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Abstract All graphs in this paper are nontrivial and connected simple graphs. For a set W = {s1, s2, . . . , sk} of vertices
of G, the multiset representation of a vertex v of G with respect to W is r(v|W ) = {d(v, s1), d(v, s2), . . . , d(v, sk)} where
d(v, si) is the distance between of v and si. If the representation r(v|W ) ̸= r(u|W ) for every pair of vertices u, v of a graph
G, the W is called the resolving set of G, and the cardinality of a minimum resolving set is called the multiset dimension,
denoted by md(G). A set W is a local resolving set of G if r(v|W ) ̸= r(u|W ) for every pair of adjacent vertices u, v of
a graph G. The cardinality of a minimum local resolving set W is called local multiset dimension, denoted by µl(G). In
our paper, we discuss the relationship between the multiset dimension and local multiset dimension of graphs and establish
bounds of local multiset dimension for some families of graph.
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1. Introduction

All graphs discussed in this paper are finite, simple and connected graph. The cartesian product graph of G1 and
G2, denoted by G1 ×G2, is the graph with vertex set V (G1)× V (G2) where vertex (x, u) is adjacent to vertex
(y, v) whenever xy ∈ E(G1) and u− v, or x− y and uv ∈ V (G2). In the rest of the paper, we use the terminology
defined in [1, 2, 3]. The application of metric dimension in networks is one of the describe navigation robots. The
each place is called vertices and edges 0denote the connections0between0vertices. The minimum0number of the
robots required to locate0each and the vertex of a some network is called as metric0dimension, for more detail this
application in [4].

The concept of metric0dimension was independently0introduced by Slater [5] and Harary and Melter [6].
In his paper, Slater called this0concept the locating0set. Let u, v be two vertices in G, the distance d(u, v) is
the length of a shortest path between two vertices u and v in graph G. An ordered0set W = {w1, w2, ..., wk}
subset of vertex set V (G). The representation r(v|W ) of v with0respect to W is the ordered k-tuple
r(v|W ) = (d(v, w1), d(v, w2), ..., d(v, wk)). The set W is called the resolving0set of G if every0vertices of G
have distinct0representation with respect to W . Let u and v be any two0vertices in G if r(u|W ) = r(v|W )
implies that u = v. Hence if W is a resolving0set of cardinality k for a graph G, then the representation set
r(v|W ), v ∈ V (G) consists of |V (G)| distinct k-vector. The minimum0cardinality of resolving0set of a graph G is
called metric0dimension of G, denoted by dim(G).
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Figure 1. (a) A graph with multiset dimension 3; (b) A graph with local multiset dimension 1

Simanjuntak et al [7] introduced the definition of multiset0dimension of G. Let G be a connected0graph
with vertex set V (G). Suppose W = {s1, s2, . . . , sk} is a subset (note, not an ordered set as in metric dimension)
of the vertex set V (G), the representation0multiset of a vertex v of G with0respect to W is the multiset
r(v|W ) = {d(v, s1), d(v, s2), . . . , d(v, sk)} where d(v, si) is the distances between of v and the vertices in W
together with their0multiplicities. A resolving set having minimum cardinality is called a multiset0basis. If G
has a multiset basis, then its cardinality is called the multiset dimension of G, denoted by md(G). There are some
related research about this topic in [9, 10, 11].

Alfarisi, et. al [8] defined a new notion based on the multiset dimension of G, namely a local0multiset
dimension. The definition of local0multiset dimension is below:

Definition 1.1
Let G be a connected0graph with vertex set V (G). Suppose W = {s1, s2, . . . , sk} is a subset of the vertex set V (G),
the representation0multiset of a vertex v of G with respect to W is r(v|W ) = {d(v, s1), d(v, s2), . . . , d(v, sk)},
where d(v, si) is a multiset of distances between of v and the vertices in W together with their0multiplicities. The
resolving set W is a local resolving set of G if r(v|W ) ̸= r(u|W ) for every pair of adjacent vertices u, v of a
graph G. The minimum local0resolving set W is called local multiset dimension, denoted by µl(G).

We illustrate this concept in Figure 1. In this case, the resolving set is W = {v2, v3, v6}, shown in Figure 1 (a).
The multiset dimension is md(G) = 3. The representations of v ∈ V (G) with respect to W are all distinct . For
the local multiset dimension, we only need to make sure the adjacent vertices having distinct representations. Thus
we could have the local resolving set W = {v1}, shown in Figure 1 (b). Thus, the local multiset dimension is
µl(G) = 1.

r(v1|Π) = {0}, r(v2|Π) = {1}, r(v3|Π) = {2}
r(v4|Π) = {1}, r(v5|Π) = {2}, r(v6|Π) = {1}

2. Multiset Dimension

Different to the metric dimension, given a multiset basis, it is impossible to construct the original graph from the
representation of the vertices. Fig 3 gives an example of two non-isomorphic graphs with the same multiset basis
and representations for vertices.

Lemma 2.1
The multiset dimension is not monotonic to the number of vertices and the number of edges of a graph.

Let G be a connected graphs. The number of vertices, edges and the multiset dimension do not show a monotonic
relationship. Assume the graph G with n vertices has md(G) = k, if we put m vertices in graph G, then we get
new graphs G′ with n+m vertices such that we have some condition as follows:
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Figure 2. (a) md(G) = 3; (b) md(G ∪ {v}) = 3

Figure 3. For G1 ̸= G2

i. if G ∼= G′, then md(G) = md(G′) = k. (not monotonic)
ii. if G � G′, then we have md(G) ≥ md(G′) or md(G) < md(G′).

We use a counter example for showing the Lemma 2.1. Assume the number of vertices and edges of G increase,
the multiset dimension of G increase or decrease (monotonically). We choose a unicyclic graph G as example.
From Figure 2 (b) we increase the vertices and edges in graph G which have the multiset dimension of G ∪ {v}
namely md(G ∪ {v}) = 3 where v is a vertex not in the graph G. Furthermore, we can say that if we increase
the number of vertices and edges in graphs G, then the number of resolving set does not increase or the multiset
dimension is constant. it is a counter example of Lemma 2.1.

In Simanjuntak, et. al. [7], some bounds are given for the multiset dimension of graphs. For example,

Theorem 2.1
[7] Let G be a graph other than a path. Then md(G) ≥ 3

If we look at the resolving set, since the vertex has distance 0 to itself, then it is easy to get a better bound
than Theorem 2.2. For positive integers n and d, we define f(n, d) to be the least positive integer k for which
(k+d1)!
k!(d1)! + k ≥ n.

Theorem 2.2
If G is a graph of order n ≥ 3 and diameter d, then md(G) ≥ f(n, d)

Proof. Let W be a multiset basis of G having k vertices. If x is a vertex in W , then r(x|W ) =
{0, 1m1 , 2m2 , . . . , dmd}, where m1 +m2 + · · ·+md = k − 1 and 0mik for each i = 1, 2, . . . , k. Then there are
C(k − 1 + d− 2, d− 2) different possibilities for representation of x. Since we have k vertices in W , then
C(k − 1 + d− 2, d− 2) must be at least k.

Furthermore, look at the degree of the graph, we could have the following bounds.
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Theorem 2.3
Let G be a connected graphs and let d be the maximum degree of G and md(G) = k, we have for k ≥ 3 and d < 3k.

Proof . As md(G) = k, so let W be a multiset basis of G having k vertices. If x is a vertex not in W , then
r(x|W ) = {0, 1m1 , 2m2 , . . . , dmd}, where m1 +m2 + · · ·+md = k and 0 ≤ mi ≤ k for each i = 1, 2, . . . , k. As
W is a minimum resolving set, removing a vertex from W , there will be two vertices in the graph G which have
the same representation. Let’s assume that there are two vertices vx and vy which are in G. Formally, we have
r(vx|W ) ∩ r(vy|W ) = {1m1 , 2m2 , . . . , dmd}, where m1 +m2 + · · ·+md = k − 1. Considering the neighbour of
these two vertices, if vx has distance t to a vertex w ∈ W , then the neighbour of vx would have distance t− 1 or
t or t+ 1 to w. So, if vx has distance 1 to m1 vertices in W , then among vx’s neighbour, there are at most m1

vertices having distance 0 to vertices in W , i.e. in W . if vx has distance 2 to m2 vertices in W , then among vx’s
neighbour, there are at most m2 vertices having distance 1 to vertices in W , furthermore, vx’s neighbour having
distance less than 3 to at least m2 vertices in W . More general, if vx having distance x to mx vertices in W , then
among the neighbours of vx, there are less than mx vertices of distance x− 1 to W and there are no more than mx

vertices having distance x+ 1 to vertices in W .
Thus, the number of different representations for the neighbour of vx is m1(m1 +m2)(m2 +m+ 3)..(md−1 +

md)d and the representations are shared by neighbours of vx and vy. This will give us a bound for the degree,
diameter and multiset dimension. 2

We shall define a new graph which is based on the well-known Hypercubes. The Hypercube is defined the
graph formed from the vertices and edges of an n-dimensional hypercube, we shall remove some edges from
the hypercube, denoted by AHQn, is called almost hypercube graphs. Almost hypercube graph satisfies AHQn =
(HQn−1 × P2)− {e} for n ≥ 3, where e is correspondence edge of subgraph (HQn−1)1 and (HQn−1)2. We know
that HQn−1 × P2 has two isomorphic graphs (HQn−1)1 and (HQn−1)2 with {e} is the correspondence edge set.

Theorem 2.4
md(AHQn) ≥ 2n−1 − 1, for n ≥ 3

Proof: The cardinality of vertex set of almost hypercube graphs, denoted by AHQn, is 2n for n ≥ N ∪ {0}. We
can prove md(AHQn) ≥ 2n−1 − 1.
Case 1: For n = 3, we know that md(AHQ3) ≥ 3, md(AHQ3) > 3. If the resolving set of AHQ3 is 2, then we
have some condition for position resolving set in AHQ3 = (HQ1 × P2)− {e} in the following.

i. If three vertices in HQ′
2, then there is at least two vertices which have same representation.

ii. If two vertices in HQ′
2 and one vertex in HQ2”, then always two vertices with respect to v ∈ W (HQ2”)

which have same representation.

Based on cases above, we know that md(AHQ3) ≥ 3
Case 2: For n = k, we know that md(AHQk) ≥ 2k−1 − 1, md(AHQk) > 2k−1 − 1. If the resolving set of AHQk

is 2k−1 − 2, then we have some condition for position resolving set in AHQk = (HQk−1 × P2)− {e}. We have
some condition for proof this cases which divided into some cases as follows.

i. Shortest path between two vertices in the same components is within the component
ii. If 2k−1 − 2 vertices in HQ′

n−1, then there is at least two vertices which have same representation.
Let v1, v2 ∈ V (AHQn) be a correspondence vertices of v1 ∈ V (HQ′

n−1) and v2 ∈ V (HQn−1”) such
that d(v1, r) ̸= d(v2, r) = d(v1, r) + 1 for r ∈ W . We assume that the representation of v1 and v2
respect to resolving set W namely r(v1|W ) = {d1, d2, d3, . . . , dx−3, d(v1, s) + 1, d(v1, s)} and r(v2|W ) =
{d1, d2, d3, . . . , dx−3, d(v1, s), d(v2, s)} such that r(v1|W ) = r(v2|W ), it is contradiction.

iii. If 2k−2 vertices in HQ′
n−1 and 2k−2 − 2 vertex in HQn−1”, then always two vertices with respect to

v ∈ W (HQn−1”) which have same representation. Let v1, v2 ∈ V (HQ′
n−1) be a vertex in first position

HQ′
n−1 which have same representation respect to resolving set in HQ′

n−1 namely r(v1|W ′) = r(v2|W ′) =
{d1, d2, d3, . . . , dα−l}. The distance of v1 and v2 respect to resolving set in second position HQn−1” is
symmetric distance such that d(v1, r) = d(v2, r). Thus, we have the representation v1, v2 ∈ AHQn namely
r(v1|W ) = r(v2|W ) = {d1, d2, d3, . . . , dα−l, dα−l+1, . . . , dα}, it is contradiction.
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Figure 4. (a) µl(B5,5) = 1; (b) µl(B5,5 ∪ {e}) = 1; (c) µl(B5,5 ∪ v) = 1

Based on both cases, we obtain the bounds of multiset dimension of almost hypercube graph namely
md(AHQn) ≥ 2n−1 − 1. 2

3. Local Multiset Dimension

In this section, we give some results about local multiset dimension of graphs. Firstly, we show that the local
multiset dimension for AHQ is 1, which is different to the results we got for multiset dimension.

Corollary 3.1
The difference between Multiset dimension and local multiset dimension can be arbitrarily large.

Observation 3.1
If G is complete graph, then the graph G does not have a local resolving set.

Lemma 3.1
The local multiset dimension is not monotonic to the number of vertices and the number of edges of a graph.

Let G be a connected graphs. The number of vertices, edges and the local multiset dimension do not show a
monotonic relationship. Assume the graph G with n vertices has µl(G) = k, if we put m vertices in graph G, then
we get new graphs G′ with n+m vertices such that we have some condition as follows:

i. if G ∼= G′, then µl(G) = µl(G
′) = k. (not monotonic)

ii. if G � G′, then we have µl(G) ≥ µl(G
′) or µl(G) < µl(G

′).

We use a counter example for showing the Lemma 3.1. Assume the number of vertices and edges of G increase,
the local multiset dimension of G increase or decrease (monotonically). We choose a bipartite graph B5,5 as
example. From Figure 4 (a) the local multiset dimension of B5,5 is µl(B5,5) = 1, we add some edges in B5,5

in Figure 4 (b) such that we have the local multiset dimension of B5,5 ∪ {e} namely µl(B5,5 ∪ {e}) = 1. Figure
4 (c) we increase the vertices and edges in graph B5,5 which have the local multiset dimension of B5,5 ∪ {v}
namely µl(B5,5 ∪ {v}) = 1 where v is a vertex not in the graph B5,5. Furthermore, we can say that if we increase
the number of vertices and edges in graphs B5,5, then the number of resolving set does not increase or the local
multiset dimension is constant. it is a counter example of Lemma 3.1.

The following, we show the new bound of local multiset dimension of cartesian product of graphs. Let G1 and
G2 be two connected graphs.

Lemma 3.2
Given that two connected graphs G1 and G2, µl(G1 ×G2) ≥ min{µl(G1), µl(G2)}

Proof. A graph G1 has n1 vertices and G2 has n2 vertices. The cartesian product graph of G1 and G2, denoted by
G1 ×G2, is the graph with vertex set V (G1)× V (G2) where vertex (x, u) is adjacent to vertex (y, v) whenever
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xy ∈ E(G1) and u− v, or x− y and uv ∈ V (G2). For a fixed x of G1, the vertices {(x, u)|u ∈ V (G2)} induces
a subgraph of G1 ×G2 isomorphic to G2 and we call it as G2-layer. Such that, we have G1-layers or G2-layers.
Assume that we have local multiset dimension of G1 and G2, respectively are µl(G1) = k1 and µl(G2) = k2.

Case 1: If we choose k1 ≤ k2, such that we have |W (G1)| = k1. The position of resolving set in
first layer of subgraph G2, denoted by (G2)1, so we have distinct vertex representation in (G2)1.
For the vertex in (G2)2 adjacent to the vertex in (G2)1, we have ford(G1×G2)((xj , u), (x1, u

∗)) =
d(G1×G2)((xj , u), (x1, u)) + d((G2)1)((x1, u), (x1, u

∗)) or dG1×G2((xj , u), (x1, u∗)) > d(G2)1((x1, u), (x1, u
∗)).

Such that for two adjacent vertices of vertex in (G2)1 and (G2)j have distinct representation. For two
adjacent vertex (x1, ui), (x1, ul) ∈ V ((G2)1) where d(G2)1((x1, ui), (x1, u

∗)) ̸= d(G2)1((x1, ui), (x1, u
∗)).

If we have two adjacent vertices in (G2)j-layers for (xj , ui), (xj , ul) ∈ V ((G2)j) such that
we have dG1×G2((xj , ui), (x1, u

∗)) = dG1×G2((xj , ui), (x1, ui)) + d(G2)1((x1, ui), (x1, u
∗)) and

dG1×G2((xj , ul), (x1, u
∗)) = dG1×G2((xj , ul), (x1, ul)) + d(G2)1((x1, ul), (x1, u

∗)) and we know that
dG1×G2

((xj , ui), (x1, u
∗)) ̸= dG1×G2

((xj , ul), (x1, u
∗)) for (x1, u

∗) ∈ W ⊂ V ((G2)1).

Case 2: If we choose k2 < k1, such that we have |W (G2)| = k2. The position of resolving set in first layer of
subgraph G1, denoted by (G1)1, so we have distinct vertex representation in (G1)1. From Case 1, we have same
characterization of the vertex representation.

Based on both cases, we can claim that |W (G1 ×G2)| = k1 for k1 ≤ k2 and |W (G1 ×G2)| = k2 for k2 < k1.
Thus, we get |W (G1 ×G2)| = min{k1, k2}. Such that, µl(G1 ×G2) ≥ min{µl(G1), µl(G2)}. 2

The cartesian product of graph G and tree graph T with characterization for µl(G) = 1 and we get the results as
follows.

Theorem 3.1
Given that a connected graph G and a path Pn, µl(G× Pn) = µl(G)

Proof: The graph G× Pn has n copies subgraph Gi, 1 ≤ i ≤ n. Let W be a local resolving set of G = Gi so that
every vertices u, v ∈ V (G) for u adjacent to v has different representation. If we assume that W is a set of G× Pn,
then we prove that W is local resolving set of G× Pn,

i. We know that for every vertices u ∈ W belong to in subgraph G1 or first copy (first layer).
ii. Every two adjacent vertices u, v ∈ V (G1)−W , has different representation. Since, a set W is the local

resolving set of G = G1.
iii. For every two adjacent vertices u ∈ V (G1)−W and v ∈ V (Gj) such that for w ∈ W , d(u,w) = d′

and d(v, w) = d(v, u) + d(u,w) = d(u, v) + d′ > d′ = d(u,w) which d(u,w) ̸= d(v, w). Thus, r(u|W ) ̸=
r(v|W ).

iv. For Gi and Gj , 1 ≤ i < j ≤ n. Choose two adjacent vertices u ∈ V (Gi) and v ∈ V (Gj) such that for w ∈
W , d(u,w) = d(u, x) + d(x,w), ∀x ∈ V (G1). We know that i < j such that d(v, w) = d(v, u) + d(u, x) +
d(x,w) > d(u, x) + d(x,w) = d(u,w) so d(u,w) ̸= d(v, w). Thus, r(u|W ) ̸= r(v|W ).

v. For every two adjacent vertices u, v ∈ V (Gi) which have d(u,w) = d(u, x) + d(x,w) and d(v, w) =
d(v, y) + d(y, w) where x, y, w ∈ V (G1) such that d(x,w) ̸= d(y, w) and d(u, x) = d(v, y). We have
d(u,w) ̸= d(v, w). Thus, r(u|W ) ̸= r(v|W ).

Based on five cases (i)− (v), W is a local resolving set of G× Pn. Thus, we have upper bound of local multiset
dimension of G× Pn is µl(G× Pn) ≤ µl(G).

Furthermore, we show that the lower bound of local multiset dimension of G× Pn is µl(G× Pn) ≥ µl(G).
Assume that |WG×Pn | < |WG|, by taking |WG×Pn | = |WG| − 1.

i. For every vertices v ∈ WG×Pn belong to in subgraph G1 such that there exists at least two adjacent vertices
has same representation.

ii. Let u, v ∈ V (G1) where u adjacent to v, d(u,w) = d(v, w). Thus, r(u|W ) = r(v|W ). It is a contradiction.
iii. If some vertices of resolving set not all in subgraph G1, then there is at least one vertex of W in Gi, 1 ≤ i ≤ n.
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Figure 5. Illustration of G× T

iv. For any two adjacent vertices u, v ∈ Gi, we have d(u,wi) = d(v, wi) such that d(u,w) = d(u, x) + d(x,w)
and d(v, w) = d(v, y) + d(y, w), we have d(u,w) = d(v, w). Thus, r(u|W ) = r(v|W ). It is a contradiction.

Based cases above, we have the local resolving set of G× Pn at least |WG| or |WG×Pn | ≥ |WG|. Hence, we have
lower bound of local multiset dimension of G× Pn is µl(G× Pn) ≥ µl(G). Thus, the local multiset dimension of
G× Pn is µl(G× Pn) = µl(G). 2

Theorem 3.2
Given that a connected graph G and a tree T , µl(G× T ) ≤ µl(G)

Proof: The graph G× T has n copies subgraph Gi, 1 ≤ i ≤ n. Let W be a local resolving set of G = Gi so that
every vertices u, v ∈ V (G) for u adjacent to v has different representation. If we assume that W is a set of G× T ,
then we prove that W is local resolving set of G× T ,

i. We know that for every vertices u ∈ W belong to in subgraph G1 or first copy (first layer).
ii. Every two adjacent vertices u, v ∈ V (G1)−W , has different representation. Since, a set W is the local

resolving set of G = G1.
iii. For Gi and Gj , 1 ≤ i < j ≤ n. Choose two adjacent vertices u ∈ V (Gi) and v ∈ V (Gj) such that for w ∈

W , d(u,w) = d(u, x) + d(x,w), ∀x ∈ V (G1). We know that i < j such that d(v, w) = d(v, u) + d(u, x) +
d(x,w) > d(u, x) + d(x,w) = d(u,w) so d(u,w) ̸= d(v, w). Thus, r(u|W ) ̸= r(v|W ).

iv. For every two adjacent vertices u, v ∈ V (Gi) which have d(u,w) = d(u, x) + d(x,w) and d(v, w) =
d(v, y) + d(y, w) where x, y, w ∈ V (G1) such that d(x,w) ̸= d(y, w) and d(u, x) = d(v, y). We have
d(u,w) ̸= d(v, w). Thus, r(u|W ) ̸= r(v|W ).

Based on four cases (i)− (iv), W is a local resolving set of G× T . Thus, we have upper bound of local multiset
dimension of G× T is µl(G× T ) ≤ µl(G). 2

Corollary 3.2
Given that a connected graph G and a tree T . For µl(G) = 1, µl(G× T ) = 1

Proof: Alfarisi, et. al. [8] determined the local multiset dimension of T is 1. If the local multiset dimension of G is
1, then every two adjacent vertices have distinct representation.
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Figure 6. Illustration of G× T for d1 ̸= d2

From Lemma 3.2 that µl(G× T ) ≥ min{µl(G), µl(1)} ≥ min{1, 1} ≥ 1. Furthermore, we can show µl(G×
T ) ≤ 1 as follows.

i. the graph G× T has |V (T )|-copies of subgraph G, namely Gj , 1 ≤ j ≤ |V (T )|
ii. we choose the local resolving set in first copy G1, namely W = {(x1, u

∗)}
iii. we know that µl(G) = 1, the distance of two adjacent vertices in (x1, uk), (x1, ul) ∈ V (G1)−W is

d((x1, uk), (x1, u
∗)) ̸= d((x1, ul), (x1, u

∗)) for 1 ≤ k, l ≤ V (G).
iv. every two adjacent vertices (xj , uk), (xj , ul) ∈ V (Gj) has distinct representation, such that

d((xj , uk), (x1, u
∗)) ̸= d((xj , ul), (x1, u

∗)) where d((xj , uk), (x1, u
∗)) = d((xj , uk),

(x1, uk)) + d((x1, uk), (x1, u
∗)) and d((xj , ul), (x1, u

∗)) = d((xj , ul), (x1, ul)) + d((x1, ul),
(x1, u

∗)).
v. every two adjacent vertices (xi, ul) ∈ V (Gi), (xj , ul) ∈ V (Gj) has distinct representation, such

that d((xi, ul), (x1, u
∗)) ̸= d((xj , ul), (x1, u

∗)) where d((xi, ul), (x1, u
∗)) = d((xi, ul), (x1, ul)) +

d((x1, ul), (x1, u
∗)) and d((xj , ul), (x1, u

∗)) = d((xj , ul), (x1, ul)) + d((x1, ul), (x1, u
∗)).

Thus, we obtain µl(G× T ) ≤ 1. Thus, µl(G× T ) = 1, for µl(G) = 1 and any tree T . 2

Lemma 3.3
For µl(G) ̸= 1 and any tree T , µl(G× T ) ≥ 2.

Proof: If local multiset dimension µl(G) ̸= 1, then we have local resolving set |W | ≥ 2. From Lemma 3.2, it
states that µl(G× T ) ≥ min{µl(G), 1} ≥ 1. Assume that |W | = 1. There is at least two adjacent vertices which
have same representation. Choose the local resolving set in G1. Every adjacent vertices in (x1, uk), (x1, ul) ∈
V (G1)−W has some distances, namely d((x1, uk), (x1, u

∗) = d((x1, ul), (x1, u
∗). Thus, the cardinality of the

local resolving set of G× T is |W | ̸= 1, and the local multiset dimension of µl(G× T ) ≥ 2. 2

Theorem 3.3
For µl(G) = 1 and m is even, µl(G× Cm) = 1.

Proof: Alfarisi, et. al. [8] determined the local multiset dimension of Cm with m is odd is 1. If the local multiset
dimension of G is 1, then every two adjacent vertices has distinct representation.

From Lemma 3.2 that µl(G× Cm) ≥ min{µl(G), µl(Cm)} ≥ min{1, 1} ≥ 1. Furthermore, we can show
µl(G× Cm) ≤ 1 as follows.

i. the graph G× Cm has |V (Cm)|-copies of subgraph G, namely Gj , 1 ≤ j ≤ |V (Cm)|
ii. we choose the local resolving set in first copy G1, namely W = {(x1, u

∗)}
iii. we know that µl(G) = 1, the distance of two adjacent vertices in (x1, uk), (x1, ul) ∈ V (G1)−W is

d((x1, uk), (x1, u
∗)) ̸= d((x1, ul), (x1, u

∗)) for 1 ≤ k, l ≤ V (G).
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Figure 7. Illustration of G× T for d1 ̸= d2

Figure 8. Illustration of G× Cm for d1 = d2

iv. every two adjacent vertices (xj , uk), (xj , ul) ∈ V (Gj) has distinct representation such that
d((xj , uk), (x1, u

∗)) ̸= d((xj , ul), (x1, u
∗)) where d((xj , uk), (x1, u

∗)) = d((xj , uk),
(x1, uk)) + d((x1, uk), (x1, u

∗)) and d((xj , ul), (x1, u
∗)) = d((xj , ul), (x1, ul)) + d((x1, ul),

(x1, u
∗)).

v. every two adjacent vertices (xi, ul) ∈ V (Gi), (xj , ul) ∈ V (Gj) has distinct representation such
that d((xi, ul), (x1, u

∗)) ̸= d((xj , ul), (x1, u
∗)) where d((xi, ul), (x1, u

∗)) = d((xi, ul), (x1, ul)) +
d((x1, ul), (x1, u

∗)) and d((xj , ul), (x1, u
∗)) = d((xj , ul), (x1, ul)) + d((x1, ul), (x1, u

∗)).

Thus, we obtain that µl(G× Cm) ≤ 1. It concludes that µl(G× Cm) = 1, for µl(G) = 1 and m is even. 2

Lemma 3.4
For (µl(G) = 1 and m is odd) or (µl(G) ̸= 1 and m ≥ 3), µl(G× Cm) ≥ 2.

Proof: Based on Lemma 3.1 that µl(G1 ×G2) = min{µl(G1), µl(G2)}. If one of both graph has local multiset
dimension at least one, then µl(G× Cm) ≥ 1. We try construct of the sharpest lower bound of G× Cm for m is
odd or (µl(G) ̸= 1 and m is even) as follows.
Case 1: For µl(G) = 1 and m is odd
We know that µl(Cm) = 3 for n is odd and µl(G) = 1, based Lemma 3.2 that µl(G× Cm) ≥ min{1, 3} ≥ 1.
Assume that |W | = 1, there is at least two adjacent vertices which have same representation. Choose the local
resolving set in (Cm)1, then every adjacent vertices in (x1, uk), (x1, ul) ∈ V ((Cm)1)−W has some distance
namely d((x1, uk), (x1, u

∗) = d((x1, ul), (x1, u
∗). Thus, the cardinality of the local resolving set of G× Cm is

|W | ̸= 1, such that the local multiset dimension of µl(G× Cm) ≥ 2. This illustration can be seen in Figure 8

Case 2: For µl(G) ̸= 1 and m is odd
If local multiset dimension µl(G) ̸= 1, then we have local resolving set |W | ≥ 2. From Lemma 3.2 that µl(G×
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Figure 9. Illustration of HQ4

Cm) ≥ min{µl(G), 3} ≥ 2. Assume that |W | = 1 such that there is at least two adjacent vertices which have same
representation. Choose the local resolving set in G1, then every adjacent vertices in (x1, uk), (x1, ul) ∈ V (G1)−W
have some distance namely d((x1, uk), (x1, u

∗) = d((x1, ul), (x1, u
∗). Thus, the cardinality of the local resolving

set of G× Cm is |W | ̸= 1, such that the local multiset dimension of µl(G× Cm) ≥ 2.
Case 3: For µl(G) ̸= 1 and m is even
If local multiset dimension µl(G) ̸= 1, then we have local resolving set |W | ≥ 2. From Lemma 3.2 that µl(G×
Cm) ≥ min{µl(G), 1} ≥ 1. Assume that |W | = 1 such that there is at least two adjacent vertices which have same
representation. Choose the local resolving set in G1, then every adjacent vertices in (x1, uk), (x1, ul) ∈ V (G1)−W
have some distance namely d((x1, uk), (x1, u

∗) = d((x1, ul), (x1, u
∗). Thus, the cardinality of the local resolving

set of G× Cm is |W | ̸= 1, such that the local multiset dimension of µl(G× Cm) ≥ 2. The local multiset dimension
of G× Cm is µl(G× Cm) ≥ 2. 2

Next, we study a Hypercube graph, denoted by HQn. Hypercube graph is the graph formed from the vertices
and edges of an n-dimensional hypercube. It is the n-fold Cartesian product of the two-vertex complete graph, and
decomposed into two copies of HQn−1 connected to each other by a perfect matching.

Theorem 3.4
For n ∈ N ∪ {0}, µl(HQn) = 1.

Proof: Hypercube graph satisfies HQn = HQn−1 × P2 for n ≥ 0. For n = 0, we have HQ0 isomorphic to K1

or trivial graphs. The local multiset dimension of K1 is µl(HQ0) = 1. To prove this theorem, we can use a
mathematical induction or recursive technique below.

i. For n = 1, we have HQ1 = HQ0 × P2. Based on Lemma 3.2, it holds µl(HQ1) = µl(HQ0 × P2) = 1 since
µl(HQ0) = 1.

ii. For n = 2, we have HQ2 = HQ1 × P2. Based on Lemma 3.2, it holds µl(HQ2) = µl(HQ1 × P2) = 1
since µl(HQ1) = 1.

. . .

iii. Assume that for n = k, we have HQk = HQk−1 × P2. Based on Lemma 3.2, it holds µl(HQk) =
µl(HQk−1 × P2) = 1 since µl(HQk−1) = 1.

iv. For n = k + 1, we prove that µl(HQk × P2) = 1?. From point iii, we have µl(HQk) = 1. Recalling Lemma
3.2, It implies that µl(HQk+1) = µl(HQk × P2) = 1 since µl(HQk) = 1.

Thus, the local multiset dimension of hypercube HQn is µl(HQn) = 1, for n ∈ N ∪ {0}. Figure 9 is an illustration
of local multiset dimension of hypercube graphs for HQ4. 2

Theorem 3.5
µl(AHQn) = 1, for n ≥ 2
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Figure 10. Illustration of AHQ4

Proof: Almost hypercube graph satisfies AHQn = (HQn−1 × P2)− {e} for n ≥ 3, where e is correspondence
edge of subgraph (HQn−1)1 and (HQn−1)2. We know that HQn−1 × P2 has two isomorphic graphs (HQn−1)1
and (HQn−1)2 with {e} is the correspondence edge set. Based on Theorem 3.4 that µl(HQn−1) = 1 such that for
two adjacent vertices u, v ∈ V ((HQn−1)1) has the distinct representation namely r(u|W ) ̸= r(v|W ) for W in the
first copy of HQn−1.

i. If we choose two adjacent vertices in u, v ∈ V ((HQn−1)2) with their vertices are correspondence
by edge to two adjacent vertices in x, y ∈ V ((HQn−1)1) where d(x,w) ̸= d(y, w) for w ∈ W . We
have the distance d(u, x) = d(v, y) = 1 and d(u,w) = d(u, x) + d(x,w) = 1 + d(x,w), d(v, w) = d(v, y) +
d(y, w) = 1 + d(y, w) then d(u,w) ̸= d(v, w). Thus, we have r(u|W ) ̸= r(v|W ).

ii. If we choose two adjacent vertices in u, v ∈ V ((HQn−1)2) with their vertices are not correspondence by
edge to two adjacent vertices in x, y ∈ V ((HQn−1)1) where d(x,w) ̸= d(y, w) for w ∈ W . But We have
the distance d(u, x) > 1, d(v, y) > 1 and d(u,w) = d(u, x) + d(x,w) = d+ d(x,w), d(v, w) = d(v, y) +
d(y, w) = d∗ + d(y, w) then d(u,w) ̸= d(v, w). Thus, we have r(u|W ) ̸= r(v|W ).

iii. If we choose two adjacent vertices in u, v ∈ V ((HQn−1)2) with one of them are correspondence by edge to
adjacent vertices in x ∈ V ((HQn−1)1) for w ∈ W . But we have the distance d(u, x) = 1, d(v, x) = d(u, v) +
d(v, x) = 1 + 1 = 2 and d(u,w) = d(u, x) + d(x,w) = 1 + d(x,w), d(v, w) = d(v, y) + d(y, w) = 2 +
d(y, w) then d(u,w) ̸= d(v, w). Thus, we have r(u|W ) ̸= r(v|W ).

Based on three cases above, the local resolving set of almost hypercube graphs |W | = 1. Thus, the local multiset
dimension of almost hypercube graphs AHQn is µl(AHQn) = 1, for n ≥ 3. Figure 10 is an illustration of local
multiset dimension of almost hypercube graphs for AHQ4. 2

Kautz graphs K(d, n) for d ≥ 2 and n ≥ 2, is defined as follows. The vertex set of K(d, n) is V (K(d, n)) =
{x1, x2, . . . , xn|xi ∈ {0, 1, 2, . . . , d}, xi ̸= xi+1, i = 1, 2, . . . , n− 1} and the edge set E(K(d, n)) consists of all
edges from one vertex x1, x2, . . . , xn to d order vertices x1, x2, . . . , xn, α , where α ∈ {1, 2, . . . , d} and α ̸= xn.
It is clear that K(dn) is d-regular, |V (d, n)| = dn + dn1 and |E(dn)| = dn+1 + dn. Moreover, K(d, n) has d(d+1)

2
pairs of symmetric edges. The Kautz undirected graph, denoted by UK(d, n), is an undirected graph obtained
from K(d, n) by deleting the orientation of all edges and omitting multiple edges. It is clear that UK(dn) has
dn+1 + dn − d(d+1)

2 edges, the maximum degree is 2d for n ≥ 3 and the minimum degree is 2d− 1 for n ≥ 2.
The Kautz undirected graph of cycle, denoted by UK(Cn) is connected graphs with 3-

regular isomorphic to Cn × P2. The vertex set and edge set of Cn respectively, are V (Cn) =
{x1, x2, . . . , xn} and E(Cn) = {x1x2, x2x3, . . . , xn−1xn, xnx1}. The vertex set of UK(Cn) is
V (UK(Cn)) = {xi,(i+1)modn, x(i+1)modn,i : 1 ≤ i ≤ n} and edge set of UK(Cn) is E(UK(Cn)) =
{xi,(i+1)modnx(i+1)modn,i, xi,(i+1)modnx(i+1)modn,(i+2)modn, x(i+1)modn,ix(i+2)modn,(i+1)modn; 1 ≤ i ≤ n}.

Corollary 3.3
For n ≥ 4,

µl(UK(Cn)) =

{
1, if n is even
3, if n is odd
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Furthermore, we characterization of relationship between multiset dimension and local multiset dimension of
graphs.

Remark 3.1
The relationship of multiset dimension and local multiset dimension of graphs G, gap(md(G), µl(G) = ∞.

4. Conclusion

In this paper we have given an result the lower bound of multiset dimension and local multiset dimension of graphs.
Hence the following problem aries naturally.

Open Problem 4.1
Determine the local multiset dimension of family graph namely family tree, unicyclic, regular graphs, and others.

Open Problem 4.2
Determine the local multiset dimension of operation graph namely corona product, joint, comb product, and others.
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