ(β)

∫ − log
[

G(x;τ )α

G(x;τ )α+Ḡ(x;τ )α

]
0

tβ−1 e−tdt

= 1− 1

Γ(β)
γ

{
β,− log

[
G(x; τ )α

G(x; τ )α + Ḡ(x; τ )α

]}
. (3)

where γ(β, z) =
∫ z

0
tβ−1 e−tdt denotes the incomplete gamma function. The model (3) is called the Ristic-

Balakrishnan Odd Log-logistic (RBOLL-G for short) distribution with α > 0 and β > 0.
Let g(x; τ ) = dG(x; τ )/dx be the corresponding baseline probability density function (pdf). The density

function corresponding to (3) becomes

f(x;α, β, τ ) =
α g(x; τ )G(x; τ )α−1 Ḡ(x; τ )α−1

Γ(β)[G(x; τ )α + Ḡ(x; τ )α]2

{
− log

[
G(x; τ )α

G(x; τ )α + Ḡ(x; τ )α

]}β−1

. (4)

The hazard rate function (hrf) of X is given by

h(x;α, β, τ ) =
α g(x; τ )G(x; τ )α−1 Ḡ(x; τ )α−1

[G(x; τ )α + Ḡ(x; τ )α]2
×

{
− log

[
G(x;τ )α

G(x;τ )α+Ḡ(x;τ )α

]}β−1

γ
{
β,− log

[
G(x;τ )α

G(x;τ )α+Ḡ(x;τ )α

]} (5)

The RBOLL-G distribution has the same parameters of the G distribution plus two additional parameters α and β.
From now on, a random variable X with density function (4) is denoted by X ∼RBOLL-G(α, β, τ ). For α = β = 1
the RBOLL-G distribution reduces to the baseline G distribution, for α = 1 we obtain RB-G distributions and for
β = 1 we obtain a Odd log logistic (OLL-G) distributions.

Each new RBOLL-G distribution can be obtained from a specified G distribution. From the statistical modeling
point of view, the RBOLL-G distribution has two important aspects. First, the proposed model has more
parameters than the baseline distribution and the additional parameters α and β of the generated model have
clear interpretations. In fact, the RBOLL-G family of distributions is easily simulated by inverting (3) as follows:
if V has U(0, 1) distribution, QG(.) denote the quantile function of baseline G and QΓ(β,1)(.) denote the quantile
function of Γ(β, 1) random variable, then solution of the nonlinear equation

XV = QG

 e
−1
α QΓ(β,1)(1−V)

e
−1
α QΓ(β,1)(1−V) +

[
1− e−QΓ(β,1)(1−V)

] 1
α

 . (6)
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The parameters α and β have a clear interpretation. Following the key idea of Zografos and Balakrishnan [25]
and Ristic and Balakrishnan [23], we can also interpret (4) in this way: if XL(1), XL(2), . . . , XL(n) are lower record
values from a sequence of independent random variables with common pdf

g(x;α, τ ) =
α g(x; τ ){G(x; τ )[1−G(x; τ )]}α−1

{G(x; τ )α + Ḡ(x; τ )α}2
,

then the pdf of the nth lower record value has the pdf (4).
The aim of this paper is to derive several mathematical properties of (3) and (4) in the most simple, explicit

and general forms. We obtain general expressions for asymptotic properties of (3), (4) and (5), ordinary and
incomplete moments, moment generating function (mgf), probability weighted moments, mean deviations and
general properties of the order statistics. The rest of the paper is organized as follows. In Section 2, we present
some new distributions. A range of mathematical properties of the RBOLL-G model (4) is derived in Sections 3
. Estimation of the model parameters by maximum likelihood and the Fisher information matrix are presented in
Section 4. In section 5, we studied a regression model based on proposed model. In section 6, three applications
to real data illustrate the performance of the new family. Finally, some conclusions and future work are noted in
Section 7.

2. Special RBOLL-G distributions

The RBOLL-G family of density functions (4) can be used to extend several well-known distributions to provide
more flexibility in tails which can be applied in many scientific fields such as biology, actuarial and engineering.
When the cdf, G(x; τ ), and pdf, g(x; τ ), of the baseline distribution have simple mathematical forms, the density
in (4) will be msot tractable.

2.1. Ristic-Balakrishnan odd log-logistic Weibull (RBOLL-W) distribution

If G(x; τ ) is the Weibull cdf with scale parameter γ > 0 and shape parameter λ > 0, where τ = (λ, γ)T , say
G(x; τ ) = 1− exp{−(x/λ)γ}, the RBOLL-W density function (for x > 0) reduces to

fRBOLL-W(x) =
αγ λ−γxγ−1 exp[−(x/λ)γ ]{1− exp[−(x/λ)γ ]}α−1 exp[−(α− 1)(x/λ)γ ]

Γ(β){{1− exp[−(x/λ)γ ]}α + exp[−α(x/λ)γ ]}2
×{

γ

(
β,− log

[
exp[−α(x/λ)γ ]

{1− exp[−(x/λ)γ ]}α + exp[−α(x/λ)γ ]

])}β−1

. (7)

Some plots of pdf and hrf related to 7 are given in Figure 1.
As shown in figure 1, the pdf of RBOLL-W, can be unimodal, bimodal or almost symmetric. The hazard rate

function of RBOLL-W can be constant, decrasing, incraesing or bathtub shape. It is important in reliability theory.

2.2. Ristic-Balakrishnan odd log-logistic normal (RBOLL-N) distribution

The RBOLL-N distribution is defined from (4) by taking G(x; τ ) = Φ(x−µ
σ ) and g(x; τ ) = 1

σϕ(
x−µ
σ ) to be the cdf

and pdf of the normal N(µ, σ2) distribution, where τ = (µ, σ)T . Its density function becomes

fRBOLL-N(x) =
αϕ(z)Φα−1(z)[1− Φ(z)]α−1

σΓ(β){Φα(z) + [1− Φ(z)]α}2

{
γ

(
β,− log

[
[1− Φ(z)]α

Φα(z) + [1− Φ(z)]α

])}β−1

, (8)

where z = x−µ
σ , x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, α and β are shape and scale

parameters, and ϕ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively. A random
variable with density (8) is denoted by X ∼ GE-N(α, β, µ, σ2). For µ = 0 and σ = 1, we obtain the RBOLL-
standard normal (RBOLL-SN) distribution.

Some plots of pdf of 8 are given in in figure 2. . As shown in Figure 2, RBOLL-N can be symmetric, skew and
bimodal pdf. It provide more flexibility than other well-known Normal extensions.
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Figure 1. Plots of pdf and hrf of RBOLL-W for some seleceted parameters.
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Figure 2. Plots of RBOLL-N for some selected parameters.

3. Main Properties

In this section, we study some general properties of RBOLL-G family.
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3.1. Asymptotics

Proposition 1
Let δ = min{x|G(x) > 0}he asymptotics of equations (3), (4) and (5) as x → δ are given by

F (x) ∼ 1

Γ(β + 1)

{
−α log

[
Ḡ(x)

]}β
as x → δ,

f(x) ∼ α

Γ(β)
g(x)G(x)αβ−1 as x → δ,

h(x) ∼ α

Γ(β)
g(x)G(x)αβ−1 as x → δ.

Proposition 2
The asymptotics of equations (3), (4) and (5) as x → ∞ are given by

1− F (x) ∼ 1

Γ(β)

{
−α log

[
Ḡ(x)

]}β−1
Ḡ(x)α−1 as x → ∞,

f(x) ∼
α g(x)G(x)α−1

{
−α log

[
Ḡ(x)

]}β−1

Γ(β)
as x → ∞,

h(x) ∼ α g(x)

Ḡ(x)
as x → ∞.

3.2. Expansions for pdf and cdf

Using the exponentiated distributions, we derive the expansions of (4) and (3) which is required to obtain the
statistical properties of the RBOLL-G family.

For a baseline cdf G(x), if the random variable follows a exponentiated-G distribution with parameter a > 0,
say X ∼ exp-G(a), if its pdf and cdf are

ha(x) = aG(x)g(x)a−1 (9)

and

Ha(x) = G(x)a, (10)

respectively. The properties of exponentiated distributions have been studied by many authors in recent years, see
Mudholkar and Srivastava [17] for exponentiated Weibull, Gupta et al. [9] for exponentiated Pareto, Gupta and
Kundu [10] for exponentiated exponential, Nadarajah [20] for exponentiated Gumbel, Kakde and Shirke [15] for
exponentiated lognormal, and Nadarajah and Gupta [21] for exponentiated gamma distributions. Also, we can
refer to recent articles by Mozafari et al. [16] and Alizadeh et al. [3]. The binomial coefficient generalized to real
arguments is given by

(
x
y

)
= Γ(x+ 1)/[Γ(y + 1)Γ(x− y + 1)].

First using taylor expansion we have

F (x) = 1− 1

Γ(β)

∞∑
i=0

(−1)i

i!(β + i)

{
− log

[
G(x)α

G(x)α + Ḡ(x)α

]}β+i

For any real parameter a > 0, the following formula holds (http:// functions.wolfram.com/ ElementaryFunctions/
Log/ 06/ 01/ 04/ 03/)

{
− log

[
1− Ḡ(x)α

G(x)α + Ḡ(x)α

]}β+i

= (β + i)

∞∑
k=0

k∑
j=0

(−1)j+k

(
k − β − i

k

)(
k

j

)
pj,k

(β + i− j)

×
[

Ḡ(x)α

G(x)α + Ḡ(x)α

]β+i+k

, (11)
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where the constants pj,k can be calculated recursively by

pj,k = k−1
k∑

m=1

[k −m(j + 1)] cm pj,k−m (12)

for k = 1, 2, . . ., pj,0 = 1 and ck = (−1)k+1 (k + 1)−1.
Also [

Ḡ(x)α

G(x)α + Ḡ(x)α

]β+i+k

=

∑∞
r=0 λr G(x)r∑∞
r=0 ρr G(x)r

=

∞∑
r=0

ar G(x)r

where

λr = (−1)r
(
α(β + i+ k)

r

)
(13)

ρr = hr(α, β + i+ k) (14)

ar = ar(α, β, i, k) =
1

ρ0

[
ρr −

1

ρ0

r∑
s=1

ρsar−s

]
, for r ≥ 1 (15)

,a0 = λ0

ρ0
and hr(α, β + i+ k) is defined in Appendix.

and then (3) can be expressed as

F (x) =

∞∑
r=0

br Hr(x), (16)

where

b0 = 1− 1

Γ(β)

∞∑
i,k=0

k∑
j=0

(−1)i+j+k

(
k − β − i

k

)(
k

j

)
pj,k a0(α, β, i, k)

i!(β + i− j)
,

,

br =
1

Γ(β)

∞∑
i,k=0

k∑
j=0

(−1)i+j+k+1

(
k − β − i

k

)(
k

j

)
pj,k ar(α, β, i, k)

i!(β + i− j)
,

for r ≥ 1 and Hr(x) denotes the cdf of the exp-G(r) distribution. The corresponding (4) can be expressed as

f(x) =

∞∑
r=0

br+1 hr+1(x), (17)

where hr+1(x) denotes the pdf of the exp-G(r + 1) distribution. So, several properties of the gamma-G distribution
can be obtained by knowing those of the exp-G distribution, see, for example, Mudholkar et al. [18], Gupta and
Kundu [11] and Nadarajah and Kotz [22], among others.

3.3. Moments

From now on, we assume that G(x) is the baseline cdf of a random variable Y and that F (x) is the cdf of the
random variable X having density function (4). The moments of the RBOLL-G distribution can be obtained from
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the (r, k)th probability weighted moments (PWMs) of Y defined by

τs,k = E[Xs G(X)k] =

∫ ∞

−∞
xs G(x)k g(x)dx. (18)

In fact, we have

µ′
s = E(Xs) =

∞∑
r=0

(r + 1) br+1 τs,k. (19)

where br is defined by equation (16). Thus, the moments of any RBOLL-G distribution can be expressed as an
infinite linear combination of the baseline PWMs.

A second formula for τs,k can be written in terms of QG(u) = G−1(u). Setting G(x) = u, we obtain

τs,k =

∫ 1

0

QG(u)
s ukdu. (20)

The PWMs for various distributions can be determined by using equations (18) and (20). The following special
cases were already published by Cordeiro and Nadarajah [5].

3.4. Incomplete moments

The nth incomplete moment of X is defined as mn(y) =
∫ y

−∞ xr f(x)dx. Here, we propose two methods to
determine the incomplete moments of the new family. First, the nth incomplete moment of X can be expressed as

mn(y) =

∞∑
r=0

br+1

∫ G(y; ξ)

0

QG(u)
n ur du. (21)

The integral in (21) can be computed at least numerically for most baseline distributions.

3.5. Generating function

In this section, we provide two formulae for the moment generating function (mgf) M(s) = E(esX) of a random
variable X with the RBOLL-G distribution. A first formula for M(s) comes from equation (17) as

M(t) =

∞∑
r=0

br+1 Mr+1(t), (22)

where Mr+1(t) is the generating function of the exp-G distribution with power power parameter t+ 1. Hence,
M(s) can be determined from the exp-G generating function.

A second formula for M(s) can be derived from equation (22) as

M(t) =

∞∑
r=0

(r + 1) br+1 ρr(s), (23)

where the quantity ρr(s) =
∫∞
−∞ exp(tx)G(x)r g(x)dx follows from the baseline qf as

ρr(s) =

∫ 1

0

exp [sQG(u)]u
rdu. (24)
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3.6. Mean deviations

The mean deviations about the mean (δ1(Y ) = E(|Y − µ′
1|)) and about the median (δ2(Y ) = E(|Y −M |)) of Y

can be expressed as

δ1(Y ) = 2µ′
1 F (µ′

1)− 2m1 (µ
′
1) and δ2(Y ) = µ′

1 − 2m1(M), (25)

respectively, where M = QG

{
e
−1
α

QΓ(β,1)(0.5)

e
−1
α

QΓ(β,1)(0.5)+
[
1−e

−QΓ(β,1)(0.5)
] 1

α

}
is the median of Y , µ′

1 = E(Y ) comes from

equation (19), F (µ′
1) is easily calculated from equation (3) and m1(z) =

∫ z

−∞ x f(x)dx is the first incomplete
moment.

Now, we provide two alternative ways to compute δ1(Y ) and δ2(Y ). A general equation for m1(z) can be derived
from equation (17) as

m1(z) =

∞∑
r=0

br+1 Jr+1(z), (26)

where

Jr+1(z) =

∫ z

−∞
xhr+1(x)dx. (27)

Equation (27) is the basic quantity to compute the mean deviations for the RBOLL-G distributions. The mean
deviations defined in (25) depend only on the first incomplete moment of the Exp-G distributions. So, alternative
representations for δ1(Y ) and δ2(Y ) are

δ1(Y ) = 2µ′
1 F (µ′

1)− 2

∞∑
r=0

br+1 Jr+1 (µ
′
1) and δ2(Y ) = µ′

1 − 2

∞∑
r=0

br+1 Jr+1(M).

A second general formula for m1(z) can be derived by setting u = G(x) in (26)

m1(z) =

∞∑
r=0

(r + 1) br+1 Tr(z),

where Tr(z) is given by

Tr(z) =

∫ G(z)

0

QG(u)u
rdu.

3.7. Order statistics

Let X1, . . . , Xn be a random sample from the RBOLL-G family. Denote the random variables in the ascending
order as X1:n ≤ . . . ≤ Xn:n. The pdf of Xi:n is given by

fi:n(x) = K f(x)F i−1(x) {1− F (x)}n−i
= K

n−i∑
j=0

(−1)j
(
n− i

j

)
f(x)F (x)j+i−1

=

∞∑
r,k=0

n−i∑
j=0

mj,r,k hr+k+1(x), (28)

where K = n!/[(i− 1)! (n− i)!], hr+k+1(x) denotes the exp-G density function with parameter r + k + 1 and

mj,r,k =
(−1)j n!

(i− 1)! (n− i− j)! j!

(r + 1) br+1 fj+i−1,k

[r + k + 1]
, (29)
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where bk is defined by (16). Here, the quantities fj+i−1,k are obtained recursively by fj+i−1,0 = bj+i−1
0 and (for

k ≥ 1)

fj+i−1,k = (k b0)
−1

k∑
m=1

[m(j + i)− k] bm fj+i−1,k−m.

Thus, one can easily obtain ordinary and incomplete moments and generating function of order statistics for any
given G.

4. Estimation and Simulation

The maximum likelihood estimation (MLE) method is preferred to obtain the unknown parameters of the RBOLL-
G family for any specific baseline distribution.

4.1. Estimation

Let x1, . . . , xn be observed values from the RBOLL-G distribution with parameters α, β and τ . Let Θ = (α, β, τ )⊤

be the r × 1 parameter vector. The total log-likelihood function for Θ is given by

ℓn = ℓn(Θ) = n log(α)− n log [Γ(β)] +

n∑
i=1

log [g(xi; τ )]

+ (α− 1)

n∑
i=1

log
[
G(xi; τ )Ḡ(xi; τ )

]
− 2

n∑
i=1

log
[
G(xi; τ )

α + Ḡ(xi; τ )
α
]

+ (β − 1)

n∑
i=1

log

{
− log

[
G(xi; τ )

α

G(xi; τ )α + Ḡ(xi; τ )α

]}
(30)

The log-likelihood function can be maximized either directly by using the SAS (PROC NLMIXED) or the Ox
program (sub-routine MaxBFGS) or by solving the nonlinear likelihood equations obtained by differentiating (30).
The components of the score function Un(Θ) = (∂ℓn/∂α, ∂ℓn/∂β, ∂ℓn/∂τ )

⊤ are

∂ℓn
∂α

=
n

α
+

n∑
i=1

log
[
G(xi; τ )Ḡ(xi; τ )

]
− 2

n∑
i=1

G(xi; τ )
α log [G(xi; τ )] + Ḡ(xi; τ )

α log
[
Ḡ(xi; τ )

]
G(xi; τ )α + Ḡ(xi; τ )α

− (β − 1)

n∑
i=1

G(xi; τ )
α log [G(xi; τ )][

G(xi; τ )α + Ḡ(xi; τ )α
]
log
[
1− G(xi;τ )α

G(xi;τ )α+Ḡ(xi;τ )α

]
∂ℓn
∂β

= −nψ(β) +
n∑

i=1

log

{
− log

[
G(xi; τ )

α

G(xi; τ )α + Ḡ(xi; τ )α

]}
∂ℓn
∂τ

=

n∑
i=1

ġ(xi; τ )]τ
g(xi, τ )

+ (α− 1)

n∑
i=1

[Ġ(xi; τ )]τ
G(xi, τ )

+ (1− α)

n∑
i=1

G(τ )(xi, τ )

Ḡ(xi, τ )

− α

n∑
i=1

[Ġ(xi; τ )]τ
G(xi; τ )

α−1 − Ḡ(xi; τ )
α−1

G(xi; τ )α + Ḡ(xi; τ )α

− α(β − 1)

n∑
i=1

G(τ )(xi, τ )
G(xi; τ )

α−1Ḡ(xi; τ )
α−1[

G(xi; τ )α + Ḡ(xi; τ )α
]2

log
[

G(xi;τ )α
G(xi;τ )α+Ḡ(xi;τ )α

]

where g(τ )(·) means the derivative of the function g with respect to τ .
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where

[ġ(xi; τ )]τ =
dg(xi; τ )

dτ
, [Ġ(xi; τ )]τ =

dG(xi; τ )

dτ
,

the functions g(·) and G(·) are defined in Section 1 and ψ(.) is the digamma function.
The MLE θ̂ of θ is obtained by solving the nonlinear likelihood equations Uα(θ) = 0, Uβ(θ) = 0 and Uτ (θ) = 0. These

equations cannot be solved analytically and statistical software can be used to solve them numerically. We can use iterative
techniques such as a Newton-Raphson type algorithm to obtain the estimate θ̂. We employ the numerical procedure NLMixed
in SAS.

For interval estimation of (α, β, τ ) and hypothesis tests on these parameters we obtain the observed information matrix
since the expected information matrix is very complicated and requires numerical integration. The (p+ 2)× (p+ 2)
observed information matrix J(θ), where p is the dimension of the vector τ , becomes

J(θ) = −

(
Lαα Lαβ Lατ
. Lββ Lβτ
. . Lττ

)
,

whose elements can compute easily.
Under conditions that are fulfilled for parameters in the interior of the parameter space but not on the boundary, the

asymptotic distribution of
√
n(θ̂ − θ) is Np+2(0, I(θ)−1), where I(θ) is the expected information matrix. The multivariate

normal Np+2(0, J(θ̂)−1) distribution, where I(θ) is replaced by J(θ̂), i.e., the observed information matrix evaluated at θ̂,
can be used to construct approximate confidence intervals for the individual parameters.

We can compute the maximum values of the unrestricted and restricted log-likelihoods to obtain likelihood ratio (LR)
statistics for testing some sub-models of the Ga-G distribution. Tests of the hypotheses of the typeH0 : ψ = ψ0 versus H :
ψ ̸= ψ0, where ψ is a subset of parameters of θ, can be performed through LR statistics. For example, we may use the LR
statistic to check if the fit using the Ga-G distribution is statistically “superior” to a fit using the G distribution for a given
data set.

4.2. Simulation
This section contains the simulation results of the RBOLL-W distribution for MLE method. The finite sample performance
of the MLE method for the parameters of the RBOLL-W distribution is discussed via simulation study. The simulation
results are interpreted based on the results of estimated bias mean square error (MSE), estimated average length (AL) and
coverage probability (CP). The simulation replication is determined as N = 1, 000 and sample size is n = 50, 55, . . . , 1000.
The true parameter values are α = 2, β = 3, λ = 5, γ = 7. The MLEs and corresponding standard errors of the parameters
are obtained for each generated sample and denoted as (α̂i, β̂i, λ̂i, γ̂i), (sα̂i

, s
β̂i
, s

λ̂i
, sγ̂i

), respectively, where i = 1, . . . , N .
The required formulas of the bias, MSE, AL and CP are given below

B̂iasϵ(n) =
1

N

N∑
i=1

(ϵ̂i − ϵ) , M̂SEϵ(n) =
1

N

N∑
i=1

(ϵ̂i − ϵ)2,

CPϵ(n) =
1

N

N∑
i=1

I(ϵ̂i − 1.95996sϵ̂i , ϵ̂i + 1.95996sϵ̂i) , ALϵ(n) =
3.919928

N

N∑
i=1

sϵ̂i .

where ϵ = α, β, λ, γ.
The results of the above metrics are computed and displayed in Figure 3. We expect the estimated biases and MSEs are

near the zero, CP are near 95% and AL treats a decreasing function of the sample size. The figures confirm our expectations.
The estimated biases and MSEs approach the zero when the sample size increases. The CP are near the nominal value and
AL decreases when the sample size increases. The similar results can be obtained for different parameter vectors and also
different baseline distribution of the RBOLL-G family.

5. Log-RBOLL-W regression model

The parametric survival regression models are widely used to analyze the lifetimes of individuals with associated covariates.
Here, we introduce a new parametric survival regression model based on the RBOLL-W density. Let the random variable
X follows a RBOLL-W density function with four parameters α > 0, β > 0, λ > 0 and γ > 0, given in (7). Considering
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Figure 3. Estimated CPs, biases, MSEs and ALs for the selected parameters.

Y = log(X) transformation with λ = 1/σ and γ = exp (µ) re-parametrizations, we have (for y ∈ ℜ)

f (y) =
α

σΓ(β) exp[( y−µ
σ )−exp( y−µ

σ )]{1−exp[− exp( y−µ
σ )]}α−1

(2−exp[− exp( y−µ
σ )])

α−1

[{1−exp[− exp( y−µ
σ )]}α

+(2−exp[− exp( y−µ
σ )])

α
]
2

×
{
− log

[
{1−exp[− exp( y−µ

σ )]}α

{1−exp[− exp( y−µ
σ )]}α

+(2−exp[− exp( y−µ
σ )])

α

]}β−1 , (31)

where µ ∈ ℜ is the location parameter and σ > 0 is the scale parameter. The parameters α > 0 and β > 0 are the shape
parameter. The density in (31) is denoted as Y ∼ LRBOLLW(α, β, σ, µ). The survival function of the LRBOLLW density is

S (y) =
1

Γ (β)
γ

(
β,− log

[ {
1− exp

[
− exp

(y−µ
σ

)]}α{
1− exp

[
− exp

(y−µ
σ

)]}α
+
(
2− exp

[
− exp

(y−µ
σ

)])α
])

(32)

Let Z = (Y − µ)/σ be a standardized random variable. Its density is

f (z) =
α

Γ(β) exp[z−exp(z)]{1−exp[− exp(z)]}α−1(2−exp[− exp(z)])α−1

[{1−exp[− exp(z)]}α+(2−exp[− exp(z)])α]2

×
{
− log

[
{1−exp[− exp(z)]}α

{1−exp[− exp(z)]}α+(2−exp[− exp(z)])α

]}β−1 . (33)

Now, we propose a new location-scale regression model by linking the covariates to location of the LRBOLLW distribution
by means of identity link function. Let yi represents the response variable and v⊤

i =
(
vi1, ..., vip

)
is the explanatory variable

vector. The location-scale regression model is given by
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yi = v
⊤
i β + σzi, i = 1, . . . , n, (34)

where the random error zi has density function (33),βββ = (β1, . . . , βp)
⊤, σ > 0, α > 0 and β > 0 are unknown parameters.

Let the response variable is defined as yi = min{log(xi), log(ci)} where log(xi) is the log-lifetime and log(ci) is the log-
censoring times. We define two sets F and C to represent the log-lifetime and log-censoring times, respectively. Under these
specifications, the log-likelihood function for the parameter vector τττ = (α, β, σ,β⊤)⊤ from model (34) has the form

ℓ (τ) = r log
(

α
σΓ(β)

)
+ c log

(
1

Γ(β)

)
+
∑
i∈F

(zi − ui) + (α− 1)
∑
i∈F

log {1− exp [−ui]}

+(α− 1)
∑
i∈F

log {2− exp [−ui]}

−2
∑
i∈F

log
[
{1− exp [−ui]}α + (2− exp [−ui])α

]
+(β − 1)

∑
i∈F

log
{
− log

[
{1−exp[−ui]}α

{1−exp[−ui]}α+(2−exp[−ui])
α

]}
+
∑
i∈C

log
(
γ
(
β,− log

[
{1−exp[−ui]}α

{1−exp[−ui]}α+(2−exp[−ui])
α

]))
(35)

where τττ = (α, β, σ,β⊤)⊤ is the unknown parameter vector and ui = exp(zi), zi = (yi − v⊤i β)/σ and r represents the
number of uncensored observations and c is the number of censored observations. The MLE of the unknown parameter vector
τ̂ττ is obtained by direct maximization of the log-likelihood function, given in (35). The asymptotic confidence intervals of the
parameters are consturcted by using the observed information matrix evaluated at the MLE of τττ . Note that the under standard
regularity conditions of the MLE method, the asymptotic distribution of (τ̂ττ − τττ) is p+ 3-variate normal distribution, denoted
as Np+3(0,K(τττ)−1) where K(τττ) is the expected information matrix which can be approximated by the inverse of observed
information matrix.

6. Applications

This section is devoted to demonstrate the empirical importance of the RBOLL-G distributions. So, we compare the data
modeling ability of the RBOLL-G distributions with other competitive distributions based on three data sets. The model
selection criteria are used to compare the fitted models and verify which model gives the best fit to the data. These are
estimated log-likelihood values, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) obtained for
all fitted models to choose the best model. The smallest values of these statistics show the best fitted model on the data.

6.1. First application
The first data set represents the failure times for a particular wind-shield model including 85 observations that are classified
as failed times of wind-shields. The used dat set is given in Appendix C. The estimated parameters and their standard errors,
−ℓ, AIC and BIC values are reported in Table 1. Based on Table 1, since the RBOLL-W distribution has the lowest values
of model selection criteria, it provides better results than other competitive models. The accuracy of the fitted RBOLL-W
distribution is displayed in Figure 4. Figure 4(a) shows the pdfs of the fitted distributions on the histogram of the first data.
Figure 4(b) shows the estimated functions of the RBOLL-W distribution such as fitted pdf, hrf, survival and probability-
probability (PP) plot. These figures point out that the RBOLL-W distribution is the best model for the first data set.

The RBOLL-W distribution is compare with its sub-models based on the LR test. The LR test results are given in Table
2. These results show that the RBOLL-W distribution provides better fit than its sub-models since the p-values are less than
0.05. Here, the null hypothesis is that there is no significant difference between two models. Since the p-value is less than
0.05, we reject the null hypothesis in favour of the RBOLL-W distribution.

6.2. Second Application
The second data set contains 32 observations corresponding to the birth weights of newborn babies in ounces. The used data
set is given in Appendix C. The estimated parameters and model selection criteria are reported in Table 3. From these results,
we conclude that the RBOLL-N distribution is the best model among others.

Table 4 lists the LR test results with its p-values for the second data. Since all computed p-values are less than 0.05, the null
hypothesises are rejected in favour of the RBOLL-N distribution. Therefore, it is concluded that the RBOLL-N distribution
provides more acceptable results than its sub-models.

The visual comparison of the fitted models are displayed in Figures 5(a) and 5(b). From these figures, we compare the fitted
pdfs of the models on the histogram of the data set and conclude that the RBOLL-N distribution has higher compatibility
than other models for the second data. Figure 5(b) displays the some fitted functions of the RBOLL-N distribution.
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Table 1. MLEs and their SEs of the fitted models and goodness-of-fit statistics for first data set

Models α β λ γ −ℓ AIC BIC

W 2.393 2.868 131.288 266.576 271.462
0.210 0.135

G-W 0.998 2.392 2.865 131.288 268.576 275.905
0.849 0.442 1.356

OLL-W 0.604 3.605 2.841 129.978 265.956 273.284
0.166 0.834 0.139

RBOLL-W 0.132 2.022 21.758 4.110 126.066 260.134 269.904
0.054 0.243 9.206 0.161

Table 2. The LR test results for first data set.

Hypotheses LR p-value
RBOLL-W versus OLL-W H0 : β = 1 7.824 0.005
RBOLL-W versus Gamma-W H0 : α = 1 10.444 0.001
RBOLL-W versus W H0 : α = β = 1 10.444 0.005
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Figure 4. (a) Fitted densities of the models ,(b) fitted functions of the RBOLL-W model for the first data set

6.3. Stanford heart transplant data
In third application, we demonstrate the importance of the LRBOLLW regression model applying it to the real data set
which has been recently analyzed by Brito et al. [4] by means of the the Log-Topp-Leone odd log-logistic-Weibull (Log-
TLOLL-W) regression model. The Stanford heart transplant data set is used to demonstrate and compare the performance of
the LRBOLLW regression model with log-TLOLL-W, log-Weibull and log-OLL-W regression models. The data set can be
found in a R package called p3state.msm. The sample size is n = 103 and censoring rate is 27%. The goal of the study is to
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Table 3. MLEs and their SEs of the fitted models and goodness-of-fit statistics for second data set

Models α β µ σ −ℓ AIC BIC

N 111.75 17.907 137.733 279.467 282.398
3.165 2.238

G-N - 4.746 161.543 21.947 137.307 280.614 285.012
10.729 100.327 5.075

OLL-N 0.126 - 105.776 4.438 134.771 275.542 279.939
0.018 0.002 0.002

RBOLL-N 0.164 0.656 101.921 4.911 132.745 273.490 279.353
0.028 0.118 0.002 0.002

Table 4. The LR test results for second data set.

Hypotheses LR p-value
RBOLL-N versus OLL-N H0 : β = 1 4.051 0.044
RBOLL-N versus Gamma-N H0 : α = 1 9.124 0.002
RBOLL-N versus N H0 : α = β = 1 9.976 0.007
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Figure 5. (a) Fitted densities of the models ,(b) fitted functions of the RBOLL-N for the second data set.

analyze the survival times (yi) of patients with covariates such as x1- year of acceptance to the program; x2- age of patient
(in years); x3- previous surgery status (1 = yes, 0 = no) and x4- transplant indicator (1 = yes, 0 = no); ci.

The fitted regression model is given by

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + σzi , (36)

where the response variable yi follows the LRBOLLW distribution.
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The results are obtained and summarized in Table 5. Table 5 lists the estimated parameters of the fitted regression models
with their corresponding standard errors and model selection criteria, AIC. From the results in Table (5), we conclude that
the LRBOLLW regression model provides better fit than the log-TLOLL-W, log-Weibull and log-OLL-W regression models.
Additionally, the regression parameters, β1 and β2, are found statistically significant for 5% significance level. According
to the estimated regression parameters, we conclude that when the age of patient increases, the survival time of a patient
decreases. Also, when the year of acceptance to the program increases, the survival time of a patient increases.

Table 5. MLEs of the parameters to Stanford Heart Transplant Data for Log-Weibull, Log-TLOLL-W, Log-OLL-W and
LRBOLLW regression models with corresponding SEs, p-values and −ℓ and AIC statistics.

Models Parameters α β σ β0 β1 β2 β3 β4 −ℓ AIC

Log-Weibull Estimate - - 1.478 1.639 0.104 -0.092 1.126 2.544 171.240 354.481
S.E. - - 0.133 6.835 0.096 0.02 0.658 0.378
p-value - - - 0.811 0.279 <0.001 0.087 <0.001

Log-TLOLL-W Estimate 2.34 24.029 9.68 -0.645 0.074 -0.053 1.676 2.394 164.684 345.368
S.E. 3.546 3.015 12.526 8.459 0.097 0.02 0.597 0.384
p-value - - - 0.939 0.448 0.009 0.005 <0.001

Log-OLL-W Estimate 3.529 - 4.434 4.257 0.142 -0.059 0.794 0.084 161.972 337.944
S.E. 4.398 - 5.47 2.021 0.094 0.018 0.528 0.374
p-value - - - 0.035 0.132 0.001 0.132 0.821

LRBOLLW Estimate 17.727 1.46 22.796 11.392 0.229 -0.055 0.167 0.397 159.052 334.105
S.E. 47.554 0.695 61.804 23.002 0.095 0.017 0.485 0.37
p-value - - - 0.620 0.015 0.002 0.730 0.283

Residual Analysis of LRBOLLW model for Stanford heart transplant data set Now, we assess the accuracy of the fitted
LRBOLLW regression model with a residual analysis. For this aim, two types of the residuals are used. These are martingale
and modified deviance residuals. The martingale residuals for LRBOLLW model is

rMi
=

 1 + log
{

1
Γ(β)

γ
(
β,− log

[
{1−exp[−ui]}α

{1−exp[−ui]}α+(2−exp[−ui])
α

])}
ifi ∈ F,

og
{

1
Γ(β)

γ
(
β,− log

[
{1−exp[−ui]}α

{1−exp[−ui]}α+(2−exp[−ui])
α

])}
ifi ∈ C,

(37)

The modified deviance residual, proposed by Therneau et al. (1990), is

rDi
=

{
sign (rMi

) { −2 [rMi
+ log (1− rMi

)]}1/2, ifi ∈ F

sign (rMi
) { −2rMi

}1/2, ifi ∈ C,
(38)

where r̂Mi
is the martingale residual. When the fitted model is correct, the modified deviance residuals are normally

distributed with zero mean and unit variance. The results of the residual analysis are displayed in 6. Figure 6 shows the
plot of the modified deviance residuals and its corresponding quantile-quantile (QQ) plot. From these figures, it is clear that
there is no possible observation can be evaluated as an outlier. Also, these figures reveal that the LRBOLLW regression
model produce accurate fit to the data set.

7. Conclusions

We propose a new class of gamma extended family of distributions, called Ristic-Balakrishnan odd log-logistic G (“RBOLL-
G” for short) with two extra generator parameters which can include as special cases several classical continuous
distributions. The normal and Weibull distributions are considered as baseline distributions for RBOLL-G family. It is
shown that the density of the RBOLL-G family can be expressed as a linear combination of exponentiated-G densities. The
statistical properties of the RBOLL-G are derived in detail. More importantly, we introduce a new location-scale regression
model based on the Weibull baseline distribution of the RBOLL-G family to analyze the variability of the lifetimes of
individuals with covariates. The maximum likelihood estimation method is preferred to obtain unknown parameters of the
proposed models. Three real data sets are analyzed to convince the readers in favour of RBOLL-G family.
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Figure 6. (a) The plot of the modified deviance residual and (b) its QQ plot.

Appendix A

We present four power series for the proof of the linear representation in Section 3. First, for a > 0 real non-integer and
|u| < 1, we have the binomial expansion

(1− u)a =

∞∑
j=0

(−1)j

(
a

j

)
uj , (39)

where the binomial coefficient is defined for any real.
Second, the following expansion holds for any α > 0 real non-integer

G(x)α =

∞∑
r=0

sr(α)G(x)r, (40)

where sr(α) =
∑∞

j=r(−1)r+j
(
α
j

) (
j
r

)
.

Third, by expanding zλ in Taylor series, we have

zλ =

∞∑
k=0

(λ)k (z − 1)k/k! =

∞∑
i=0

fi z
i (41)

fi = fi(λ) =

∞∑
k=i

(−1)k−i

k!

(
k

i

)
(λ)k

and (λ)k = λ(λ− 1) . . . (λ− k + 1) is the descending factorial.
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Fourth, we use throughout an equation of Gradshteyn and Ryzhik ([8], Section 0.314) for a power series raised to a positive
integer j given by  ∞∑

j=0

aj v
j

i

=

∞∑
j=0

ci,j v
j , (42)

where the coefficients ci,j (for j = 1, 2, . . .) are easily obtained from the recurrence equation (for j ≥ 1)

ci,j = (ja0)
−1

j∑
m=1

[m(j + 1)− j] am ci,j−m

and ci,0 = ai0. Hence, the coefficients ci,j can be calculated directly from ci,0, . . . , ci,j−1 and, therefore, from a0, . . . , aj .
They can be given explicitly in terms of the aj’s, although it is not necessary for programming numerically our expansions
in any algebraic or numerical software.

We now obtain an expansion for [G(x)a + Ḡ(x)a]c. We can write from equations (39) and (40)

[G(x)a + Ḡ(x)a] =

∞∑
j=0

tj G(x)j ,

where tj = tj(a) = sj(a) + (−1)j
(
a
j

)
. Then, using (41), we can write

[G(x)a + Ḡ(x)a]c =

∞∑
i=0

fi

 ∞∑
j=0

tj G(x)j

i

,

where fi = fi(c). Finally, using equations (42), we obtain

[G(x)a + Ḡ(x)a]c =

∞∑
j=0

hj G(x)j , (43)

where hj = hj(a, c) =
∑∞

i=0 fimi,j and mi,j = (j t0)
−1∑j

m=1[m(j + 1)− j] tmmi,j−m (for j ≥ 1) and mi,0 = ti0.

Appendix B

The elements of the observed information matrix J(θ) for the parameters (α, β, τ ) are

Jαα = −ψ′(α), Jαβ =
n

β
, Jατ =

n∑
i=1

[Ġ(xi; τ )]τ
G(xi; τ )

+

n∑
i=1

[Ġ(xi; τ )]τ
[1−G(xi; τ )]

,

Jββ = −nα
β2

, Jβτ = −
n∑

i=1

[Ġ(xi; τ )]τ
[1−G(xi; τ )]2

,

Jττ = (α− 1)

n∑
i=1

{
[G̈(xi; τ )]ττ
G(xi; τ )

− [Ġ(xi; τ )]
2
τ

[G(xi; τ )]2

}

+(α− 1)

n∑
i=1

{
[G̈(xi; τ )]ττ
[1−G(xi; τ )]

+
[Ġ(xi; τ )]

2
τ

[1−G(xi; τ )]2

}

−β
n∑

i=1

{
[G̈(xi; τ )]ττ
[1−G(xi; τ )]2

+
2[Ġ(xi; τ )]

2
τ

[1−G(xi; τ )]3

}
+

n∑
i=1

{
[g̈(xi; τ )]ττ
g(xi; τ )

− [ġ(xi; τ )]
2
τ

[g(xi; τ )]2

}
,
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where,

[ġ(xi; τ )]τ =
dg(xi; τ )

dτ
, [Ġ(xi; τ )]τ =

dG(xi; τ )

dτ
,

[g̈(xi; τ )]ττ =
d2g(xi; τ )

dττT
, [G̈(xi; τ )]ττ =

d2G(xi; τ )

dττ 2
,

and g(·) and G(·) functions are defined in Section 1.

Appendix C

The first data set: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625,
3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779,1.248, 2.010, 2.688, 3.924, 1.281,
2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962,
4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619,
2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663.
The second data set:72, 80, 81, 84, 86, 87, 92, 94, 103, 106, 107, 111, 112, 115, 116, 118, 119, 122, 123, 123, 114, 125,
126, 126, 126, 127, 118, 128, 128, 132, 133, 142.
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