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Abstract This study proposes a new approach for the solution of multicriteria decision-making problems. The proposed
approach is based on using rating/ranking methods. Particularly, in this paper, we investigate the possibility of applying
Massey, Colley, Keener, offence-defence, and authority-hub rating methods, which are successfully used in various fields.
The proposed approach is useful when no decision-making authority is available or when the relative importance of various
criteria has not been previously evaluated. The proposed approach is tested with an example problem to demonstrate its
viability and suitability for application.
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1. Introduction

This paper proposes a novel approach for solving multi criteria decision-making (MCDM) problems based on
using rating/ranking methods. The proposed approach is particularly useful when no decision-making authority
is available or when the relative importance of various criteria has not been previously evaluated. The essence of
the proposed method is briefly explained. The multi criteria formulation is the typical starting point for theoretical
and practical analyses of decision-making problems. Thus, the definition of Pareto optimality and a vast arsenal of
different Pareto optimization methods widely used for decision-making purposes. Correspondingly, the literature
on Pareto optimization methods for decision-making very extensive and we can indicate here only an insignificant
number of theoretical and applied works: see e.g. ( [1] [2] [3] [4] [5] [6] [7] ).

However, unlike single-objective optimizations, a characteristic feature of Pareto optimality is that the set of
Pareto-optimal alternatives (i.e., the set of efficient alternatives) is usually ‘large’. In addition, all these Pareto-
optimal alternatives must be considered mathematically equal. Hence, the problem of choosing a specific Pareto-
optimal alternative for implementation arises because the final decision usually must be unique. Thus, additional
factors must be considered to aid a decision-maker in the selection of specific or more favorable alternatives from
the set of Pareto-optimal solutions.

In this paper, we show that, for any MCDM problem that can be defined naturally, a special kind of score matrix
(and some its modifications) can be used to introduce a rating/rank on the set of alternatives. The best option using
this rating/rank alternative can be declared a ‘solution’ of the MCDM problem under consideration. We investigate
the possibility of applying different rating/ranking methods. These are a number of well-known rating methods
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that have already been successfully demonstrated in various fields : sports team rating, web ranking, citation
index development, etc. Hence, these rank/rating procedures can be considered well-established for sufficiently
difficult rating/ranking problems. Because the proposed score matrix reflects the natural relationship between the
alternatives and because the rank/rating procedures are well-tested, the alternative declared above as a ‘ solution ’
can be considered an ‘ objective solution ’ for the considered MCDM problem.

The proposed approach is illustrated using a real-world example MCDM problem of selecting the best material
for a sailboat mast. This illustration explains the viability and applicability of the proposed approach to MCDM
problems. The solutions of the illustrative example are acceptable, and the proposed method in this study yields a
competitive ranking of alternatives for the considered MCDM.

The rest of this paper is structured as follows. In Section 2, preliminaries regarding MCDM and the rating
methods are presented, and the proposed methodology is described. Section 3 considers an illustrative example,
and Section 4 presents the conclusion.

2. Background

2.1. Preliminaries

2.1.1. General notation For a natural number n, we denote an n -dimensional vector space by Rn and N(n) =
{1, ..., n} .The following notation is used for the special vectors

ek = (0, . . . , 1
(k)

, . . . , 0) ∈ Rn, k = 1, ..., n;

0n = (0, . . . , 0)︸ ︷︷ ︸
n

∈ Rn, 1n = (1, . . . , 1)︸ ︷︷ ︸
n

=
∑n

k=1
ek ∈ Rn

and the following sets :

Rn
+ = {ξ = (ξ1, ..., ξn) ∈ Rn|ξk ≥ 0 k = 1, ..., n} , ∆n =

{
ξ = (ξ1, ..., ξn) ∈ Rn

+|
n∑
ξk

k=1

= 1

}

◦
∆n = {ξ = (ξ1, ..., ξn) ∈ ∆n|ξk > 0, k = 1, ..., n}

If not otherwise mentioned, we identify the finite set with the set N (n) ,where n = |A| is the capacity of set A.We
also identify the matrix Π ∈ Rn×m with the map Π : N (n)×N (m) → R. For the matrix Π ∈ Rn×m,we denote
its transpose by ΠT ∈ Rm×n . For a vector ξ = (ξ1, . . . , ξn) ∈ Rn we introduce the matrix Λ(ξ) = [λij ]i,j=1,...,n ∈
Rn×n such that λii = ξi, i = 1, . . . , n, and λij = 0, i, j = 1, . . . , n, i ̸= j.The Heaviside function is defined as
follows:

χ(x) =

{
1, x > 0
0, x ≤ 0

, x ∈ R.

Now, we give a brief overview of some basic notations of ranking theory (see e.g. [8]) which are necessary
for further consideration. For a natural number N, the N ×N matrix S = [Sij ], 1 ≤ i, j ≤ N is a score matrix
if Sij ≥ 0, Sii = 0, 1 ≤ i, j ≤ N. Note that we can interpret the elements of N (N) as athletes, and for each
pair of athletes (i, j), 1 ≤ i, j ≤ N we assume that the joint match M(i, j) includes Ngames. We interpret
entry Sij , 1 ≤ i, j ≤ N as the number total wins of athlete i in matches M(i, j) and the result of the match
M(i, j) is Sij wins of athlete i, Sji wins of athlete j,and (N − Sij − Sji) draws. We also introduce the matrix
(G = [Gij(S)], 1 ≤ i, j ≤ N ; G = S + S∗)and the function gi(S) =

∑N
j=1 Gij(S), 1 ≤ i ≤ N.
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2.1.2. Pareto optimality The following concepts is drawn from a general treatment of the multicriteria
optimization theory. Alternatives are denoted byA = {a1, ..., am} , criteria are denoted by cj : A → R, j =
1, . . . , n; C = {c1, ..., cn} , and the MCDM problem is ordered pair < A,C > . Obviously, we may assume that
the criteria are normalized such that the lower value is preferable for each criterion and the goal of the decision-
making procedure is to minimize all criteria simultaneously (see e.g. [1]). Later in the article, we will adhere to
this assumption. Furthermore, A is the set of admissible alternatives, and map −→c = (c1, . . . , cn) : A → Rn is the
criterion map (correspondingly, −→c (A) ⊂ Rn is the set of admissible values of criteria). An alternative a∗ ∈ A is
Pareto optimal (i.e., efficient) if no a ∈ A exists such that cj(a) ≤ cj (a∗) for all j ∈ N (n) and ck(a) < ck(a∗) for
some k ∈ N (n) .The set of all efficient alternatives is denoted as Ae and is called the Pareto set. Correspondingly,
−→c (Ae) is called the efficient front.

2.2. Rating Methods

In this section, we present various ranking methods. The ranking methods presented here were originally proposed
in different fields, namely the Massey, Colley, Keener, and offence-defence rating methods originated in the context
of team ranking in sports, see ( [9] [10] [11]), and the authority-hub method originated in the context of citation
index development and for web ranking purposes, see ( [12] [13] [14]) .

2.2.1. Massey method To describe the Massey method, we introduce the following notation: m is the number of
teams, nG is the number of the games that have already been played, rMi , i = 1, . . . ,m is Massey ’ s rating of the
i team and rM = (rM1 , . . . , rMm )is Massey ’ s rating vector.

The result of the kth game is described as an ordered quadruple (t1(k), s1(k), t2(k), s2(k)) where t1(k), t2(k)
are teams who played the kth game, s1(k), s2(k) are the scores of these teams in the game, and the margin of the
kth game (we also consider draws) is assumed to be yk = s1 (k)− s2 (k) ≥ 0, y = (y1, . . . , ym), k = 1, ..., nG.

The main assumption of the Massey method is that the rating vector rM = (rM1 , . . . , rMm ) can be obtained through
least squares approximation, as follows:∑nG

k=1

(
yk − (rMt1(k) − rMt2(k))

)2

= ||y −XrM ||2 → min
rM

,

where X is the correspondingly defined matrix. Hence, we can conclude that
(
XTX

)
rM = XT y.

To avoid ill definiteness of the matrix, one of the possibilities is that a row (for definiteness — the last one) in the
matrix XTXmust be replaced with a row of all ones, and the corresponding component of the vector XT y must
be replaced with a zero. The matrix M and the vector vM that are obtained in such a way are called the Massey
matrix and Massey vector, respectively. After this, Massey ’s rating vector, rM , is defined as solution of the linear
equation MrM = vM .

2.2.2. Colley method The Colley method can be described based on the following notation: m is the number of
teams, wi is the number of wins for team i, li is the number of losses for team i, ni is the total number of games
played by team i, and nij is the number of times teams i, j played, i, j = 1, . . . ,m.

From this data, the following objects can be introduced: the Colley matrix, C = [Cij ]i,j=1,...,n, and the Colley
vector, vC = (vC1 , . . . , v

C
m),where

Cij =

{
2 + ni, i = j;
−nij i ̸= j;

, vCi = 1 +
1

2
(wi − li) , i, j = 1, . . . ,m.

The Colley rating vector, rC , is obtained as a solution of the equation CrC = vC .

2.2.3. Keener method The Keener method can be described based on the following notation: m is the number of
teams, and Sij is the score produced by team i against team i, j = 1, . . . ,m. Keener’s matrix K = [Kij ]i,j=1,...,m

is defined as follows:

Kij =

{
h
(

1+Sij

2+Sij+Sji

)
if teams i and j played each other;

0, otherwise;
, i, j = 1, ...,m,
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where

h(x) =
1

2
+

1

2
sgn

(
x− 1

2

)√
|2x− 1|.

Correspondingly, the rating vector for Keener method, rK , is obtained as a solution of the eigenvalue problem
KrK = λrK . If the matrix K is irreducible, the Perron-Frobenius theorem guarantees the existence and uniqueness
of the ratings vector rK , see ( [11]) .

2.2.4. Offence-defence method We assume that, given a set A of m objects that should be ranked, a
(row) stochastic matrix P is defined for reflecting the set of available data on pairwise comparisons of the
considered objects. The offense and defense vectors are defined through the following iteration process: o(k) =
PTΛ(d(k−1))−11m, d(k) = PΛ(o(k))−11m, and d(0) = 1/m1Tm. It is known that, under certain conditions, the
convergence is guaranteed, and

o = (o1, . . . , om) = lim
k→+∞

o(k), d = (d1, . . . , dm) = lim
k→+∞

d(k)

o = PTΛ(d)−11m, d = PΛ(o)−11m,

(we can assume that o, d ∈
◦
∆m.). The aforementioned ‘certain condition’ is that matrix P has total support.

Checking whether a sufficiently large matrix has total support is a difficult task, and it is convenient to realise
a small perturbation of matrix P i.e. instead of matrix P we use matrix P + ε1m1Tm with sufficiently small ε > 0,.
The offense and defence vectors o, d can be considered as rating vectors of elements of set A. Moreover, by
equalities, rodi = oi/di, i = 1, . . . ,m can be defined new rating vector rod = (rod1 , . . . , rodm ), called the offence-
defence (aggregate) rating vector .

2.2.5. Authority-hub method As in the previous case, we assume that, given set A of m objects, which should be
ranked, a (row) stochastic matrix P is defined for reflecting the set of available data on pairwise comparisons of
the considered objects. The authority and hub vectors a, h can be defined through the following iteration process:
a(k) = PTPa(k−1), h(k) = PPTh(k−1). If matrices PTP, PPT are primitive, this iteration process converges
to the eigenvectors of these matrices, respectively:

a = (a1, . . . , am) = lim
k→+∞

a(k), h = (h1, . . . , hm) = lim
k→+∞

h(k); a = PTP, h = PPTh,

( assuming that a, h ∈
◦
∆m). If matrices PTP, PPT are irreducible but not primitive, the above-described

iterative process cannot be used for determining vectors a, h. However, dominant eigenvectors for matrices
PTP, PPT exist and are unique up to multiplication by a scalar. The authority and hub vectors a, h can
be considered as ranking vectors and will be named further as authority rating vector and hub rating vector,
respectively.

3. Proposed Methods

In this section, we show that, with each MCDM problem, special matrices are associated, and these matrices can be
successfully utilized for ranking alternatives in the MCDM problem. Namely, we will show how these matrices can
be used in the ranking methods described above. In the final part of this section, we provide a general formulation
of the proposed approach for solving MCDM problems.

We assume further that an MCDM problem < A,C >, A = {a1, . . . , am} , C = {c1, . . . , cn}is given, and the
decision-making goal is to minimize the criteria simultaneously.
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3.1. Special Matrices Associated with an MCDM Problem

We propose a special construction of the score matrices of alternatives, SA, for the MCDM problem < A,C > .
For clarity, we imagine that the elements of A are athletes who conduct matches with each other and that, for each
pair of athletes a, a

′ ∈ A their match M(a, a
′
)includes m games. Now, for any a, a

′ ∈ A,we define the following:

SA(a, a
′
) =

∑
c∈C

sAc (a, a
′
), sAc (a, a

′
) =

{
1, c(a) < c(a

′
);

0, c(a) > c(a
′
);

∀c ∈ C.

Thus, the equality sAc (a, a
′
) = 1 means that c(a) < c(a

′
) for criterion c ∈ C and the alternative (athlete) a receives

one point (i.e., athlete awins a game c ∈ C in match M(a, a
′
)). Correspondingly, SA(a, a

′
)indicates the number of

total wins of alternative (athlete) a in match M(a, a
′
). An alternative a has defeated an alternative a

′
if SA(a, a

′
) >

SA(a
′
, a). In addition, the result of match M(a, a

′
) is SA(a, a

′
) wins of the alternative a (losses of alternative a

′
),

SA(a
′
, a) wins of the alternative a

′
(losses of alternative a), and number of draws

(
m− SA(a, a

′
)− SA(a

′
, a)

)
.

Obviously, m ≥ SA(a, a
′
) ≥ 0, SA(a, a) = 0, ∀a, a′ ∈ A, and matrix SA =

[
SA(a, a

′
)
]
is the score matrix.

Now, we can define matrix Π =
[
Π(a, a

′
)
]
a,a′∈A

,the adjacency matrix for the MCDM problem < A,C >, where

Π(a, a
′
) =

{
SA(a, a′) +

(
m− SA(a, a

′
)− SA(a

′
, a)

)
, a ̸= a

′
;

0, a = a;
∀a, a

′
∈ A.

The matrix Π =
[
Π(a, a

′
)
]
a,a′∈A

can be transformed into a (row) stochastic matrix : P (Π) =

Λ(Π1m + π(Π))
−1

Π+ π(Π)ξT

Where (usually) ξ = (1/m)1m, and π(Π) = (π1(Π), . . . , πm(Π))is a vector defined as follows:

πi(Π) =

{
1, if ith row Π is 0m;
0, otherwise;

.

To justify its name, matrix Π can be interpreted as an adjacency matrix for a directed graph Γ(A,C) associated with
the MCDM problem < A,C > and, correspondingly, matrix P (Π) can be interpreted as a transition probability
matrix for the Markov chain determined by the graph Γ(A,C).

3.2. Adaptation of the Ranking Methods to the MCDM Problems

Below, we assume that < A,C >, A = {a1, ..., am} , C = {c1, .., cn} ,is an MCDM problem under consideration
and that SA =

[
SA
ij

]
i,j=1,...,m

is the score matrix, Π = (πij ]i,j=1,...,m is the adjacency matrix, and P (Π) is the
transition probability matrix for it. By definition, matrix Π is a matrix of points scored (considering a draw,
estimated at 0.5 points) by alternatives (teams and athletes) A in the ‘tournament’ determined by the set of criteria
C. Now we propose the following adaptations of the described above ranking methods for the MCDM problem
< A,C > .

3.2.1. Massey ranking In the Massey method for the MCDM problem < A,C >, we have m alternatives/teams,
and we can define the number of games played (in the sense of matrix Π i.e., we also consider draws )
as nG = m(m− 1)/2. We are considered the set N(nG) to be the set of games played and construct the
mappings t1, t2 : N(m) → N(nG), such that the inequality yk = s1(k)− s2(k) ≥ 0 holds for the scores s1 (k) =
πt1(k)t2(k), s2(k) = πt2(k)t1(k), k = 1, . . . , nG.We also construct the matrix X corresponding to the mappings
t1, t2and the Massey matrix M and Massey vector vM obtained as described in Section 2.3.1. Correspondingly,
the Massey rating vector rM for the MCDM problem < A,C > can be obtained as solution of the equation
MrM = vM .
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3.2.2. Colley ranking In the Colley method, for the MCDM problem < A,C > we have m alternatives/teams, and
the number of wins and number of losses for the alternative ai ∈ A can be defined as wi =

∑m
j=1 χ(s

A
ij − sAji),

li =
∑m

j=1 χ(s
A
ji − sAij), i = 1, ...,m, respectively. Correspondingly, the total numbers of no draw games played

by alternative ai ∈ A is ni = wi + li =
∑m

j=1 nij , where nij = χ(sAij − sAji) + χ(sAji − sAij) is the number of times
team i, j played no draw games, i, j = 1, . . . ,m. Hence, for the MCDM problem < A,C >, the Colley matrix C
and Colley vector vC can be obtained as described in Section 2.3.2. Correspondingly, the Colley rating vector, rC ,
for the MCDM problem < A,C > can be obtained as a solution of the equation CrC = vC .

3.2.3. Keener ranking In the Keener method, for the MCDM problem < A,C > we have m lternatives/teams
and the score produced by team igainst team j an be defined as Sij = sAij , i, j = 1, . . . ,m. Hence, for the MCDM
problem < A,C >, the Keener matrix K can be obtained as described in Section 2.3.3. Correspondingly, the rating
vector for the Keener method, rK , is obtained as a solution of the eigenvalue problem KrK = λrK .

3.2.4. Offense, defense, and aggregate offence-defence ranking The offense, defense, and aggregate offence-
defence vectors can be defined through the following iteration process (see [2].[3].[4]):

d(k) = P (Π)Λ(o(k))−11m, o(k) = P (Π)TΛ(d(k−1))−11m, d(0) = 1/m1Tm.

As we know, if matrix P (Π) is sufficiently good then for o = lim
k→+∞

o(k) d = lim
k→+∞

d(k), we have o =

P (Π)TΛ(d)−11m and d = P (Π)Λ(o)−11m. Hence, we can define the offense, defense, and aggregate offence-
defence rating vectors as follows: roi = oi, rdi = di, rodi = oi/ di, i = 1, . . . ,m. where ro = (ro1, . . . , r

o
m),rd =(

rd1 , . . . , r
d
m

)
, androd = (rod1 , . . . , rodm ), respectively,

3.2.5. Authority - hub ranking Analogously, authority and hub vectors a and hcan be defined through the
following iteration process (see 2.3.5):

a(k) = P (Π)TP (Π)a(k−1), h(k) = P (Π)P (Π)Th(k−1).

If matrix P (Π)is sufficiently good, Then for a = lim
k→+∞

a(k),and h = lim
k→+∞

h(k),we have a =

P (Π)TP (Π)a and h = P (Π)P (Π)Th.Now, we can define the authority and hub rating vectors as follows:
rai = ai, rhi = hi, i = 1, . . . ,m, and ra = (ra1 , . . . , r

a
m) andrh = (rh1 , . . . , r

h
m),respectively.

3.2.6. Proposed MCDM procedure Now, we can establish the following procedure:
(i) the matrix S ( Π, P (Π) ) is calculated and the rating method, ρ, is the choice for the MCDM problem

< A,C >;
ii) the alternative from the Pareto set, Ae, that is ρ ranked best is declared the solution of the considered MCDM

problem.
The following remarks are important in connection with this procedure. Obviously, it would suffice to rank the

Pareto set if it is known at the beginning of the proposed procedure. Nevertheless, we prefer the above description
because it is more convenient in cases in which the Pareto set is unknown (or partially or approximately known),
as is usually the case for complex MCDM problems.

Note also that, instead of the MCDM problem < A,C >, the MCDM problem < C,A > can be considered.
Applying the described procedure to the MCDM problem < C,A >, we can obtain a ranking of the criteria and
identify a ‘leading criterion’. This possibility may be useful for the development of some hierarchical procedures
for solution s to MCDM problems.

In Section 4, we will discuss a particular problem that can be solved using the procedure described above and
show that appropriate and competitive results are obtained for it.
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4. Example

4.1. The problem statement

This section discusses the example that was considered to demonstrate the practicality of the proposed methods.
The example considered here is the problem of selecting material for the mast of a sailboat, see [15] for a detailed
description (the decision-making matrix is given in Table 1 ) . This problem was investigated by several researchers
using various methods , see e.g. ( [15] [5] [3] [2] [4] [10]), so it can be considered a benchmarking problem.

Table 1. Decision matrix for selecting material for a sailing boat mast

Alternatives Criteria

Code Material SS SM CR CC
1 2 3 4

01 AISI 1020 35.9 26.9 1 5
02 AISI 1040 51.3 26.9 1 5
03 ASTM A242 42.3 27.2 1 5
04 AISI 4130 194.9 27.2 4 3
05 AISI 316 25.6 25.1 4 3
06 AISI 416 57.1 28.1 4 3
07 AISI 431 71.4 28.1 4 3
08 AA 6061 101.9 25.8 3 4
09 AA 2024 141.9 26.1 3 4
10 AA 2014 148.2 25.8 3 4
11 AA 7075 180.4 25.9 3 4
12 Ti-6AI-4V 208.7 27.6 5 1
13 Epoxy-70% 604.8 28.0 4 2
14 Epoxy-63% 416.2 66.5 4 1
15 Epoxy-62% 637.7 27.5 4 1

Source $ . Criteria: SS (specific strength), scale: Numeric; SM (specific modulus), scale: Numeric; CR (corrosion resistance), scale: 1 =
poor; 2 = fair; 3 = good; 4 = very good; 5 = excellent; CC( cost category), scale: 1 = very high; 2 = high; 3 = moderate; 4 = low; 5 = very
low.

The ranks of the materials obtained in the mentioned articles using the following methods: the multi-objective
optimization based on ratio analysis (MOORA), the multiplicative form of MOORA (MULTIMOORA), the
reference-point approach (RPA), the fuzzy-logic approach (FLA), the weighted-properties method (WPM), the
multicriteria optimization through the concept of a compromise solution (VIKOR), the comprehensive VIKOR
(CVIKOR), and the game-theoretic method ( GTM).

The auxiliary results are presented in the Appendix: the normalized decision matrix ( the upper-lower bound
approach was used for normalization, see [1]),Table 5; the ranks of the materials obtained in the articles
( [15] [5] [3] [2] [4] [10] ) are presented in Table 6; the Massey matrix, Massey vector, and Massey rating
vector,Table 7; the Colley matrix, Colley vector, and Colley rating vector,Table 8 ; the Keener matrix and Keener
rating vector,Table 9 ; the offense, defense, aggregate offense-defense, authority and hub rating vectors, Table 10 .
Note also that the Pareto set for the problem under consideration is Ae = {2, 3, 4, 7, 9, 11, 12, 13, 14, 15} .

4.2. The obtained results

The obtained results are summarized inTable 2 , where the corresponding rankings for the obtained rating vectors
are presented.

Table 3 presents the results of the correlation analysis between the considered rankings. As we can see,
the considered methods are significantly correlated among themselves but sometimes may have an ‘opposite
orientation’ (thus, we will further consider absolute values of correlation coefficients): the ranks corresponding to
rM , rC , rK , ro, rd, raod, ra, and rhare strongly correlated (absolute value of correlation coefficients no less than
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Table 2. Ranking vectors for the material selection problem

rM rC rK ro rd rod ra rh

01 3 3 2 14 13 14 14 3
02 5 5 4 12 11 12 12 5
03 7 6 5 10 10 10 10 6
04 9 9 9 5 2 5 5 14
05 1 1 1 15 15 15 15 1
06 12 11 10 7 7 7 7 9
07 15 14 12 6 6 6 6 10
08 2 2 3 13 14 13 13 2
09 6 7 7 9 9 9 9 7
10 4 4 6 11 12 11 11 4
11 8 8 8 8 8 8 8 8
12 11 12 13 3 1 3 3 15
13 13 13 14 2 5 1 2 11
14 14 15 15 1 3 2 1 13
15 10 10 11 4 4 4 4 12

For material codes see Table 1 . Gray denote Pareto-optimal (efficient) materials.

0.75) among themselves; at the same time, the ranks corresponding to rM , rC , rK , and rh have one direction, and
the ranks corresponding to ro, rd, raod, and ra have opposite directions.

Table 3. Correlation analysis of the proposed ranks

rM rC rK ro rd rod ra rh

rM 1.00
rC 0.99 1.00
rK 0.94 0.97 1.00
ro -0.90 -0.94 -0.98 1.00
rd -0.85 -0.88 -0.90 0.95 1.00
rod -0.90 -0.93 -0.98 1.00 0.94 1.00
ra -0.90 -0.94 -0.98 1.00 0.95 1.00 1.00
rh 0.85 0.88 0.90 -0.95 -1.00 -0.94 -0.95 1.00

Finally, Table 4 presents correlations between the ranks obtained previously in other studies and the ranks
proposed in this article. As Table 4 shows, the ranks proposed in this study are quite competitive. Particularly,
all ranks introduced in this study (except cases related to weak correlations, i.e., the absolute value of correlation
coefficients less than 0.35, with GTM and few cases with MULTIMOORA, RPA, and WPM) are moderately
(absolute value of correlation coefficients between 0.35 and 0.75) or strongly correlated (absolute value of
correlation coefficients no less than 0.75) with the previously obtained ranks.

5. Conclusions

In this study, we proposed a new approach for solving MCDM problems. In the framework of the proposed
approach, we built a special score matrix for a given multicriteria problem, which allows us to use an appropriate
ranking method and choose the corresponding best-ranked alternative from the Pareto set as a solution of the
MCDM problem. The proposed approach is particularly useful when no decision-making authority is available or
when the relative importance of various criteria has not been previously evaluated. To demonstrate the viability and
suitability for applications, the proposed approach is illustrated using an example of a material-selection problem.
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Table 4. Correlations between proposed and comparable ranks

Method rM rC rK ro rd rod ra rh

M1 -0.51 -0.53 -0.60 0.56 0.39 0.57 0.56 -0.39
M2 -0.28 -0.34 -0.50 0.50 0.33 0.50 0.50 -0.33
M3 -0.29 -0.37 -0.5 0.47 0.29 0.46 0.47 -0.29
M4 -0.53 -0.58 -0.72 0.76 0.69 0.76 0.76 -0.69
M5 -0.24 -0.34 -0.45 0.40 0.34 0.36 0.40 -0.34
M6 -0.52 -0.59 -0.65 0.74 0.70 0.74 0.74 -0.7
M7 -0.72 -0.82 -0.88 0.89 0.81 0.89 0.89 -0.81
M8 0.15 0.16 0.11 -0.12 -0.11 -0.09 -0.12 0.11

Methods: M1- MOORA [2] ; M2-MULTIMOORA [2] ; M3- RPA [2] ; M4- FLA [2] ; M5- Wpm [15] ; M6 -CVIKOR [4] ; M7 - VIKOR [4]
; M8 - GTM [10] .

It is shown that the solutions obtained using the proposed approach are quite competitive. All our numerical
experiments were conducted on standard equipment (laptop with 2.59 GHz, 8 GB RAM, and a 64-bit operation
system) and required ~1 min for all eight considered rankings in the MATLAB environment without making any
effort to optimist the code.

Due to the simplicity and flexibility of the implementation, the proposed approach can be also used in a
few interesting directions. For example, the alternative rankings seem important to developing the (post-Pareto)
improvements of existing Pareto-optimization algorithms. On the other hand, if we consider the ‘transposed’
MCDM problem (i.e., the problem for which the criteria of the original problem are alternatives and the alternatives
of the original problem are criteria), the proposed approach also allows ranking the criteria and identifying a
‘leading criterion’. This possibility may be useful for the development of some hierarchical procedures for the
solution to MCDM problems. However, we will limit ourselves here to only mentioning these directions for further
investigation.

A. Appendix

Table 5. Normalized decision matrix for the material-selection problem

Material Criteria
1 2 3 4

01 0.9832 0.9565 1.0000 0.0000
02 0.9580 0.9565 1.0000 0.0000
03 0.9727 0.9493 1.0000 0.0000
04 0.7234 0.9493 0.2500 0.5000
05 1.0000 1.0000 0.2500 0.5000
06 0.9485 0.9275 0.2500 0.5000
07 0.9252 0.9275 0.2500 0.5000
08 0.8753 0.9831 0.5000 0.2500
09 0.8100 0.9758 0.5000 0.2500
10 0.7997 0.9831 0.5000 0.2500
11 0.7471 0.9807 0.5000 0.2500
12 0.7009 0.9396 0.0000 1.0000
13 0.0537 0.9300 0.2500 0.7500
14 0.3619 0.0000 0.2500 1.0000
15 0.0000 0.9420 0.2500 1.0000

For material and criteria codes see Table 1 .

Stat., Optim. Inf. Comput. Vol. 9, March 2021



44 APPLICATIONS OF SOME RATING METHODS TO SOLVE MULTICRITERIA DECISION-MAKING PROBLEMS

Table 6. Materials ranked by comparable methods

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
M1 14 15 13 12 4 7 6 11 10 9 5 8 2 3 1
M2 14 15 13 12 4 11 10 9 7 6 8 5 2 3 1
M3 14 13 12 15 4 11 10 9 8 7 6 2 3 1 5
M4 14 13 15 4 11 9 10 8 12 7 6 5 3 2 1
M5 14 13 15 11 10 9 8 7 2 4 6 3 12 1 5
M6 12 6 9 4 15 14 11 13 8 10 5 7 2 1 3
M7 14 11 13 4 15 10 5 12 7 9 6 8 2 1 3
M8 14 10 11 2 9 8 7 5 4 3 1 12 6 15 13

For material codes see Table 1 . Methods: M1- MOORA [2] ; M2-MULTIMOORA [2] ; M3- RPA [2] ; M4- FLA [2] ; M5- Wpm [15] ;
M6 -CVIKOR [4] ; M7 - VIKOR [4] ; M8 - GTM [10] .

Table 7. Massey matrix for the material selection problem

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 rM vM

01 10 -1 1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1.07 -15
02 -1 9 0 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -0.73 -11
03 -1 0 9 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -0.51 -9
04 -1 -1 -1 12 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0.59 10
05 -1 -1 -1 -1 14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1.67 -25
06 -1 -1 -1 0 -1 8 -1 0 0 0 0 0 -1 -1 -1 1.07 8
07 -1 -1 -1 0 -1 -1 8 0 0 0 0 0 -1 -1 -1 1.29 10
08 0 0 0 -1 -1 0 0 9 -1 -1 -1 -1 -1 -1 -1 -1.31 -13
09 0 0 0 -1 -1 0 0 -1 7 0 0 -1 -1 -1 -1 -0.59 -6
10 0 0 0 -1 -1 0 0 -1 0 8 -1 -1 -1 -1 -1 -0.94 -9
11 0 0 0 -1 -1 0 0 -1 0 -1 8 -1 -1 -1 -1 -0.38 -4
12 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 12 -1 -1 -1 1.05 16
13 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 14 -1 -1 1.20 18
14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 0 1.23 18
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.77 0

For material codes see Table 1 .

Table 8. Colley matrix for the material selection problem

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 rC vC

01 12 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 0.24 -3.0
02 -1 11 0 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 0.36 -1.5
03 -1 0 11 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 0.36 -1.5
04 -1 -1 -1 14 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 0.60 3.0
05 -1 -1 -1 -1 16 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0.09 -6.0
06 -1 -1 -1 0 -1 10 -1 0 0 0 0 0 -1 -1 -1 0.71 3.0
07 -1 -1 -1 0 -1 -1 10 0 0 0 0 0 -1 -1 -1 0.80 4.0
08 0 0 0 -1 -1 0 0 11 -1 -1 -1 -1 -1 -1 -1 0.21 -2.5
09 0 0 0 -1 -1 0 0 -1 9 0 0 -1 -1 -1 -1 0.38 -0.5
10 0 0 0 -1 -1 0 0 -1 0 10 -1 -1 -1 -1 -1 0.33 -1.0
11 0 0 0 -1 -1 0 0 -1 0 -1 10 -1 -1 -1 -1 0.42 0.0
12 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 14 -1 -1 -1 0.73 5.0
13 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 16 -1 -1 0.79 6.0
14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15 0 0.84 6.5
15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 15 0.64 3.5

For material codes see Table 1 .
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Table 9. Keener matrix for the material selection problem

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 rK

01 0.00 0.21 0.15 0.21 0.79 0.21 0.21 0.50 0.50 0.50 0.50 0.21 0.21 0.21 0.21 0.16
02 0.79 0.00 0.50 0.21 0.79 0.21 0.21 0.50 0.50 0.50 0.50 0.21 0.21 0.21 0.21 0.19
03 0.85 0.50 0.00 0.28 0.79 0.21 0.21 0.50 0.50 0.50 0.50 0.21 0.21 0.21 0.21 0.19
04 0.79 0.79 0.72 0.00 0.85 0.50 0.50 0.79 0.79 0.79 0.79 0.21 0.28 0.28 0.28 0.28
05 0.21 0.21 0.21 0.15 0.00 0.15 0.15 0.21 0.21 0.21 0.21 0.21 0.28 0.28 0.28 0.12
06 0.79 0.79 0.79 0.50 0.85 0.00 0.21 0.50 0.50 0.50 0.50 0.50 0.72 0.28 0.72 0.29
07 0.79 0.79 0.79 0.50 0.85 0.79 0.00 0.50 0.50 0.50 0.50 0.50 0.72 0.28 0.72 0.32
08 0.50 0.50 0.50 0.21 0.79 0.50 0.50 0.00 0.15 0.21 0.15 0.21 0.21 0.21 0.21 0.18
09 0.50 0.50 0.50 0.21 0.79 0.50 0.50 0.85 0.00 0.50 0.50 0.21 0.21 0.21 0.21 0.22
10 0.50 0.50 0.50 0.21 0.79 0.50 0.50 0.79 0.50 0.00 0.15 0.21 0.21 0.21 0.21 0.20
11 0.50 0.50 0.50 0.21 0.79 0.50 0.50 0.85 0.50 0.85 0.00 0.21 0.21 0.21 0.21 0.23
12 0.79 0.79 0.79 0.79 0.79 0.50 0.50 0.79 0.79 0.79 0.79 0.00 0.21 0.28 0.72 0.33
13 0.79 0.79 0.79 0.72 0.72 0.28 0.28 0.79 0.79 0.79 0.79 0.79 0.00 0.72 0.72 0.35
14 0.79 0.79 0.79 0.72 0.72 0.72 0.72 0.79 0.79 0.79 0.79 0.72 0.28 0.00 0.50 0.36
15 0.79 0.79 0.79 0.72 0.72 0.79 0.28 0.79 0.79 0.79 0.79 0.28 0.28 0.50 0.00 0.30

For material codes see Table 1 .

Table 10. Offense, defense, aggregate offense-defense, authority and hub rating vectors for the material selection problem

ro rd rad ra rh

01 1.066181 1.003908 1.062031 0.274749 0.257197
02 1.047487 1.001655 1.045756 0.269976 0.257809
03 1.038508 1.000955 1.037517 0.267661 0.258001
04 0.953815 0.995223 0.958393 0.245834 0.259428
05 1.114829 1.012164 1.101431 0.287351 0.254921
06 0.965823 0.998960 0.966829 0.248928 0.258516
07 0.957289 0.998704 0.958531 0.246729 0.258564
08 1.058207 1.004154 1.053830 0.272741 0.257153
09 1.025972 1.000692 1.025262 0.264428 0.258072
10 1.039747 1.002103 1.037565 0.267980 0.257702
11 1.016681 0.999666 1.017021 0.262033 0.258338
12 0.927938 0.994487 0.933082 0.239168 0.259554
13 0.921163 0.996091 0.924778 0.237424 0.259139
14 0.920613 0.995406 0.924862 0.237281 0.259295
15 0.946041 0.995834 0.949999 0.243831 0.259253

For material codes see Table 1 .
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