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Abstract In this work, we have modelled the problem of maximizing the velocity of a rocket moving with a rectilinear
motion by a linear optimal control problem, where the control represents the action of the pilot on the rocket. In order to
solve the obtained model, we applied both analytical and numerical methods. The analytical solution is calculated using the
Pontryagin maximum principle while the approximate solution of the problem is found using the shooting method as well
as two techniques of discretization: the technique using the Cauchy formula and the one using the Euler formula. In order to
compare the different methods, we developed an implementation with MATLAB and presented some simulation results.
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1. Introduction

Optimal control is a very important area in applied mathematics. Indeed, many practical problems can be
modelled as optimal control problems. Optimal control theory is applied successfully in many fields, such
as mechanics, electrical engineering, chemistry, biology, aerospace and aeronautics, robotics, agriculture, etc.
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

The traditional approach to solve optimal control problems is the Pontryagin maximum principle. This principle,
proposed by L.S. Pontryagin in 1956 [12], generalizes the Euler-Lagrange equations of the calculus of variations
and gives a necessary condition of optimality. The control theory is also applied in different mathematical
disciplines: optimal control of partial differential equations, stochastic control theory, game theory, etc. The optimal
control problem can be solved analytically using the Pontryagin maximum principle, however when the problem
is difficult, we must use numerical methods in order to find an approximate solution.

There exist several numerical methods for solving optimal control problems [13]: indirect methods based on
the calculus of variations and direct methods based on discretization techniques and optimization. The indirect
shooting method [14] is known for its efficiency and accuracy and it is successfully applied to solve practical
problems [4, 6]. However, when the problem is difficult, direct discretization methods can be used for finding an
approximate solution. In [15], the Cauchy formula for solving systems of linear differential equations is used to
transform the linear optimal control problem into an equivalent problem, then discretization is performed to get a
linear programming problem which is solved using the adaptive method. Recently in [16], the Cauchy formula is
used with discretization to transform the original linear optimal control problem into a linear optimization problem
which is solved with the hybrid direction algorithm proposed in [17]. In [18], the Euler discretization formula
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is first applied for the initial linear optimal control problem, then the obtained optimization problem is solved
with the fmincon function of Matlab. In [19], the Euler formula is used for the discretization of an optimal control
problem corresponding to a viral marketing model and the obtained optimization problem was solved with different
optimization solvers.

In this work, we have proposed a linear optimal control model with free final time for maximizing the velocity of
a rocket moving with a rectilinear motion from an initial position to a final one. In order to solve the obtained model,
we applied both analytical and numerical methods. The analytical solution is calculated using the Pontryagin
maximum principle, while the approximate solution of the problem is found using the shooting method and two
discretization techniques: the Cauchy discretization technique and the Euler discretization one. The obtained linear
programming problems are efficiently solved with an interior-point method implemented in Matlab.

This article is structured as follows. In Section 2, we build the mathematical optimal control model corresponding
to the problem of maximizing the velocity of a rocket which moves with a rectilinear motion. In Section 3, we fix
the value of the final time by solving an other problem called a minimal time optimal control problem. In Section
4, we solve the problem of maximizing the velocity of the rocket with four methods: the analytical method, the
shooting method and two techniques of discretization: the technique using the Cauchy formula and the one using
the Euler formula. Then, we compare the obtained results. Finally, we conclude our paper and give some future
works.

2. Problem modelling

Consider a rocket with mass m and velocity v(t) at time t ∈ [0, T ], which moves from an initial height h(0) to a
final height h(T ) with a rectilinear motion. Using the laws of physics for bodies with rectilinear motion [1, 2], we
obtain the following equation:

d2h

dt2
(t) =

Tp(t)

m
− g, t ∈ [0, T ],

where h(t) and Tp(t) represent respectively the travelled distance and the thrust of the rocket at time t ∈ [0, T ], g

is the gravitational acceleration. Let us put w(t) = Tp(t)
m and

dh

dt
(t) = v(t). Hence, we get


dh

dt
(t) = v(t),

dv

dt
(t) = w(t)− g, t ∈ [0, T ].

(1)

If the pilot does not apply any command on the rocket, then the thrust w(t) satisfies the following equation:

·
w(t) = αw(t), t ∈ [0, T ]. (2)

where α > 0 is the inverse of the response time of the rocket motors to the pilot application. In order to control the
movement of the rocket, the pilot applies a force u(t), t ∈ [0, T ]. The ordinary differential equation (2) becomes:

·
w(t) = α[w(t)− u(t)], t ∈ [0, T ]. (3)
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The objective is therefore to maximize the velocity of the rocket which moves from the initial point h(0) = h0, to
a given height h1. This leads us to solve the following optimal control problem:



Maximize J(u, T ) = v(T ),

·
h(t) = v(t),

·
v(t) = w(t)− g,

·
w(t) = α[w(t)− u(t)],

h(0) = h0, v(0) = 0, w(0) = g,

h(T ) = h1, | u(t) |≤ 1, t ∈ [0, T ], T free.

(4)

This problem is written in the following matrix form:


Maximize J(u, T ) = c′x(T ),

·
x(t) = Ax(t) +Bu(t) + r,

x(0) = x0, Q
′x(T ) = h1, | u(t) |≤ 1, t ∈ [0, T ], T free,

(5)

where

x(t) =

 h(t)
v(t)
w(t)

 , x(0) =

 0
0
g

 , A =

 0 1 0
0 0 1
0 0 α

 ,

B =

 0
0
−α

 , r =

 0
−g
0

 ,

Q′ = (1, 0, 0) and c′ = (0, 1, 0).

The symbol ”′” designates the transposition operation.
The Kalman matrix is given by:

K = (B,AB,A2B) =

 0 0 −α
0 −α −α2

−α −α2 −α3

 , det(K) = α3 ̸= 0.

The rank of matrix K is rank(K) = 3, so the system (5) is controllable [6].
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3. Minimal time problem

Similarly to [6, 18], we compute the value of the final time T , which will be used in problem (4), by solving the
following minimal time problem: 

Minimize J(u, T ) =
∫ T

0

dt,

·
h(t) = v(t),

·
v(t) = w(t)− g,

·
w(t) = α[w(t)− u(t)],

h(0) = h0, v(0) = 0, w(0) = g,

| u(t) |≤ 1, h(T ) = h1, t ∈ [0, T ].

(6)

In order to solve Problem (6), we use the Pontryagin maximum principle. Let us denote by p(t) =
(ph(t), pv(t), pw(t)) the adjoint vector associated to the problem (6), whose Hamiltonian is given as follows:

H(t, x(t), p(t), p0, u(t)) = ph(t)v(t) + pv(t)[w(t)− g]

+αpw(t)[w(t)− u(t)] + p0.
(7)

Since we maximize the Hamiltonian, we set p0 = −1 [6].
The adjoint vectors are the solutions of the system corresponding to the following Euler-Lagrange equations:

·
ph(t) = 0,

·
pv(t) = −ph(t),
·
pw(t) = −pv(t)− αpw(t), t ∈ [0, T ].

(8)

From the system (8), we deduce that

ph(t) = λ1,

pv(t) = −λ1t+ λ2,

pw(t) =
1

α2
(α2λ3e

−αt + αλ1t− λ1 − αλ2),

λi ∈ R, i = 1, 2, 3,

(9)

where
ph(0) = λ1, pv(0) = λ2, pw(0) =

1

α2
(−λ1 − αλ2 + α2λ3), (10)

H(0, x(0), p(0), u(0)) = αpw(0)[g − u(0)]− 1. (11)

The dynamical system is autonomous, so the Hamiltonian is constant for all t ∈ [0, T ]. Therefore, we will have

H(0, x(0), p(0), u(0)) = H(T, x(T ), p(T ), u(T )). (12)

Since the final time T is free, according to the condition of transversality, we get:

H(T, x(T ), p(T ), u(T )) = 0. (13)
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From relationships (12) and (13), we obtain

H(0, x(0), p(0), u(0)) = αpw(0)[g − u(0)]− 1 = 0.

So
pw(0) =

1

α[g − u(0)]
> 0. (14)

The Hamiltonian’s maximum is given by:

H(t, x∗(t), p∗(t), u∗(t)) = max
−1≤u(t)≤1

H(t, x(t), p(t), u(t))

= ph(t)v(t) + pv(t)[w(t)− g]

+αpw(t)w(t)− 1

+ α max
−1≤u(t)≤1

[−pw(t)u(t)].

Hence, the control maximizing the Hamiltonian is:

u∗(t) = −sign(pw(t)). (15)

According to (14) and (15), we will have u∗(0) = −1.
If we fix the response time of the motors at 0.7s, we find α = 1.42 and we use the following data to solve

our problem: h0 = 0m,h1 = 600m and g = 9.80665m.s−2. The goal is therefore to determine the minimum time,
optimum of the problem (6). By using the shooting method, we have obtained the results shown in Figure 1.

The shooting method is based on the Pontryagin Maximum Principle [6]. It consists in finding a zero of the
shooting function associated with the minimal time problem. It is a fast, high-precision method that does not
require assumptions about the control structure. The shooting method consists in three main steps [3, 18]:

• Step 1: Form a boundary value problem using the model equations and the adjoint vectors equations as well
as the transversality conditions.

• Step 2: Determine the shooting function.
• Step 3: Solve a system of nonlinear equations.
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Figure 1. Results of the minimal time problem
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From the graphs of Figure 1, we deduce that Tmin = 3.43s.
Knowing this minimal time, our final time should always be chosen slightly larger than Tmin [18]. So, we choose
T = 3, 5 s.

4. Solving the problem of the maximum velocity of a rocket

In this section, taking as final time, the time T found in the previous section, i.e., T = 3.5s. We first solve the
problem (4) analytically; then we proceed to the numerical resolution with three methods: shooting method, Cauchy
discretization method and Euler discretization method.

In order to solve the problem (4), we first apply the Pontryagin maximum principle. The Hamiltonian of the
problem (4) is given for t ∈ [0, T ] by:

H(t, x(t), p(t), u(t)) = ph(t)v(t) + pv(t)[w(t)− g]

+αpw(t)[w(t)− u(t)].
(16)

The adjoint vectors are solutions of the following system:
·
ph(t) = 0,

·
pv(t) = −ph(t),
·
pw(t) = −pv(t)− αpw(t), t ∈ [0, T ].

(17)

From the system (17), we deduce that

ph(t) = λ1,

pv(t) = −λ1t+ λ2,

pw(t) =
1

α2
(α2λ3e

−αt + αλ1t− λ1 − αλ2),

λi ∈ R, i = 1, 2, 3,

(18)

where
ph(0) = λ1, pv(0) = λ2, pw(0) =

1

α2
(−λ1 − αλ2 + α2λ3). (19)

The Hamiltonian’s maximum is given by:

H(t, x∗(t), p∗(t), u∗(t)) = max
−1≤u(t)≤1

H(t, x(t), p(t), u(t))

= ph(t)v(t) + pv(t)[w(t)− g]

+αpw(t)w(t)

+α max
−1≤u(t)≤1

[−pw(t)u(t)].

The control which maximizes the Hamiltonian is

u∗(t) = −sign(pw(t)). (20)

The vector x(T ) must satisfy the constraint

h1 −Q′x(T ) = 0.
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Since the final time T is fixed in problem (4), we get the following transversality conditions:

− ph(T )−
∂g(x(T ))

∂h(T )
+
∂(h1 −Q′x(T ))

∂h(T )
b = 0, (21)

− pv(T )−
∂g(x(T ))

∂v(T )
+
∂(h1 −Q′x(T ))

∂v(T )
b = 0, (22)

− pw(T )−
∂g(x(T ))

∂w(T )
+
∂(h1 −Q′x(T ))

∂w(T )
b = 0, (23)

where g(x(T )) = −v(T ) and b ∈ R.
From which, we obtain the following boundary conditions:

ph(T ) = −b, pv(T ) = 1, pw(T ) = 0. (24)

By using the boundary conditions (24) and the relationships (18), we get:

ph(t) = −b,

pv(t) = b(t− T ) + 1,

pw(t) =
1

α2
((α− b)(e−α(t−T ) − 1)− αb(t− T )),

t ∈ [0, T ].

(25)

4.1. Analytical solution

Since the optimal control is equal to the opposite sign of the adjoint vector pw(t), then the commutation times are
given by the roots of the equation pw(t) = 0. Since A is a matrix of order 3 and all its eigenvalues are real, the
problem has at most a commutation time tc < T [6].

In order to choose the optimal strategy, consider the following possible strategies:

• Strategy 1: u(t) = 1, ∀t ∈ [0, T ];
• Strategy 2: u(t) = −1, ∀t ∈ [0, T ];
• Strategy 3: u(t) = 1 for t ∈ [0, tc[, then u(t) = −1 for t ∈ [tc, T ];
• Strategy 4: u(t) = −1 for t ∈ [0, tc[, then u(t) = 1 for t ∈ [tc, T ].

Strategy 1:
We have,

·
w(t) = α[w(t)− 1], which implies:

w(t) = c1e
αt + 1,

v(t) = c1
α e

αt + (1− g)t+ c2,

h(t) = c2
α2 e

αt + (1−g)
2 t2 + c2t+ c3, c1, c2, c3 ∈ R.

(26)

Using the initial conditions, we obtain:
w(t) = (g − 1)e1.42t + 1,

v(t) = (g − 1)
(

1
1.42e

1.42t − t− 1
1.42

)
,

h(t) = (g − 1)
(

1
1.422 e

1.42t − 1
2 t

2 − 1
1.42 t−

1
1.422

)
.

(27)

For t = T , we will have h(T ) = 549.0243 < 600. Therefore Strategy 1 is not feasible.
Strategy 2:
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We have
·
w(t) = α[w(t) + 1], which implies:

w(t) = d1e
αt − 1,

v(t) = d1

α e
αt − (1 + g)t+ d2,

h(t) = d1

α2 e
αt − (1+g)

2 t2 + d2t+ d3, d1, d2, d3 ∈ R.

(28)

Using the initial conditions, we obtain:
w(t) = (g + 1)e1.42t + 1,

v(t) = (g + 1)
(

1
1.42e

1.42t − t− 1
1.42

)
,

h(t) = (g + 1)
(

1
1.422 e

1.42t − 1
2 t

2 − 1
1.42 t−

1
1.422

)
.

(29)

For t = T , we will have: h(T ) = 673.7083 > 600, so Strategy 2 is not feasible.
Strategy 3:
The equations of the first set of trajectories, when u(t) = 1, t ∈ [0, tc[, are:

w(t) = (g − 1)e1.42t + 1,

v(t) = (g − 1)
(

1
1.42e

1.42t − t− 1
1.42

)
,

h(t) = (g − 1)
(

1
1.422 e

1.42t − 1
2 t

2 − 1
1.42 t−

1
1.422

)
.

(30)

The equations of the second set of trajectories, when u(t) = −1, t ∈ [tc, T ], are given by:
w(t) = β1e

1.42t + 1,

v(t) = β1

1.42e
1.42t − (g + 1)t+ β2,

h(t) = β1

1.422 e
1.42t − (g+1)

2 t2 + β2t+ β3, β1, β2, β3 ∈ R.

(31)

At the intersection point of the two sets, we obtain:

β1 = (g − 1) + 2e−1.42tc , β2 = 2tc −
(g + 1)

1.42
,

β3 = −t2c +
2

1.42
tc −

(g + 1)

1.422
.

Let’s calculate tc such that h(T ) = 600m.
This last condition leads to the following equation:

142.86e−1.42tc − t2c + 8.41tc − 69.15 = 0. (32)

The numerical solution of this last equation is given by: tc = 0.557 s.
By replacing the values of β1 and β2 in the second equation of the system (31), we obtain

J(u, T ) = v(T ) = 940.8949m.s−1.

Strategy 4:
The equations of the first set of trajectories, when u(t) = −1, t ∈ [0, tc[ are:

w(t) = (g + 1)e1.42t − 1,

v(t) = (g + 1)
(

1
1.42e

1.42t − t− 1
1.42

)
,

h(t) = (g + 1)
(

1
1.422 e

1.42t − 1
2 t

2 − 1
1.42 t−

1
1.422

)
.

(33)
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The equations of the second set of trajectories, when u(t) = 1, t ∈ [tc, T ], are:
w(t) = γ1e

αt + 1,

v(t) = γ1

α e
αt + (1− g)t+ γ2,

h(t) = γ1

α2 e
αt + (1−g)

2 t2 + γ2t+ γ3, γ1, γ2, γ3 ∈ R.

(34)

At the intersection point of the two sets, we obtain:

γ1 = (g + 1)− 2e−1.42tc , γ2 = −2tc −
(g − 1)

1.42
,

γ3 = t2c −
2

1.42
tc −

(g − 1)

1.422
.

So let’s calculate tc such that h(T ) = 600m.
This last condition yields the following equation:

142.8555e−1.42tc + t2c + 8.4085tc + 91.8798 = 0. (35)

The numerical solution of this last equation is given by: tc = 0.331 s.
According to the system (34), the objective value of the problem (4) is equal to:

J(u, T ) = v(T ) = 931.6531m.s−1.

Note that the objective value given by Strategy 3 is higher than the one found by Strategy 4, which is of the
bang-bang type. The theoretical results are plotted in Figures 2 and 3.
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Figure 2. t 7−→ u(t) and t 7−→ pw(t)

We have therefore determined the optimal trajectory that maximizes v(T ) and satisfies the boundary condition
h(T ) = 600m, which is given by

u∗(t) =

{
1, t ∈ [0, 0.55[;

−1, t ∈ [0.55, 3.5];
(36)

and
J(u∗, T ) = v∗(T ) = 940.8949m.s−1.
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4.2. Numerical resolution by the shooting method

The Pontryagin maximum principle leads us to the following boundary value problem:

·
x1(t) = x2(t),

·
x2(t) = x3(t)− g,

·
x3(t) = α[x3(t) + sign(p3(t))],
·
p1(t) = 0,

·
p2(t) = −p1(t),
·
p3(t) = −p2(t)− αp3(t),

x1(0) = 0, x2(0) = 0, x3(0) = g,

p1(0) = λ1, p2(0) = λ2, p3(0) =
1

α2
(α2λ3 − λ1 − αλ2),

x1(T ) = 600, x2(T ) : free, x3(T ) : free,

p1(T ) = −b, p2(T ) = 1, p3(T ) = 0,

(37)

where

x(t) = (xj(t), j = 1 . . . 3) = (h(t), v(t), w(t))

and

p(t) = (pj(t), j = 1 . . . 3) = (ph(t), pv(t), pw(t)).

We construct the following shooting function:

G : R6 −→ R6

(p(0), p(T )) 7−→ G(p(0), p(T )),
(38)
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with

G(p(0), p(T )) =



p1(0)− λ1
p2(0)− λ2

p3(0)−
1

α2
(α2λ3 − λ1 − αλ2)

p1(T ) + b
p2(T )− 1
p3(T )− 0


.

Hence, the problem (37) is equivalent to the following problem:

·
x1(t) = x2(t),

·
x2(t) = x3(t)− g,

·
x3(t) = α[x3(t) + sign(p3(t))],
·
p1(t) = 0,

·
p2(t) = −p1(t),
·
p3(t) = −p2(t)− αp3(t),

x1(0) = 0, x2(0) = 0, x3(0) = g,

x1(T ) = h1, x2(T ) : free, x3(T ) : free,

G(p(0), p(T )) = 0.

(39)

We determine the numerical solution of the nonlinear system G(p(0), p(T )) = 0 using Newton method. By
implementing this method with Matlab, we find the results plotted in Figure 4.

These results show that the commutation time is tc = 0.557s, the maximum velocity is v∗(T ) = 940.8949m.s−1.
The execution time of the shooting method is t = 1.9781s. Let us remark that the shooting method have found the
same results as those of the analytical method in a short CPU time. This shows that the shooting method is fast and
gives accurate results for the studied problem.

4.3. Numerical resolution by the Cauchy discretization method

For a number of discretization subintervals N chosen in advance, the discretization step is θ =
T

N
.

The solution of the dynamical system of the problem (4) is given by:

x(t) = F (t)x0 +

∫ t

0

F (t)(F (s))−1[Bu(s) + r(s)]ds, t ∈ [0, T ], (40)

where F (t) is the resolvent, which is the solution of the following system:

·
F (t) = AF (t), F (0) = I3, t ∈ [0, T ].

Using this last solution, the initial problem (4) takes the following form:
max
u(t)

J(u(t)) = c
′
F (T )x0 +

∫ T

0

ψ(t)dt+

∫ T

0

C(t)u(t)dt,∫ T

0

φ(t)u(t)dt = g,

−1 ≤ u(t) ≤ 1, t ∈ [0, T ],

(41)
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Figure 4. Numerical results of the shooting method

where
C(t) = c

′
F (T )F (t)−1B, φ(t) = Q

′
F (T )F (t)−1B,

ψ(t) = c
′
F (T )F (t)−1r,

g = h1 −Q
′
F (T )x0 −

∫ T

0

Q
′
F (T )F (t)−1rdt.

Let τ j = τj+1 = τj + θ, so we have
[0, T ] = ∪N−1

j=1 [τj , τ
j [∪[τN , τN ].

We compute the numbers Cj and Xj as follows:

Cj =

∫ τj

τj

C(t)dt,

Xj =

∫ τj

τj

φ(t)dt, ψj =

∫ τj

τj

ψ(t)dt,

gj = h1 −Q
′
F (T )x0 −

∫ τj

τj

Q
′
F (T )F (t)−1rdt, j = 1, . . . , N.

Hence, we obtain the following linear programming problem:
max
u

J(u) =
N∑
j=1

Cjuj ,

N∑
j=1

Xjuj = g,

−1 ≤ uj ≤ 1, j = 1, . . . , N.

(42)

We have solved this linear program for different values of N with the interior-point method implemented in
MATLAB2009b executed with a PC having a Core i5 microprocessor, 2.40Ghz and a RAM of 6 GO. The execution

Stat., Optim. Inf. Comput. Vol. 8, March 2020



M. ALIANE, N. MOUSSOUNI AND M. BENTOBACHE 293

Table 1. Numerical simulation results for the Cauchy discretization method

N v(T ) Nit T1(s) T2(s) T (s)

10 940.7414 6 5.9679 0.2645 6.2342
50 940.8939 8 21.1047 0.2557 21.3604
100 940.8944 8 41.5202 0.2535 41.7788
150 940.8946 8 61.7943 0.2584 62.0527
200 940.8947 8 78.0943 0.2656 78.3599
500 940.8948 8 228.3542 0.2671 228.6218
800 940.8948 9 421.2051 0.2825 421.4875
900 940.8949 9 505.9931 0.3897 506.3828
1000 940.8949 9 544.6023 0.4181 545.0209
2000 940.8949 10 1584.1246 0.2918 1584.4317

time of the Cauchy discretization algorithm T1, the number of iterations Nit and the execution time T2 of the
interior-point solver, the total execution time T = T1 + T2, as well as the maximum speed at the final time v(T )
for different values of N , are presented in Table 1.

Let us remark that the Cauchy discretization technique have found the optimal solution computed analytically
with 2 accurate decimals in 21.36s and with 4 accurate decimals in 506.38s. This shows that this method can give
accurate results but in a large amount of time.

4.4. Numerical resolution by the Euler discretization method

For a number of subintervals N chosen in advance, we will have the step of discretization θ = T
N and the following

times:
0 = t0 < t1 < · · · < tN−1 < tN = T.

The application of the Euler discretization scheme for solving boundary value problems gives us the following
linear programming problem:

Maximize J(u, T ) = v(T ),

h(ti+1) = h(ti) + θv(ti), i = 0, 1, . . . , N,

v(ti+1) = v(ti) + θ[w(ti)− g], i = 0, 1, . . . , N,

w(ti+1) = w(ti) + αθ[w(ti)− u(ti)], i = 0, 1, . . . , N,

h(0) = 0, v(0) = 0, w(0) = g, h(tN ) = 600.

(43)

We also solved the linear program (43) with the MATLAB2009b’s interior-point solver. The obtained results
(execution time of the interior-point method T , number of iterations Nit and the maximum speed v(T )) are
presented in Table 2.

From Table 2, we can remark that the Euler discretization method is very fast, however even with a large
discretization step, it can not reach the desired accuracy.

4.5. Numerical comparison

The optimal speeds found by the four methods are almost similar, however the execution times of these methods
are quite different. Note that the shooting method gave an optimal speed with a great accuracy and required a very
short execution time (1.97 s). For N = 900, the Cauchy’s discretization method gave the maximum velocity with
an accuracy of 4 decimals with an execution time of 506.38 s, while the Euler discretization method gave for N =
3000 an optimal speed with an error equal to 0.34 and an execution time of 1.55 s. This shows that:
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Table 2. Numerical simulation results for the Euler discretization method

N v(T ) Nit T (s)

200 943.7800 12 0.0092
500 942.2125 12 0.0464
800 941.7509 11 0.1007
1200 941.4787 11 0.1726
2000 941.2552 31 1.6544
3000 941.1352 25 1.5569
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Figure 5. Numerical comparison of the different numerical methods

• The shooting method is highly accurate and fast.
• The Cauchy discretization method is highly accurate but it is slow.
• The Euler discretization method is very fast but less accurate than the other methods.

5. Conclusion

In this work, we have solved a practical problem arising in the aerospace field by formulating it as a linear optimal
control problem. For the theoretical resolution, the principle of Pontryagin maximum has been used which gives
a necessary condition of optimality. Numerically, the considered problem is solved with the shooting method and
two techniques of discretization (technique using the Cauchy formula and the one using the Euler formula). The
obtained optimal solutions are almost similar, but a large difference in the execution time of the three numerical
methods has been observed. In the future, we will introduce a new parameter (heel angle) and other constraints,
and then we will model the motion of the rocket as a nonlinear optimal control problem.
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