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Abstract This study introduces a generalization of the odd power Cauchy family by adding one more shape parameter to
gain more flexibility modeling the complex data structures. The linear representations for the density, moments, quantile,
and generating functions are derived. The model parameters are estimated employing the maximum likelihood estimation
method. The Monte Carlo simulations are performed under different parameter settings and sample sizes for the proposed
models. In addition, we introduce a new heteroscedastic regression model based on the special member of the proposed
family. Three data sets are analyzed with competitive and proposed models.
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1. Introduction

Rooks et al. (2010) proposed the power Cauchy (PC) distribution. The probability density function (pdf) and
cumulative distribution function (cdf) of the PC distribution are

r(t) =
2

π

α tα−1

σ2α + t2α
, (1)

and

R(t) =
2

π
arctan

[(
t

σ

)α]
, (2)

where α > 0 is a shape parameter and σ > 0 is a scale parameter. Using the PC distribution as a generator
distribution, we propose a new family of distributions named as generalized odd power Cauchy-G (GOPC-G). The
cdf of the GOPC-G family is given by

FGOPC−G(x;α, β,κ) =
2

π
arctan

{[
G(x;κ)α

1−G(x;κ)α

]β}
, (3)
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where G(x;κ) is the cdf of the baseline distribution and κ represents the parameter vector of the baseline
distribution. The parameters α > 0 and β > 0 are the shape parameters. The pdf to (3) is

fGOPC−G(x;α, β,κ) =
2αβ g(x;κ)G(x;κ)αβ−1 [1−G(x;κ)α]

β−1

π
{
G(x;κ)2αβ + [1−G(x;κ)α]

2β
} , (4)

where g(x;κ) is the pdf of the baseline distribution. The GOPC-G family contains some of the G-class distributions
as its submodels. For instance, when α = 1, the GOPC-G family reduces to the odd power cauchy (OPC-G) family
(Alizadeh et al, 2018). When β = 1, the GOPC-G family reduces to generalized odd half-cauchy (GOHC-G) family
(Cordeiro et al., 2017a). Additionally, when α = β = 1, we have odd half-Cauchy (OHC-G) family. Henceforward,
the density in (4) is denoted as X ∼ GOPC-G(α, β,κ). The hazard rate function (hrf) of X is given by

hGOPC−G(x;α, β,κ) =
2αβ g(x;κ)G(x;κ)αβ−1 [1−G(x;κ)α]

β−1{
π − 2 arctan

{[
G(x;κ)α

1−G(x;κ)α

]β}}{
G(x;κ)2αβ + [1−G(x;κ)α]

2β
} . (5)

Now, some possible relations of the GOPC-G family with other families are given.

1. If Y = G(X;κ)α =⇒ FY (y) =
2
π arctan

[(
y

1−y

)β]
for 0 < y < 1;

2. If Y = G(X;κ)α

1−G(X;κ)α =⇒ Y ∼ PC(β).

The other main purpose is to provide a new use of the generalized odd power Cauchy Weibull (GOPC-W)
distribution in a framework of regression model, where both location and dispersion parameters of a regression
model based on the logarithm of the GOPC-W random variable vary across observations through regression
structures. The log-transform of the random variable having the GOPC-W density is used to contruct a new
regression model. The proposed regression model is appropriate for both modeling the censored and uncensored
response variable. This approach is very common in constructing regression models in survival analysis, e.g., Liu
(2014) studied survival models on unobserved heterogeneity and their applications, Ortega et al. (2017) proposed
the heteroscedastic log-exponentiated Weibull regression model and Cordeiro et al. (2017b) defined the extended
generalized odd half-Cauchy family and applications in heteroscedastic regression analysis.

The other parts of the presented study are organized as follows. Some of the special cases of the GOPC-G family
are given in Section 2. In Section 3, the statistical properties of the GOPC-G family are discussed in detail. In
Section 4, the parameter estimation issue of the GOPC-G family is addressed based on the maximum likelihood
method. The simulation study is given to evaluate the performance of the estimation method for finite sample sizes.
The heteroscedastic regression model is defined in Section 5. In Section 6, three data sets are analyzed to prove the
importance of the proposed models in real life problems. Section 7 contains conclusions of the presented study.

2. Special Models

Three special members of the proposed family are provided.

2.1. Generalized odd power Cauchy-normal (GOPC-N)

The GOPC-N distribution opens new opportunities to generate uni or bimodal and skew-symmetric normal
distributions. Its density is given by

fGOPC−N (x;α, β, µ, σ) =
2αβϕ

(
x−µ
σ

)
Φ
(
x−µ
σ

)αβ−1[
1− Φ

(
x−µ
σ

)α]β−1

σπ
{
Φ
(
x−µ
σ

)2αβ
+
[
1− Φ

(
x−µ
σ

)α]2β} ,

where ϕ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, α > 0 and β > 0 are shape parameters,
µ ∈ R is a location parameter and σ is scale parameter.
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2.2. Generalized odd power Cauchy-log-logistic (GOPC-LL)

Let X follows the log-logistic distribution with pdf and cdf (x > 0),

g(x) =
γ xγ−1

λγ
[
1 +

(
x
λ

)γ]2 and G(x) =
1

1 + (xλ )
−γ
,

respectively, where λ > 0 and γ > 0. Inserting these expressions in (4), we obtain the GOPC-LL density function
given by

fGOPC−LL (x;α, β, λ, γ) =
2αβ

{
(γ/λ)(x/λ)γ−1

[1+(x/λ)γ ]2

}[
1

1+(x/λ)−γ

]αβ−1{
1−

[
1

1+(x/λ)−γ

]α}β−1

π

{[
1

1+(x/λ)−γ

]2αβ
+
{
1−

[
1

1+(x/λ)−γ

]α}2β
} .

2.3. Generalized odd power Cauchy-Weibull (GOPC-W)

The cdf of the Weibull distribution is G(x) = 1− ew, where w = −
(
x
b

)a
and a, b > 0. The GOPC-W pdf can be

expressed from (4) as

fGOPC−W (x;α, β, a, b) =
2αβ axa−1ew(1− ew)αβ−1[1− (1− ew)α]β−1

ba π {(1− ew)2αβ + [1− (1− ew)α]2β}
.

3. Main Properties

In this section, we study some of the statistical properties of the GOPC-G family.

3.1. Quantile Function

The quantile function (qf) is a solution of F (x) = u where u ∼ U(0, 1) and it is denoted as QG(u). The qf of the
GOPC-G family is given by

X = Q(u) = QG

{ [
tan(π u

2 )
]1/β

1 +
[
tan(π u

2 )
]1/β

}1/α
 . (6)

The qf in (6) is very useful to generate random variables from the GOPC-G family for a given baseline
distribution. Additionally, Bowley’s skewness (Bowley, 1901) and Moors’s kurtosis (Moors, 1986) are calculated
based on the quantiles. Therefore, the qf is also useful to investigate the shape of the GOPC-G family. The required
formulas of these measures are given by

Skewness =
Q(1/4) +Q(3/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
,

and

Kurtosis =
Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

These measures are less sensitivity to outliers. Moreover, they can be used as an alternative measures when the
moments of the distributions do not have a closed form. The results of the Bowley’s skewness and Moors’s kurtosis
of the GOPC-W distribution are summarized in Table 1. These results show the effects of the parameters α and β
on the skewness and kurtosis measures.
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Table 1. The skewness and kurtosis value of the GOPC-W distribution for a = 2 and b = 2.

Parameters Skewness Kurtosis
α β

0.1 0.1 0.976 0.929
0.5 0.870 1.897
1 0.669 2.014

1.5 0.512 1.819
2 0.407 1.673

0.5 0.1 0.624 0.742
0.5 0.218 1.089
1 0.111 1.265

1.5 0.074 1.321
2 0.056 1.343

2 0.1 0.329 0.769
0.5 0.091 1.196
1 0.047 1.314

1.5 0.032 1.346
2 0.024 1.358

3.2. Linear representation

By using Taylor and generalized binomial expansions, the pdf (4) of X can be expressed as

f(x) =
2αβ g(x)

π

∞∑
i=0

(−1)i
(
β − 1

i

)
G(x)α(β+i)−1

G(x)2αβ + [1−G(x)α]
2β
.

Using again the generalized binomial expansion and power series for the ratio of two power series, we have

G(x)α(β+i)−1

G(x)2αβ + [1−G(x)α]
2β

=

∑∞
k=0 ρ

(i)
k G(x)k∑∞

k=0 ωkG(x)k
=

∞∑
k=0

ν
(i)
k G(x)k,

where

ρ
(i)
k = sk(α(β + i)− 1), ωk = sk(2αβ) +

∞∑
j=0

(−1)j
(
2β

j

)
sk(j α),

sk = sk(α) =

∞∑
i=k

(−1)i+k

(
α

i

)(
i

k

)
, ν

(i)
k = νk(α, β, i) =

1

ω0

(
ρ
(i)
k − 1

ω0

k∑
r=1

ωr ν
(i)
k−r

)
, for r ≥ 1,

and ν(i)0 = ρ
(i)
0 /ω0. Then, we can write

f(x) =

∞∑
k=0

bk hk+1(x), (7)

where

bk =
2αβ

π (k + 1)

∞∑
i=0

(−1)i
(
β − 1

i

)
νk(α, β, i),
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and ha(x) = a g(x)G(x)a−1 denotes the exponentiated-G (“exp-G”) density function. Several studies, such as
Mudholkar et al. (1995) and Nadarajah and Kotz (2006), have been studied properties of the exp-G densities.
Equation (7) confirms that the GOPC-G density function can be expressed as a linear combination of the exp-G
densities.

3.3. Moments

Let Yk be a random variable having exp-G density hk+1(x). The nth moment of X can be determined from (7) as

E(Xn) =

∞∑
k=0

bk E(Y n
k ) =

∞∑
k=0

(k + 1) bk ψn,k, (8)

where ψn,k =
∫∞
−∞ xnG(x)k g(x)dx =

∫ 1

0
QG(u)

n uadu. Following the work of Nadarajah and Kotz (2006),
E(Xn) can be obtained. Besides, ψ(n, k) was obtained for several distributions by Cordeiro and Nadarajah (2011).

3.4. Generating function

Let MX(t) = E(et X) be the moment generating function (mgf) of X . We obtain from (7)

MX(t) =

∞∑
k=0

bkMk(t) =

∞∑
i=0

(k + 1) bk ρk(t), (9)

where ρk(t) =
∫∞
−∞ et x G(x)k g(x)dx =

∫ 1

0
exp[tQG(u)] u

kdu and Mk(t) is the mgf of Yk+1. So, MX(t) can be
determined from the exp-G generating function. It is possible to derive the mgfs of the special members of the
GOPC-G family from (9).

Theorem 1
If G(x) has a mgf, then, F (x) has a mgf.

Proof
Let m = inf{x|G(x) ≥ 0.5}, then

MX(t) =

∫ ∞

−∞
et x f(x)dx =

∫ ∞

−∞
et x × 2αβ g(x)G(x)αβ−1[1−G(x)α]β−1

π[G(x)2αβ + (1−G(x)α)2β ]
dx

≤
∫ ∞

−∞
et x × 2αβ g(x)

π[G(x)2αβ + (1−G(x)α)2β ]
dx

=

∫ m

−∞
et x × 2αβ g(x)

π[G(x)2αβ + (1−G(x)α)2β ]
dx +

∫ ∞

m

et x × 2αβ g(x)

π[G(x)2αβ + (1−G(x)α)2β ]
dx.

The first integral in the last line is finite and the second integral is no greater than∫ ∞

m

et x
2αβ g(x)

πG(x)2αβ
dx.

For x > m, we have G(x) ≥ 0.5, so that∫ ∞

m

et x
2αβ g(x)

πG(x)2αβ
dx <

αβ 22αβ+1

π

∫ ∞

m

et x g(x)dx <∞.

Then, MX(t) <∞.

Corollary 1
Every distribution in the GOPC-G family has exactly the same number of moments of G(x).
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3.5. Mean deviations

The mean deviations about the mean, δ1, and median, δ2, are, respectively

δ1(X) = 2µ′
1 F (µ′

1)− 2m1 (µ′
1) and δ2(X) = µ′

1 − 2m1(M), (10)

where µ′
1 = E(X) and M = Median(X) defined by M = Q(0.5). The quantity F (µ′

1) can be calculated from (3)
and m1(z) is the first incomplete moment obtained from (11) for n = 1.

mn(y) =

y∫
0

xnf (x)dx =

∞∑
k=0

(k + 1) bk

∫ G(y)

0

QG(u)
n ukdu. (11)

4. Estimation and Simulation study

The maximum likelihood estimation method is used to get the maximum likelihood estimates (MLEs) of the
parameters of the GOPC-G density. Let x1, · · · , xn be a sample from the GOPC-G density and Θ = (α, β,κ⊤)⊤

is the parameter vector. The log-likelihood function of the GOPC-G density is

ℓn(Θ) = n log
(
2αβ
π

)
+
∑n

i=1 log g(xi;κ) + (αβ − 1)
∑n

i=1 logG(xi);κ

+(β − 1)
∑n

i=1 log [1−G(xi;κ)
α]−

∑n
i=1 log

{
G(xi;κ)

2αβ + [1−G(xi;κ)
α]

2β
}
.

(12)

The direct maximization of (12) gives the MLE of Θ. This can be done by using statistical or mathematical
software such as R, MATLAB or SAS. Here, we use our choice from R software and its function called as optim
which is commonly used for optimization purpose for a given initial vector.

Simulation Study
It is important to investigate the asymptotic behaviours of the MLEs for the GOPC-G density under a given

baseline distribution. For this purpose, we implement a simulation study to see the performance of the MLEs for
a finite sample size. The simulation results are evaluated based on the following metrics: bias, mean square error
(MSE), estimated average length (AL) and coverage probability (CP). The required formulas for the computation
of these measures are given below.

B̂iasϵ(n) =
1

N

N∑
i=1

(ϵ̂i − ϵ) and M̂SEϵ(n) =
1

N

N∑
i=1

(ϵ̂i − ϵ)2,

CPϵ(n) =
1

N

N∑
i=1

I(ϵ̂i − 1.95996sϵ̂i , ϵ̂i + 1.95996sϵ̂i) and ALϵ(n) =
3.919928

N

N∑
i=1

sϵ̂i .

where ϵ = α, β, a, b and (sα̂i , sβ̂i
, sâi , sb̂i) represent the standard errors of the parameters. We choose the Weibull

distribution as a baseline distribution of the GOPC-G distribution. So, the GOPC-W distribution is used. The
simulation is replicated N = 10, 000 times for each sample sizes. The sample sizes are increased by 5 and started
from n = 50 and ended by n = 1, 000. The parameters of the GOPC-W distribution is selected as α = 0.5, β =
0.5, a = 2, b = 2. Figure 1 displays the simulation results. The following results are obtained: (i) the biases and
MSEs decrease when the sample size increases, (ii) CPS are near the desired value 0.95 and ALs are decreasing
function of the sample size, as expected.
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Figure 1. Simulation results of the GOPC-W distribution.

5. The Heteroscedastic LGOPC-W Regression Model

Here, we introduce the heteroscedastic regression model based on the GOPC-W density, given in Section 2.3.
Applying Y = log(X) transformation and a = 1/σ, b = eµ re-parametrizations on the GOPC-W density, we have

f (y) =

2αβ
σ exp

[(y−µ
σ

)
− exp

(y−µ
σ

)] {
1− exp

[
− exp

(y−µ
σ

)]}αβ−1
[
1−

{
1− exp

[
− exp

(y−µ
σ

)]}α]β−1

π

{{
1− exp

[
− exp

(y−µ
σ

)]}2αβ
+
[
1−

{
1− exp

[
− exp

(y−µ
σ

)]}α]2β} , (13)

where µ ∈ ℜ is the location of Y and σ is the scale parameter. The parameters α > 0 and β > 0 controls the
shape of the density. The density in (13) is called as log-GOPC-W and denoted as Y ∼ LGOPC-W(α, β, µ, σ). The
survival function of (13) is

S (y) = 1− 2

π
arctan


[ {

1− exp
[
− exp

(y−µ
σ

)]}α
1−

{
1− exp

[
− exp

(y−µ
σ

)]}α
]β (14)
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Using the transformation Z = (Y − µ)/σ, the standardized log-GOPC-W density is

f (z) =
2αβ exp [(z)− exp (z)] {1− exp [− exp (z)]}αβ−1

[1− {1− exp [− exp (z)]}α]β−1

π
{
{1− exp [− exp (z)]}2αβ + [1− {1− exp [− exp (z)]}α]2β

} . (15)

In many practical applications, the lifetimes are affected by explanatory variables. Parametric models to estimate
univariate survival functions and for censored data regression problems are widely used. Standard regression
models require the assumption of homogeneity of error variances. Therefore, it is necessary to check the possible
heteroscedasticity.

Let yi be a response variable following the LGOPC-W density and xᵀ
i = (xi1, . . . , xip1), w

ᵀ
i = (wi1, . . . , wip2)

are independent variable vectors for the location and scale parameters of the LGOPC-W regression model. The
regression model is given by

yi = µi + σizi, i = 1, . . . , n, (16)

where zi is in (15). The independent variables are linked to the location parameter µi by identity link function,
given as µi = xᵀ

i η. The heteroscedasticity is modeled by means of the scale parameter of the response variable
and log-link function is used to link the independent variables to the scale parameter, given as σi = exp (wᵀ

i τ )
where η = (η1, · · · , ηp1)

ᵀ and τ = (τ1, · · · , τp2)
ᵀ are the regression parameter vectors. Note that when σi = σ, the

regression model (16) reduce to the homoscedastic regression model, where only µ is modeled using explanatory
variables.

The general formula for the log-likelihood function of the regression model for the parameter vector Θ =

(α, β,ηᵀ, τᵀ)ᵀ from model (16) is l(Θ) =
∑
i∈F

li(Θ) +
∑
i∈C

l
(c)
i (Θ), where li(Θ) = log[f(yi)], l

(c)
i (Θ) = log[S(yi)],

f(yi) is the density (13) and S(yi) is the survival function (14) of Yi. The response variable is defined as yi =
min{log(xi), log(ci)} where xi is the observed lifetime and ci is the censoring time. Under these specifications, the
log-likelihood function of the LGOPC-W regression model is

ℓ (Θ) = r log [2αβ] +
∑
i∈F

(zi − ui)−
∑
i∈F

(wᵀ
i τ) + (αβ − 1)

∑
i∈F

log {1− exp [−ui]}+ (β − 1)

×
∑
i∈F

log [1− {1− exp [−ui]}α]−
∑
i∈F

log
[
π
{
{1− exp [−ui]}2αβ + [1− {1− exp [−ui]}α]

2β
}]

+
∑
i∈C

log

[
1− 2

π
arctan

{[
{1− exp [−ui]}α

1− {1− exp [−ui]}α
]β}]

, (17)

where ui = exp(zi), zi = (yi − µi)/σi, and r is the number of uncensored observations. The unknown parameter
vector Θ is obtained by maximizing the equation in (17) by using the optim function of R software. Further, we can
use the LR statistic for testing if the dispersion is constant for different ranges/levels of the explanatory variables
(similar to the assumption of homogeneity of variance).

5.1. Simulation study

Here, the performance of the MLEs of the parameters in the heteroscedastic LGOPC-W regression model is
discussed by means of a simulation study. We generate N = 1, 000 samples of sizes n = 50, 250, 500 and 1000
from model (16) considering the structures µ = η0 + η1x1 and σ = exp(τ0 + τ1x1), where x1 is generated from a
binomial (n, 0.5) distribution. The values of the parameters are taken as: α = 2, β = 2, η0 = 2, η1 = 2, τ0 = 2, τ1 =
0.5, and the response variable Y is generated using the inverse transform method. The simulation results are given
in Table 2. The results are interpreted based on the biases, average of estimates (AEs) and MSEs. As expected, the
biases and MSEs decrease as function of sample size. Also, the AEs are near the true values of the parameters.
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Table 2. The AEs, biases and MSEs based on 1,000 simulations for the heteroscedastic LGOPC-W regression model with
parameters: α = 2, β = 2, η0 = 2, η1 = 2, τ0 = 2 and τ1 = 0.5 for n = 50, n = 250, n = 500, n = 1000

Sample size Parameters α β η0 η1 τ0 τ1

n=50 AE 2.37122 2.37474 1.71614 1.85354 1.76171 0.49527
Bias 0.37122 0.37474 -0.28386 -0.14646 -0.23829 -0.00473
MSE 1.29224 6.79284 6.77942 3.69430 0.72357 0.07655

n=250 AE 2.09860 2.19632 1.90296 1.98140 1.96501 0.49707
Bias 0.09860 0.19632 -0.09704 -0.01860 -0.03499 -0.00293
MSE 0.44065 1.65357 3.39365 1.28981 0.20506 0.01310

n=500 AE 2.08187 2.17488 1.84429 1.89706 2.01897 0.50047
Bias 0.08187 0.17488 -0.15571 -0.10295 0.01897 0.00047
MSE 0.24524 0.79209 1.93738 0.80711 0.11012 0.00633

n=1000 AE 1.99703 2.09559 2.09914 2.06646 1.99788 0.49819
Bias -0.00297 0.09559 0.09914 0.06646 -0.00212 -0.00181
MSE 0.11694 0.42081 0.87750 0.43457 0.06011 0.00281

6. Applications

Three data sets are analyzed to prove the importance of the GOPC-G family in real data modeling. The GOPC-G
family is compared with the below families.

1. Odd log-logistic-G (OLL-G) by Gleaton and Lynch (2006)
2. Exponentiated half-logistic-G (EHL-G) by Cordeiro et al. (2014)
3. Exponentiated generalized-G (EG-G) by Cordeiro et al. (2013)
4. Beta-G (B-G) by Eugene et al. (2002)
5. Generalized odd half-Cauchy-G (GOHC-G) by Cordeiro et al. (2017a)
6. Extended generalized half-Cauchy-G (EGOHC-G) by Cordeiro et al. (2017b)

The decide the best model, we use the model selection criteria such as minimized negative log-likelihood (−ℓ̂)
values, Akaike Information Criterion (AIC), Cramer von Mises (W ⋆) and Anderson Darling (A⋆) statistics (see,
Chen and Balakrishnan, 1995). The model having the smallest values of these statistics is the best for the data used.

6.1. Data: Strengths of glass fibers

The first data set is about the the breaking stress of carbon fibres (in Gba). It can be download from the R
package, gamlss.data. Recently, Cordeiro et al. (2017a) used these data and compared the performance of GOHC-
LL distribution with more than ten competitive models. The results of the first application are listed in Table 3.
As seen from these results, the GOPC-LL distribution has the lowest values of the model selection statistics. So,
GOPC-LL is the best choice for the data used.
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Table 3. MLEs with their SEs of the fitted models and goodness-of-fit statistics for strengths of glass fibers data set

Models α β λ γ −ℓ̂ AIC A⋆ W ⋆

LL 0.1260 0.4220 22.7890 49.5790 2.7490 0.4970
0.0139 0.0267

OLL-LL 1.3950 0.1760 0.4220 22.7890 51.5790 2.7480 0.4960
13.1530 1.6590 0.0260

EHL-LL 0.1510 0.6108 0.0332 0.5469 11.3213 30.6425 0.5356 0.0968
0.0238 0.0227 0.0025 0.0222

EG-LL 0.4234 0.1785 0.0352 0.5339 11.7965 31.5929 0.6177 0.1088
0.0142 0.0401 0.0065 0.0138

B-LL 0.0578 0.1693 0.0129 0.5291 10.9129 29.8250 0.4744 0.0839
0.0447 0.1487 0.0099 0.0291

GOHC-LL 0.2004 0.0503 0.6145 11.3606 28.7211 0.5236 0.0943
0.0689 0.0136 0.0278

EGOCH-LL 0.2125 0.8327 0.0545 0.5137 10.0270 28.0539 0.2990 0.0511
0.0657 0.7485 0.0105 0.0644

OPC-LL 1.0460 0.1510 0.4371 20.6521 47.3041 2.2523 0.4058
9.0006 1.2995 0.0242

GOPC-LL 0.2867 0.2470 0.0173 0.4840 9.8323 27.6647 0.2595 0.0424
0.0822 0.1665 0.0106 0.0301

The LR test is used to compare the GOPC-LL distribution with its sub-models. The null hypothesis H0 : β = 1
is tested against the hypothesis H1 : β ̸= 1 for the comparison purpose of the GOPC-LL and GOHC-LL models.
Similarly, testing the hypothesis H0 : α = 1 against the H0 : α ̸= 1 is equivalent to comparison of the GOPC-LL
and OPC-LL models. The results are listed in Table 4 which reveals that the GOPC-LL distribution provides better
fit than its sub-models at 10% significance level for the data used.

Table 4. The LR test results for strengths of glass fibers data set.

Hypotheses LR p-value
GOPC-LL versus OPC-LL H0 : α = 1 21.6396 < 0.001
GOPC-LL versus GOHC-LL H0 : β = 1 3.0566 0.0804

6.2. Data: Ozone level

The second data, available in Nadarajah (2008), is about the daily ozone level measurements (in ppb = ppm×1000).
In this application, we investigate the performance of the GOPC-W distribution and compared it performance with
the other generalizations of the Weibull distribution. The results are given in Table 5. From obtained results, we
conclude that the GOPC-W distribution is the best among others since it has the smallest values of the model
selection criteria.
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Table 5. MLEs and their SEs of the fitted models and goodness-of-fit statistics for ozone level data set

Models α β a b −ℓ AIC A⋆ W ⋆

W 1.340 46.059 542.610 1089.221 0.966 0.170
0.095 3.373

OLL-W 1.310 1.067 47.660 542.285 1090.570 0.822 0.139
0.505 0.369 4.990

EHL-W 3.127 2.619 0.634 42.692 541.601 1091.201 0.551 0.085
1.653 15.055 0.152 386.916

EG-W 2.062 2.582 0.834 50.365 541.203 1090.405 0.541 0.086
41.865 1.608 0.242 1225.053

B-W 3.124 2.853 0.722 49.576 541.179 1090.358 0.536 0.085
2.895 9.677 0.386 168.443

GOHC-W 2.182 0.768 22.877 543.324 1092.648 0.792 0.125
1.781 0.301 19.632

EGOCH-W 2.739 3.180 0.702 17.042 543.228 1094.450 0.759 0.118
2.337 3.684 0.262 17.414

OPC-W 0.933 1.215 45.237 543.839 1093.680 1.047 0.178
0.309 0.348 3.997

GOPC-W 7.931 0.220 1.473 18.409 538.980 1085.960 0.250 0.042
2.970 0.086 0.192 0.503

The results of the LR test are given in Table 6 which shows that the GOPC-W distribution exhibits better
performance than its sub-models at 5% significance level.

Table 6. The LR test results for strengths of glass fibers data set.

Hypotheses LR p-value
GOPC-W versus OPC-W H0 : α = 1 9.718 0.001
GOPC-W versus GOHC-W H0 : β = 1 8.688 0.003

6.3. Data: Voltage

The third data is about an experiment on the specimens of solid epoxy electrical-insulation and its application on the
accelerated voltage life test (see Lawless, 2003). The sample size is n = 60 and the voltage levels are: 52.5, 55.0,
57.5. The dependent variable yi is the log-failure times of the epoxy insulation specimens and the independent
variable xi1 is the voltage level. Bartlett test is used to explore possible heteroscedasticity. The p-value of the
Bartlett test is obtained as 0.0241 which ensures that homogeneity of the variance assumption is violated. The
heteroscedastic and homoscedastic regression models fitted to the voltage data set are given, respectively, by

yi = η0 + η1xi1 + exp (τ1 + τ2xi1) zi and yi = η0 + η1xi1 + σzi, (18)

where yi follows the density in (13). The results of the regression models are given in Table 7. The results of the
log-Weibull (LW), log-OPC-W (LOPC-W) and log-EGOHC-W (LEGOHC-W) regression models are also given
as competitive models. The best model is selected based on the AIC and Bayesian Information Criteria (BIC)
statistics. From Table 7, the heteroscedastic LGOPC-W regression model is chosen the best model among others
since it has the lowest values of the AIC and BIC statistics.
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Table 7. The results of the fitted regression models with corresponding SEs (in parentheses), p-values in [] and the AIC and
BIC statistics.

Model α β η0 η1 σ τ1 τ2 AIC BIC

Heteroscedastic

LGOPC-W 1850.383 0.568 -51.768 0.891 - 8.161 -0.122 160.5 173.1
3.211 0.106 0.001 0.085 - 0.315 0.023

[<0.001] [<0.001] - [<0.001] [<0.01]

LOPC-W 64.488 67.295 -0.728 - 5.423 -0.025 168.1 178.6
28.448 23.349 0.266 - 0.479 0.0006

0.004 0.006 - [<0.001] [<0.001]

LEGOHC-W 104557 90428 -126.880 1.934 - 6.782 -0.08 161.3 173.9
0.001 0.001 0.015 0.049 - 0.469 0.01

[<0.001] [<0.001] - [<0.001] [<0.001]

LW 20.699 -0.250 - 6.147 -0.115 171.4 179.8
3.114 0.055 - 3.171 0.057
[<0.001] [<0.001] - [0.057] [0.049]

Homoscedastic

LGOPC-W 1815.526 0.830 3.372 -0.181 6.321 - - 164.0 174.5
5.009 0.397 0.633 0.061 2.835 - -

[<0.001] [0.003 ] - -

LOPC-W 7.811 20.110 -0.202 6.885 - - 167.3 175.6
9.684 4.157 0.054 8.502 - -

[<0.001] [<0.001] - -

LEGOHC-W 936670 1534457 -14.702 -0.184 11.742 - - 165.6 176.1
0.001 0.001 4.253 0.057 1.185 - -

[0.001] [0.002] - -

LW 22.000 -0.274 0.845 - - 173.4 179.7
3.046 0.055 0.09 - -
[<0.001] [<0.001] - -

The homoscedastic variance assumption is tested with LR test. It is also used to compare the homoscedastic and
heteroscedastic LGOPC-W regression models. The null hypothesis H0 : τ2 = 0 is tested. The test statistic value
is w = 5.499 and its p-value is 0.019 which is rejected at 5% level. It means that the heteroscedastic LGOPC-W
regression model is better than the homoscedastic LGOPC-W regression model.

The residual analysis is performed based on the randomized quantile residuals which was proposed by Dunn and
Smyth (1996). It is calculated with r̂i = Φ−1(ûi), where Φ−1(·) is the qf of the standard normal and ûi = F (ti|θ̂i).
Figure 2 displays the quantile-quantile plots of the randomized quantile residuals for the LGOPC-W regression
models for both heteroscedastic and homoscedastic. These figures confirm that the heteroscedastic LGOPC-W
regression model is better than the homoscedastic LGOPC-W regression model.

7. Conclusions

A new family of distributions called generalized odd power Cauchy-G, shortly GOPC-G, is introduced. The
proposed family is studied in detail. The heteroscedastic regression model based on a new generalization of the
Weibull distribution is proposed. Two simulation studies are carried out to assess the suitability of the maximum
likelihood method estimating the model parameters. Three applications are presented to induce the researchers in
favor of the proposed models. The proposed family is hoped to attract attention from the different applied sciences.
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Figure 2. Q-Q plot for the fitted LGOPC-W heteroscedastic (right) and homoscedastic (left) regression models.
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