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1. Introduction

We consider Jacobi diffusion process that is defined as the solution of the scalar stochastic differential equation

Xt = X0 +

∫ t

0

(a− bXs)ds+

∫ t

0

c
√

Xs(1−Xs)dWs, (1)

where the initial conditions X0 ∈ (0, 1), a, b, c are positive constants and Wt is a standard Brownian motion. It is
known that this diffusion plays an important role in various fields. In population biology, it is called a Wright-Fisher
diffusion with migration, see e.g. [10]. In the finance context, the Jacobi process was first used by De Jong et al.
[8] to model the exchange rates in a target zone and by Delbaen and Shirakawa [3] to model interest rates. Since
then, Jacobi process has been became one of popular interest rate models in finance. The main advantage of the
model is that it admits lower and upper boundaries for the interest rate, hence preventing negative interest rates.
Many different properties of Jacobi model can be found in the literature. Among others, we mention the works
by Gouriéroux and Jasiak [6] for a multidimensional version and several applications, Ackerer et al. [2] for a new
stochastic volatility model, etc.

From financial point of view, the integrated diffusion process of the form

Yt :=

∫ t

0

Xsds, t ∈ [0, T ], (2)

is one of fundamental objects that needs studying, see e.g. [11] and references therein. In particular, the information
about the distribution function will be very useful for applications. The reader can consult the seminal paper [4]
for the results related to Cox-Ingersoll-Ross interest rate model, also see [1, 7] for other models. However, for
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Jacobi model (1), it is difficult to get such information because its volatility coefficient, σ(x) = c
√

x(1− x), is
non-Lipschitz and nonlinear.

On the other hand, in the last decades, there has been an increased interest in stochastic models based on other
noise processes rather than the Brownian noise. A natural generalization of Brownian noise is fractional Brownian
noise or colored noise. Recall that fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is a centered
Gaussian process WH = (WH

t )t∈[0,T ] with covariance function:

R(t, s) =
1

2
(|t|2H + |s|2H − |t− s|2H).

When H = 1
2 , fBm WH reduces to a standard Brownian motion. The increments of the fBm are negatively

correlated for H < 1
2 and positively correlated for H > 1

2 . In particular, for H > 1
2 , fBm is a long memory process

since the covariance at distance n decreases as n2H−2 :

ρH(n) := E(WH
1 (WH

n+1 −WH
n )) ≈ H(2H − 1)n2H−2 as n → ∞.

The above properties, contrarily to Brownian motion, make fBm a suitable choice to model the evolution systems
where the future state depends not only on the present state but also on its past states. Hence, it will be interesting
to investigate fractional version of the Jacobi model. Replacing Brownian noise by fractional Brownian noise, we
obtain the model

XH
t = X0 +

∫ t

0

(a− bXH
s )ds+

∫ t

0

c
√

XH
s (1−XH

s )dWH
s , t ∈ [0, T ], (3)

and the integrated fractional diffusion process corresponding to (2) reads

Y H
t :=

∫ t

0

XH
s ds, t ∈ [0, T ]. (4)

Some fundamental properties of the fractional model (3), including the existence and uniqueness of solutions, were
already discussed in [5]. However, the distribution of Y H

t has not been discussed yet.
Motivated by the above observations, the aim of this paper is to study the distribution of the integrated diffusions

(2) and (4). Because of the complexity of stochastic calculus with respect to fBm, it is almost impossible to compute
the distribution of Y H

t explicitly. On the other hand, we would like to develop a unified method for Yt and Y H
t .

Hence, we will focus on providing the estimates for the tail distribution of Yt and Y H
t . The main tools of the present

paper are the techniques of Malliavin calculus (stochastic calculus of variations) which have been successfully used
to investigate many financial models, see e.g. Chapter 6 in [12]. By using the flexible transforms, we are able to
bound Malliavin derivatives of Yt and Y H

t , and hence, we obtain explicit estimates for the tail distributions. More
specifically, the main contributions of this paper are as follows

• In Theorem 3.1, we provide two explicit estimates (13) and (14) for the tail distribution of Yt. The first one
is an inequality of Gaussian type and the second one is a Bernstein-type inequality.

• Analogously, in Theorem 3.2, we also obtain two explicit estimates (19) and (20) for the tail distribution of
Y H
t .

The rest of the paper is organized as follows. In Section 2, we recall some elements of Malliavin calculus and a
general estimate for the tail distribution of Malliavin differentiable random variables. The main results of the paper
are stated and proved in Section 3. The conclusion is given in Section 4.

2. Preliminaries

Let us recall some elements of stochastic calculus of variations (for more details see [12]). We suppose that
Brownian motion (Wt)t∈[0,T ] is defined on a complete probability space (Ω,F ,F, P ), where F = (Ft)t∈[0,T ] is
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a natural filtration generated by the Brownian motion W. For h ∈ L2[0, T ], we denote by W (h) the Wiener integral

W (h) =

T∫
0

h(t)dWt.

Let S denote the dense subset of L2(Ω,F , P ) consisting of smooth random variables of the form

F = f(W (h1), ...,W (hn)), (5)

where n ∈ N, f ∈ C∞
b (Rn), h1, ..., hn ∈ L2[0, T ]. If F has the form (5), we define its Malliavin derivative as the

process DF := {DtF, t ∈ [0, T ]} given by

DtF =

n∑
k=1

∂f

∂xk
(W (h1), ...,W (hn))hk(t).

We shall denote by D1,2 the closure of S with respect to the norm

∥F∥21,2 := E|F |2 + E

[ T∫
0

|DuF |2du
]
.

A random variable F is said Malliavin differentiable if it belongs to D1,2. The next lemma comes from Corollary
4.7.4 in [14].

Lemma 2.1
Let Z be a centered random variable in D1,2. Assume there exists a non-random constant β such that∫ T

0

(DrZ)2dr ≤ β2 a.s. (6)

Then, the following estimate for tail probabilities holds

P (Z ≥ x) ≤ e
− x2

2β2 , x > 0. (7)

3. The main results

3.1. Jacobi process with Brownian noise

In this subsection, we provide two explicit estimate for the tail distribution of Yt defined by (2). We always assume
that the parameters a, b and c satisfy

a ≥ c2

2
and b− a ≥ c2

2
.

This assumption ensures the equation (1) has a unique solution belonging to (0, 1) and the boundaries {0} and {1}
are inaccessible, see e.g. Chapter 4 in [9].

In order to be able apply Lemma 2.1, we have to prove the Malliavin differentiability of the solution to the
equation (1).

Proposition 3.1
The unique solution (Xt)t∈[0,T ] of the equation (1) is Malliavin differentiable and its derivative is given by

DrXt = c
√

Xt(1−Xt) exp

(∫ t

r

(2a− b)Xs − a+ c2/4

2Xs(1−Xs)
ds

)
11[0,t](r), 0 ≤ t ≤ T. (8)
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Proof
We first investigate the Malliavin differentiability of stochastic process xt := arcsin(2Xt − 1) ∈ (−π

2 ,
π
2 ). By Itô

differential formula, xt solves the following equation

xt = x0 +

∫ t

0

2a− b− (b− c2/2) sinxs

cosxs
ds+ cWt, t ∈ [0, T ]. (9)

Let us compute the directional derivative ⟨Dxt, h⟩L2[0,T ] for some h ∈ L2[0, T ] :

⟨Dxt, h⟩L2[0,T ] =
dxε

t

dε

∣∣
ε=0

,

where xε
t solves the following equation

xε
t = x0 +

∫ t

0

g(xε
s)ds+ c

(
Wt + ε

∫ t

0

hsds

)
, t ∈ [0, T ],

where ε ∈ [0, 1) and for the simplicity, we put g(x) := 2a−b−(b−c2/2) sin x
cos x . We have

xε
t − xt =

∫ t

0

(g(xε
s)− g(xs))ds+ cε

∫ t

0

hsds, t ∈ [0, T ].

By using Taylor expansion, the above equation becomes

xε
t − xt =

∫ t

0

g′(xs + ξs(x
ε
s − xs))(x

ε
s − xs)ds+ cε

∫ t

0

hsds (10)

for some random variable ξs lying between 0 and 1. The solution to (10) is given by

xε
t − xt = cε

∫ t

0

hs exp

(∫ t

s

g′(xr + ξr(x
ε
r − xr))dr

)
ds, t ∈ [0, T ].

We now observe that

g′(x) =
(2a− b) sinx− b+ c2/2

cos2 x
< 0 ∀ x ∈ (−π

2
,
π

2
).

As a consequence, by the dominated convergence theorem, we obtain

lim
ε→0+

xε
t − xt

ε
= c

∫ t

0

hs exp

(∫ t

s

g′(cr)dr

)
ds

=

⟨
h, c exp

(∫ t

.

g′(yr)dr

)
11[0,t]

⟩
L2[0,T ]

, t ∈ [0, T ],

where the limit holds in L2(Ω). So, by the classical results of Sugita [13], we can conclude that xt ∈ D1,2, and its
derivative is given by

Drxt = c exp

(∫ t

r

g′(xr)dr

)
11[0,t](r)

= c exp

(∫ t

r

(2a− b)Xs − a+ c2/4

2Xs(1−Xs)
ds

)
11[0,t](r), t ∈ [0, T ].

We now apply the chain rule of Malliavin derivatives to Xt =
1+sin xt

2 and we obtain

DrXt =
cosxt

2
Drxt =

√
Xt(1−Xt)Drxt, t ∈ [0, T ].

This completes the proof.
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We also need the following lemma to bound the Malliavin derivative of (Xt)t∈[0,T ].

Lemma 3.1
For all x ∈ (0, 1), we have

(2a− b)x− a+ c2/4

2x(1− x)
≤ M ≤ 0,

where the constant M is defined by

M :=


−(2a−b)2

√
(a− c2

4 )(b−a− c2

4 )

2(a− c2

4 −
√

(a− c2

4 )(b−a− c2

4 ))(a−b+ c2

4 +

√
(a− c2

4 )(b−a− c2

4 ))
if 2a ̸= b

−2(a− c2

4 ) if 2a = b.

(11)

Proof
The proof is straightforward, so we omit it. Here we only note that the function h(x) := (2a−b)x−a+c2/4

2x(1−x) , x ∈ (0, 1)

attains its maximum value at x =
a− c2

4 −
√

(a− c2

4 )(b−a− c2

4 )

2a−b if 2a ̸= b and at x = 1
2 if 2a = b.

We now are in a position to state the first main results of this paper.

Theorem 3.1
Let (Yt)t∈[0,T ] be the integrated Jacobi diffusion process defined by (2). We have
I. For each t ∈ [0, T ], the expected value of Yt is given by

µt := E[Yt] =
(
X0 −

a

b

) 1− e−bt

b
+

at

b
, t ∈ [0, T ]. (12)

II. For each t ∈ (0, T ], the tail distribution of Yt satisfies

P (Yt ≥ x) ≤ exp

(
− 4M3(x− µt)

2

c2 (e2Mt − 4eMt + 2Mt+ 3)

)
, x ≥ µt, (13)

and

P (Yt ≥ x) ≤ exp

(
− 4M2(x− µt)

2

c2 (e2Mt − 2Mt− 1) (x+ µt)

)
, x ≥ µt. (14)

Proof
The proof of the part I is straightforward. Indeed, we have

E[Xt] = X0 +

∫ t

0

(a− bE[Xs])ds, t ∈ [0, T ],

and hence, E[Xt] =
(
X0 − a

b

)
e−bt + a

b . So it is easy to obtain (12) because E[Yt] =
∫ t

0
E[Xs]ds. Let us now prove

the part II. By the property of Malliavin derivatives we have

DrYt =

∫ t

r

DrXsds, 0 ≤ r ≤ t ≤ T.

Moreover, by the formula (8) and Lemma 3.1, we deduce

0 ≤ DrXt ≤ c
√

Xt(1−Xt)e
M(t−r), 0 ≤ r ≤ t ≤ T. (15)

In order to prove (13) we observe that
√

Xt(1−Xt) ≤ 1
4 . Hence, DrXt ≤ c

2e
M(t−r) and we obtain

|DrYt| ≤
c

2M

(
eM(t−r) − 1

)
, 0 ≤ r ≤ t ≤ T.

Stat., Optim. Inf. Comput. Vol. 8, September 2020



N. T. DUNG, T. N. QUYNH 795

Fixed t ∈ (0, T ], we consider the random variable Z := Yt − µt. We have E[Z] = 0 and∫ T

0

|DrZ|2dr =

∫ t

0

|DrYt|2dr ≤ c2

4M2

∫ t

0

(
eM(t−r) − 1

)2
dr

=
c2

4M2

(
e2Mt − 1

2M
− 2

eMt − 1

M
+ t

)
=

c2

8M3

(
e2Mt − 4eMt + 2Mt+ 3

)
a.s.

Thus the condition (6) of Lemma 2.1 are fulfilled. Hence, we can use the estimate (7) and we obtain

P (Yt > x) = P (Z > x− µt) ≤ exp

(
− 4M3(x− µt)

2

c2 (e2Mt − 4eMt + 2Mt+ 3)

)
, x ≥ µt.

So (13) is verified. It only remains prove (14). We put Z :=
√
Yt − E[

√
Yt] and use the chain rule for Malliavin

derivatives to get

DrZ = Dr

√
Yt =

∫ t

r
DrXsds

2
√
Yt

, 0 ≤ r ≤ t ≤ T.

This, together with (15), gives us

|DrZ| ≤
c
∫ t

r

√
Xs(1−Xs)e

M(s−r)ds

2
√
Yt

≤
c
∫ t

r

√
Xse

M(s−r)ds

2
√
Yt

, 0 ≤ r ≤ t ≤ T.

By the Hölder inequality we deduce

|DrZ|2 ≤
c2
(∫ t

r
Xsds

)(∫ t

r
e2M(s−r)ds

)
4Yt

≤
c2
(∫ t

0
Xsds

)(
e2M(t−r)−1

2M

)
4Yt

=
c2

8M

(
e2M(t−r) − 1

)
, 0 ≤ r ≤ t ≤ T.

We therefore obtain ∫ T

0

|DrZ|2dr ≤ c2

8M

∫ t

0

(
e2M(t−r) − 1

)
dr

=
c2

8M

(
e2Mt − 1

2M
− t

)
=

c2

16M2

(
e2Mt − 2Mt− 1

)
a.s.

which points out that the random variable Z also fulfills the condition (6) of Lemma 2.1. Hence, the estimate (7)
and the fact that E[

√
Yt] ≤

√
E[Yt] =

√
µt give us the following

P (Yt > x) = P
(√

Yt − E[
√

Yt] >
√
x− E[

√
Yt]
)

= P
(
Z >

√
x− E[

√
Yt]
)

≤ P
(
Z >

√
x−√

µt

)
≤ exp

(
−

8M2(
√
x−√

µt)
2

c2 (e2Mt − 2Mt− 1)

)
, x ≥ µt.
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So we obtain (14) because (
√
x−√

µt)
2 = (x−µt)

2

(
√
x+

√
µt)2

≥ (x−µt)
2

2(x+µt)
. This completes the proof.

Remark 3.1. Clearly, when fixed t > 0, we have

4M3(x− µt)
2

c2 (e2Mt − 4eMt + 2Mt+ 3)
≥ 4M2(x− µt)

2

c2 (e2Mt − 2Mt− 1) (x+ µt)
as x → ∞.

Hence, the bound (13) is better than (14) when x is large sufficiently. However, when t → 0+, we have µt ≃ X0t
and

e2Mt − 4eMt + 2Mt+ 3 = O(t2), e2Mt − 2Mt− 1 = O(t2).

Hence, the bound (14) will give us a better estimate if t ≃ 0 and x ≃ µt. That is why we provided both bounds (13)
and (14) as in Theorem 3.1.

3.2. Jacobi process with fractional Brownian noise

In this subsection, we investigate the tail distribution of Y H
t defined by (4). Following the results obtained in [5],

we always assume that

a < b and H ∈ (
1

2
, 1).

This assumption ensures that the equation (3) has a unique solution and the fractional stochastic integral∫ t

0
c
√

XH
s (1−XH

s )dWH
s is well defined as a pathwise Riemann-Stieltjes integral (see [15] for a detailed

presentation of this integral). We recall that fBm WH admits the so-called Volterra representation (see e.g. [12] pp.
277-279)

BH
t =

∫ t

0

KH(t, s)dWs,

where the kernel KH is given by

KH(t, s) := cH s1/2−H

∫ t

s

(u− s)H− 3
2uH−1/2du, s ≤ t

and cH =
√

H(2H−1)
β(2−2H,H−1/2) , where β is the Beta function.

Theorem 2.1 in [5] provides the following which is similar to Proposition 3.1.

Proposition 3.2
Assume that 0 < a < b and the initial condition X0 ∈ [0, 1]. Then the Jacobi equation (3) has a unique solution in
CH−

[0, T ] :=
∩

β<H

Cβ [0, T ]. Moreover, this solution belongs to (0, 1) and is Malliavin differentiable with

DrX
H
t = c

√
XH

t (1−XH
t )

∫ t

r

∂1K(v, r)e
∫ t
v

(2a−b)XH
u −a

2XH
u (1−XH

u )
du
dv , r ≤ t, (16)

where ∂1K(v, r) := ∂
∂vK(v, r) = cH(v − r)H− 3

2 vH−1/2r1/2−H .

We also have a similar estimate to that obtained in Lemma 3.1.

Lemma 3.2
For all x ∈ (0, 1), we have

(2a− b)x− a

2x(1− x)
≤ MH ≤ 0,

where the constant MH is defined by

MH :=

{
−(2a−b)2

√
a(b−a)

2(a−
√

a(b−a))(a−b+
√

a(b−a))
if 2a ̸= b

−2a if 2a = b.
(17)
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We now note that, unlike the case of Brownian noises, the expected value of Y H
t is not easy to compute explicitly.

This is due to the fact that the expectation of fractional stochastic integrals is non zero. In the next proposition, we
gives an estimate for E[Y H

t ].

Proposition 3.3
We have, for 0 ≤ t ≤ T,

E[XH
t ] ≤ xH

t := X0e
−

∫ t
0
Bsds +

∫ t

0

Ase
−

∫ t
s
Bududs,

where, for αH := H(2H − 1), the functions As, Bs are defined by

As := a+
c2αH

2

∫ s

0

(s− r)2H−2eM
H(s−r)dr, Bs := b+ c2αH

∫ s

0

(s− r)2H−2eM
H(s−r)dr.

As a consequence,

E[Y H
t ] ≤ µH

t :=

∫ t

0

xH
s ds.

Proof
We have

E[XH
t ] = X0 +

∫ t

0

(a− bE[XH
s ])ds+ cE

[∫ t

0

√
XH

s (1−XH
s )dWH

s

]
, t ∈ [0, T ]. (18)

Denote by DH
r XH

t the Malliavin derivative of XH
t with respect to fractional Brownian motion WH . Then, by the

transfer principle (see Proposition 5.2.1 in [12]), it follows from (16) that

DH
r XH

t = c

√
XH

t (1−XH
t ) exp

(∫ t

r

(2a− b)XH
s − a

2XH
s (1−XH

s )
ds

)
11[0,t](r), 0 ≤ t ≤ T.

We therefore obtain
DH

r XH
t ≤ c

√
XH

t (1−XH
t ) eM

H(t−r), 0 ≤ r ≤ t ≤ T.

Thanks to Proposition 5.2.3 in [12], we have

E

[∫ t

0

√
XH

s (1−XH
s )dWH

s

]
= αHE

[∫ t

0

∫ t

0

DH
r

√
XH

s (1−XH
s )|s− r|2H−2drds

]
= αHE

[∫ t

0

∫ s

0

(1− 2Xs)D
H
r Xs

2
√

XH
s (1−XH

s )
(s− r)2H−2drds

]

≤ cαH

2
E

[∫ t

0

(1− 2Xs)

∫ s

0

(s− r)2H−2eM
H(s−r)drds

]
.

Inserting this relation into (18) yields

E[XH
t ] ≤ X0 +

∫ t

0

(
As −BsE[XH

s ]
)
ds, 0 ≤ t ≤ T.

By Comparison theorem for differential equations we have E[XH
t ] ≤ xH

t , where xH
t solves the equation

xH
t = X0 +

∫ t

0

(
As −Bsx

H
s

)
ds, 0 ≤ t ≤ T.

The above equation is a linear ordinary differential equation and its solution is given by

xH
t = X0e

−
∫ t
0
Bsds +

∫ t

0

Ase
−

∫ t
s
Bududs, 0 ≤ t ≤ T.

So we can finish the proof.
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The next statement is the second main result of the present paper.

Theorem 3.2
Let (Y H

t )t∈[0,T ] be the integrated fractional Jacobi diffusion process defined by (4). For each t ∈ (0, T ], the tail
distribution of Y H

t satisfies

P
(
Y H
t > x

)
≤ exp

(
− 4(MH)2(x− µH

t )2

c2
∫ t

0
K2(t, r)

(
eMH(t−r) − 1

)2
dr

)
, x ≥ µH

t (19)

and

P
(
Y H
t > x

)
≤ exp

(
− 2MH(x− µH

t )2

c2
∫ t

0
K2(t, r)

(
e2MH(t−r) − 1

)
dr(x+ µH

t )

)
, x ≥ µH

t . (20)

Proof
From the derivative formula (16) and Lemma 3.2 we deduce

0 ≤ DrX
H
t ≤ c

√
XH

t (1−XH
t )

∫ t

r

∂1K(v, r)eM
H(t−v)dv

= c

√
XH

t (1−XH
t )

(
K(t, r) +MH

∫ t

r

K(v, r)eM
H(t−v)dv

)
, 0 ≤ r ≤ t ≤ T.

Fixed t ∈ (0, T ], we put ZH := Y H
t − E[Y H

t ]. Because XH
t (1−XH

t ) ≤ 1
4 , we obtain

|DrZ
H | = |DrY

H
t | =

∫ t

r

DrX
H
s ds

≤ c

2

∫ t

r

(
K(s, r) +MH

∫ s

r

K(v, r)eM
H(s−v)dv

)
ds

=
c

2

(∫ t

r

K(s, r)ds+

∫ t

r

K(v, r)(eM
H(t−v) − 1)dv

)
=

c

2

∫ t

r

K(v, r) eM
H(t−v)dv, 0 ≤ r ≤ t ≤ T.

Since the function v → K(v, r) is non-decreasing, this implies

|DrZ
H | ≤ c

2MH
K(t, r)

(
eM

H(t−r) − 1
)
, 0 ≤ r ≤ t ≤ T,

and hence, ∫ T

0

|DrZ
H |dr ≤ c2

4(MH)2

∫ t

0

K2(t, r)
(
eM

H(t−r) − 1
)2

dr, a.s.

Applying Lemma 2.1 we obtain the estimate (19). Indeed, we have

P
(
Y H
t > x

)
= P

(
ZH > x− E[Y H

t ]
)

≤ P
(
ZH > x− µH

t

)
≤ exp

(
− 4(MH)2(x− µH

t )2

c2
∫ t

0
K2(t, r)

(
eMH(t−r) − 1

)2
dr

)
, x ≥ µH

t .
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To verify the estimate (20), we consider the random variable ZH :=
√

Y H
t − E[

√
Y H
t ]. We have

|DrZH | =
∫ t

r
DrX

H
s ds

2
√

Y H
t

≤
c
∫ t

r

√
XH

s (1−XH
s )
(∫ s

r
∂1K(v, r)eM

H(s−v)dv
)
ds

2
√

Y H
t

≤
c
∫ t

r

√
XH

s

(∫ s

r
∂1K(v, r)eM

H(s−v)dv
)
ds

2
√

Y H
t

, 0 ≤ r ≤ t ≤ T,

which, by the Hölder inequality, leads us to

|DrZH |2 ≤ c2

4

∫ t

r

(∫ s

r

∂1K(v, r)eM
H(s−v)dv

)2

ds, 0 ≤ r ≤ t ≤ T.

Once again, we use the Hölder inequality to get

|DrZH |2 ≤ c2

4

∫ t

r

(∫ s

r

∂1K(v, r)dv

)(∫ s

r

∂1K(v, r)e2M
H(s−v)dv

)
ds

=
c2

4

∫ t

r

K(s, r)

(
K(s, r) + 2MH

∫ s

r

K(v, r)e2M
H(s−v)dv

)
ds

≤ c2

4
K(t, r)

∫ t

r

(
K(s, r) + 2MH

∫ s

r

K(v, r)e2M
H(s−v)dv

)
ds

=
c2

4
K(t, r)

(∫ t

r

K(s, r)ds+

∫ t

r

K(v, r)(e2M
H(t−v) − 1)dv

)
=

c2

4
K(t, r)

(∫ t

r

K(v, r)e2M
H(t−v)dv

)
=

c2

8MH
K2(t, r)

(
e2M

H(t−r) − 1
)
, 0 ≤ r ≤ t ≤ T.

We therefore obtain ∫ T

0

|DrZH |2dr ≤ c2

8MH

∫ t

0

K2(t, r)
(
e2M

H(t−r) − 1
)
dr a.s.

Thus the random variable ZH also fulfills the condition (6), and hence, the estimate (7) gives us

P
(
Y H
t > x

)
= P

(
ZH >

√
x− E[

√
Y H
t ]

)
≤ P

(
ZH >

√
x−

√
µH
t

)
≤ exp

(
− 4MH(

√
x−

√
µH
t )2

c2
∫ t

0
K2(t, r)

(
e2MH(t−r) − 1

)
dr

)

≤ exp

(
− 2MH(x− µH

t )2

c2
∫ t

0
K2(t, r)

(
e2MH(t−r) − 1

)
dr(x+ µH

t )

)
, x ≥ µH

t .

So the claim (20) is proved. The proof of Theorem is complete.

Remark 3.2. We also have the same comparison as in Remark 3.1. In fact, we can verify that the bound (19) is
better than the bound (20) when x is large sufficiently. Inversely, (20) is better than (19) when t ≃ 0 and x ≃ µH

t .
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4. Conclusion

In this paper, we used the techniques of Malliavin calculus to investigate the tail distribution of the integrated
Jacobi diffusion with Brownian noise and fractional Brownian noise. Our contribution is that we are able to develop
a unified method to obtain explicit estimates for the tail distributions. Our work provides one more fundamental
property of Jacobi models. In this sense, we partly enrich the knowledge of Jacobi models.

Acknowledgments

This research was funded by Vietnam National Foundation for Science and Technology Development
(NAFOSTED) under grant number 101.03-2019.08.

REFERENCES

1. E.A. Abderrahim, E.H. Mostafa, M.G.Z.E. Abidine, Optimality of reinsurance treaties under a mean-ruin probability criterion. Stat.
Optim. Inf. Comput. Vol. 7, June 2019, pp 383–393.
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