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Abstract In this paper, point and interval estimation of stress-strength reliability based on lower record ranked set sampling
(RRSS) scheme under the proportional reversed hazard rate model are considered. Maximum likelihood, uniformly minimum
variance unbiased estimator, and Bayesian estimators of R are derived. Also, we compared this point estimators with
their counterparts obtained by well-known sampling scheme in record values known as inverse sampling scheme. Various
confidence intervals for the parameter R are constructed, and compared based on the simulation study. Moreover, the RRSS
scheme is compared with ordinary records in case of interval estimations. We observed that our proposed point and interval
estimations perform well in the estimation of R based on RRSS. We also proved that all calculations do not depend on the
baseline distribution in the proportional reversed hazard rate model. Finally, a data set has been analyzed for illustrative
purposes.
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1. Introduction

The stress-strength reliability is defined as R := Pr(X < Y ) or the probability of not failing when a random stress
X is applied to a certain device with strength Y . For example, the random variable Y represents the strength of
a building during an earthquake and the random variable X is stress from the earthquake. Therefore, R could be
defined as the probability of designing for a safe building. Some practical examples could be found in Kotz et
al. [15]. Many authors have studied the stress-strength parameter R in parametric and non-parametric inferences
by considering several specific distributions of X and Y under different sampling schemes. There are several
studies on the estimation of R based on the complete samples such as Raqab et al. [20] and Rezaei et al. [21] who
estimated R for the three-parameter Weibull and generalized Pareto distributions, respectively. Also, Mutllak et
al. [17] considered estimation of R using ranked set sampling (RSS) in the case of the exponential distribution.
Recently, some authors have investigated the statistical inference for R based on record data. Baklizi [4] studied the
likelihood and Bayesian estimations of R using lower record values from the generalized exponential distribution
(GE). Asgharzadeh et al. [2] obtained the estimation of R for the two-parameter generalized exponential records.
Moreover, Basirat et al. [5] estimated the stress-strength parameter for the proportional hazard rate (PHR) models
based on record values. Let X1, X2, . . . , be an infinite sequence of independent and identically distributed (iid)
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random variables. An observation Xj is called a lower record if Xj < Xi for every (i < j). Salehi and Ahmadi
[25] introduced a new sampling scheme in record-breaking data. They proposed that more accurate results can
be achieved for compared ordinary record values. Suppose n independent sequences are considered sequentially,
and the ith sequence sampling is terminated when the ith record is observed. The only available observations for
analysis are the last record value in each sequence. Let us denote the last record for the ith sequence in this plan by
Li,i. Then the available observations are L = (L1,1, L2,2, ..., Ln,n)

⊤. Therefore, the following diagram can be used
to describe this observational process:

1 : L(1)1 → L1,1 = L(1)1

2 : L(1)2 L(2)2 → L2,2 = L(2)2

...
...

...
. . .

...
...

n : L(1)n L(2)n · · ·L(n)n → Ln,n = L(n)n, (1)

Where L(i)i is the ith ordinary lower record in the ith sequence. Notice that unlike the ordinary records, here Li,i’s
are independent random variables but not necessarily ordered. The proposed scheme is called RRSS because this
scheme is based on general ranked set sampling. Let F (·; θ) and f(·; θ) be the cumulative distribution function (cdf)
and probability density function (pdf) of the sampling population, respectively. Then, using the marginal density
of ordinary record (see Arnold et al. [1]) the joint density of L is readily obtained as

fL(l; θ) =
n∏

i=1

{− logF (li,i; θ)}i−1

(i− 1)!
f(li,i; θ), θ ∈ Θ, (2)

where l = (l1,1, l2,2, . . . , ln,n)
⊤ is the observed vector of L, θ is a real-valued parameter and Θ is the parameter

space. For the upper case, we use F̄ instead of F where F̄ = 1− F .
Salehi and Ahmadi [26] considered the estimation of stress-strength reliability based on RRSS for the exponential
distribution. With collaboration of Dey [27], they also compared the RRSS scheme with ordinary records in
estimating the unknown parameter of PHR model. The RRSS plan has also been investigated by other researchers.
Among them, Eskandarzadeh et al. [11] obtained information measure for RRSS. Paul and Thomas [18] proposed
concomitant RRSS. Safariyan et al. [23, 24] proposed some improved estimators including the preliminary test
estimator as well as stein- type shrinkage estimator for stress-strength reliability using RRSS scheme. Sadeghpour
et al. [22] considered the likelihood and Bayesian estimation of stress-strength reliability using lower RRSS scheme
under the GE distribution.
The concept of proportional reversed hazard rate (PRHR) models (see Gupta et al. [13]) has been extensively
studied in literature because of their wide applicability in survival analysis and reliability, especially in studies on
parallel systems and in analysis of left-censored lifetime data, (see Sengupta and Nanda [28] and Chandra and Roy
[8]). The PRHR model is equivalent to the model G(t) = [F0(t)]

θ, where F0(t) is the baseline distribution function
which is free of any unknown parameter. For more applications of reversed hazard rate, see Gupta and Nanda [12]
and Gupta and Gupta [14].
It is known that many lifetime models, namely the generalized exponential, Weibull, Rayleigh, Pareto, logistic,
inverse Rayleigh, Bur type III, exponential Gumbel and power distributions belong to the class of PRHR
distributions. Moreover, the stress-strength reliability has received considerable attention in branches of sciences
such as industry, medicine, and engineering, and the necessity of using the appropriate method for collecting
observations. Thus, to achieve high reliability in the shortest time and at a minimum cost based on the RRSS, the
main objective of this paper is to make a statistical inference for stress-strength reliability based on lower RRSS
scheme where X and Y are two independent random variables that follow the PRHR model. In fact, we compare
the performance of stress-strength reliability based on two scheme in record-breaking data, one of which is inverse
sampling scheme and other scheme is RRSS.
The rest of the paper is organized as follow: In Section 2, the maximum likelihood (MLE) and uniformly minimum
variance unbiased (UMVUE) as well as the Bayesian estimator of R are derived, and their performance is

Stat., Optim. Inf. Comput. Vol. 9, March 2021



84 COMPARISON OF TWO SAMPLING SCHEMES IN ESTIMATING THE STRESS-STRENGTH RELIABILITY

compared with their counterparts obtained by inverse sampling scheme in record values. Various confidence
intervals (CI) as well as Bayesian credible interval and highest posterior density (HPD) for R are presented in
Section 3. In Section 4, analysis of a simulated data set has been presented, and the results of interval estimations
are compared with those obtained based on ordinary records. Finally, a real data set on the time of successive
failures of air conditioning system in Boeing 720 jet airplanes is analyzed in section 5.

2. Point Estimation

Let us recall that the continuous random variable T has the cdf and pdf in the form of

G(t) = [F0(t)]
θ and g(t) = θf0(t)[F0(t)]

θ−1,

respectively, where F0(t) is the baseline cdf which is independent of the shape parameter θ where θ > 0, this family
of distribution is well known as PRHR model. Let X and Y be two independent random variables following PRHR

model with the parameter α and β, respectively. It is easy to see that in this case R = Pr(X < Y ) =
β

α+ β
.

We are interested in estimating the stress-strength R when the samples are permitted to be a lower RRSS’s
with possibly different number of observations. Let u = (u1,1, u2,2, · · · , un,n)

⊤ be the observation of the random
vector U = (U1,1, U2,2, · · · , Un,n)

⊤, which is a lower RRSS of size n from PRHR models with cumulative
distribution function G(u) = (F0(u))

α. Also let s = (s1,1, s2,2, · · · , sm,m)⊤ be the observation of random vector
S = (S1,1, S2,2, · · · , Sm,m)⊤, which is a lower RRSS of size m from PRHR model with cumulative distribution
function G(s) = (F0(s))

β .
For estimating R via maximum likelihood method, it is necessary to obtain the MLE’s of α and β. By using (2),
the likelihood function will be obtained as

L(α, β) =

n∏
i=1

{
{− log(F (ui,i)

α)}i−1

(i− 1)!
αf(ui,i)

[
F (ui,i)

α−1
]}

×
m∏
j=1

{{
− log(F (si,i)

β)
}j−1

(j − 1)!
βf(sj,j)

[
F (sj,j)

β−1
]}

, (3)

Therefore, the MLE’s of α and β are immediately obtained as

α̂ML = − N
n∑

i=1

log (F (Ui,i))

and β̂ML = − M
m∑
j=1

log (F (Sj,j))

, (4)

where N =
n(n+ 1)

2
and M =

m(m+ 1)

2
.

Consequently, R̂ML could be defined by using invariance property .

R̂ML =
β̂ML

α̂ML + β̂ML

=

(
1 +

NH
′

m

MT ′
n

)−1

, (5)

where T
′

n = −
∑n

i=1 log(F (Ui,i)) and H
′

m = −
∑m

j=1 log(F (Sj,j)). As discussed before, Ui,i’s and Sj,j’s are
independent random variables. Moreover, it can be shown that Ti = − log(F (Ui,i)) where i = 1, . . . , n follows
from Gamma distribution with the shape parameter i and the scale parameter α, denoted by Ti ∼ Gamma(i, α).
Therefore, we have

T
′

n = −
n∑

i=1

log(F (Ui,i)) ∼ Gamma(N,α), (6)
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and similarly

H
′

m = −
m∑
j=1

log(F (Sj,j)) ∼ Gamma(M,β). (7)

From (6) and (7) clearly, we have

R̂ML
d
=

(
1 +

α

β
W

)−1

, (8)

where d
= means equivalent in distribution and W has F-distribution with 2M and 2N degrees of freedom.

According to (8) and the results obtained in [22], it is observed that the distribution of R̂ML based on RRSS scheme
from the PRHR model does not depend on the baseline distribution, F0.
We use (8) for obtaining MSE of R̂ML, i.e. Biase(R̂ML,R) = E

(
R̂ML −R

)
and MSE(R̂ML,R) =

E
(
R̂ML −R

)2
, respectively. In Figure 1, we have plotted the values of MSE and Bias of R̂ML versus R for

some selected values of n and m.
According to Figure 1, we could observe the following points:

• When n = m, the MSE(R̂ML,R) and Bias(R̂ML,R) are symmetric around R = 0.5 and about the point
(0.5, 0) respectively. Also, the Bias only is zero for R = 0, 0.5, 1. [see part (a) and (b) ].

• According to part (c) when n ̸= m, the curve of MSE(R̂ML,R) is asymmetric. When n < m, the curve
has skewness to the right and when n > m, it has skewness to the left. Furthermore, when n = m the
MSE(R̂ML;R) is significantly less than the case where n ̸= m.

• When the sample sizes increase, the MSE(R̂ML,R) decreases, and we observe that Rmax ∝ n

n+m
, where

Rmax is the maximizer of MSE(R̂ML,R).

Now, we obtain UMVUE of R based on RRSS scheme from the PRHR model.

Lemma 1
Let the random vector U = (U1,1, . . . , Un,n)

T and S = (S1,1, . . . , Sm,m)T be lower RRSS of size n and m from
PRHR models respectively. Then, the UMVUE of R is derived as follows.

R̂UMV U =



M−1∑
s=0

(
M−1

s

)(
N+s−1

s

) (−1− R̂ML

R̂ML

M

N

)s

, R̂ML <
M

M +N
,

1−
N−1∑
s=0

(
N−1
s

)(
M+s−1

s

) (− R̂ML

1− R̂ML

N

M

)s

, R̂ML ≥ M

M +N
.

(9)

For more details see [22]. According to (9), the UMVUE of R is derived in term of the R̂ML. So, R̂UMV U based
on RRSS scheme from the PRHR model does not depend on the baseline distribution, F0.
By using (9), we have plotted the numerical values of V ar(R̂UMV U ) versus R for some selected values of n and
m show in Figure 2.
We observe that when n = m, the behaviour of V ar(R̂UMV U ) is almost similar to MSE(R̂ML,R) but when
n ̸= m it has a different behaviour and departures from symmetry.
With respect to (9), we plot the numerical values of the estimators R̂ML and R̂UMV U against each other in Figure 3.
We observe that when n = m, R̂ML and R̂UMV U hold values close together but when n ̸= m, they have different
values. So, to compare the effectiveness of this point estimators, the numerical values of the efficiency of these
estimators i.e.

e(R̂UMV U , R̂ML) =
V ar(R̂UMV U )

MSE(R̂ML,R)
. (10)
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Figure 1. Plot of MSE(R̂ML,R) and Bias(R̂ML,R) versus R.

is plotted in Figure 4.
We observe from the figure that when n = m, the relative efficiency of R̂ML is more than the relative efficiency

of R̂UMV U especially for the values of R near the half.

2.1. Bayesian estimation

In this section, we focus in Bayesian estimation of R under the assumptions that the α and β have independent
gamma prior, i.e., α ∼ Gamma(λ1, µ1) and β ∼ Gamma(λ2, µ2). Thus the posterior distribution of α and β are

α|r ∼ Gamma
(
λ1 +N,µ1 + t

′

n

)
, and β|s ∼ Gamma

(
λ2 +M,µ2 + h

′

m

)
, (11)
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Figure 2. Plot of V ar(R̂UMV U ) versus R.
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Figure 3. Plot of R̂UMV U versus R̂ML.

where t
′

n and h
′

m are the observed values of random variables T
′

n and H
′

m in (6) and (7) respectively. Suppose that
α and β are independent, so the posterior distribution of R is given by

fR|(R,S)(r) =
Γ(λ1 + λ2 +N +M)

Γ(λ1 +N)Γ(λ2 +M)

(
µ2 +H

′
m

µ1 + T
′
n

)λ2+M
rλ2+M−1(1− r)λ1+N−1(

1− r(1− µ2 +H
′
m

µ1 + T
′
n
)

)λ1+λ2+N+M
. (12)

The Bayesian estimator of R under squared error loss function will be derived as (see [7]).

R̂B =

∫ 1

0

rfR|(R,S)(r)dr =
λ2 +M

λ1 + λ2 +N +M

(
µ2 +H

′

m

µ1 + T ′
n

)λ2+M

× 2F1

(
λ1 + λ2 +N +M,λ2 +M + 1, λ1 + λ2 +N +M + 1, (1− µ2 +H

′

m

µ1 + T ′
n

)

)
.

where 2F1 is the hyper-geometric function, (see [3]).
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Figure 4. Plot of e(R̂UMV U ; R̂ML) versus R.

3. Comparison of point estimators of R based on two sampling schemes

In section 2, we presented some point estimators for R = Pr(X < Y ) based on lower RRSS scheme for PRHR
model. Also, Baklizi [4] considered the likelihood and Bayesian estimation of R based on lower record values
from the GE distribution.
In this section, we compare the point estimators of R based on ordinary records (see [4]) with those obtained
by the RRSS scheme. In inverse sampling scheme, the experiments are done sequentially, the only observation
available for analysis is the record values and sampling is terminated when the nth record is observed. Let X and
Y be two independent random variables from GE distribution with the parameter α and β, respectively. Also,
let u(R) = (u1, . . . , un′ )⊤ be the observed value of the random vector U (R) = (U1, . . . , Un′ )⊤ which is a lower
record value of size n

′
from GE distribution and s(R) = (s1, . . . , sm′ )⊤ be the observed value of the random vector

S(R) = (S1, . . . , Sm′ )⊤, which is a lower record value of size m
′

from GE distribution. It can be shown that under

this case, R =
β

α+ β
.

• MLE: Note that by (8), we find that the MSE(R̂ML,R) does not depend on the distribution of the baseline
random variable, F0. So, we consider GE distribution as a special case of the PRHR model. we recall that the pdf
of the GE distribution is given by

f0(t) = θe−t(1− e−t)θ, t > 0, θ > 0. (13)

To compare the MLE estimators of the two schemes, one of which is inverse sampling scheme and other scheme
is RRSS, we use the relative efficiency criterion, i.e.

e
(
R̂(RRSS)

ML , R̂(R)
ML

)
=

MSE
(
R̂(R)

ML,R
)

MSE
(
R̂(RRSS)

ML ,R
) . (14)

It is plotted in Figure 5 with considering equal sample sizes for two schemes. We observe from that figure, for all
combination of (n,m), the efficiency of R̂(RRSS)

ML is more than the R̂(R)
ML. Also, this figure shows that when the

sample sizes increase, the efficiency of R̂(RRSS)
ML is significantly better than R̂(R)

ML.
Also, to be more focused on the comparison of the estimators, we have plotted the values of (14) with respect to
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Figure 6. The relative efficiency of R̂ML given in (14).

n
′
= m

′
= 2(1)15 for a given n = m = 2(1)5 for R = 0.5, 0.95 in Figure 6.

From Figure 6, it is easy to observe that for n
′
= m

′ ≤ N = M , the relative efficiency is greater than one. More
clearly, when n

′ ≤ N and m
′ ≤ M , the R̂(RRSS)

ML behaves better than R̂(R)
ML. For example R̂(RRSS)

ML with n = m = 4

(or equivalently N=M=10) is more efficient than the estimator R̂(R)
ML with n

′
= m

′
= 8.

•UMVUE: The UMVUE of R is derived in terms of the MLE as equation (9). Note that by (8), we find
that V ar(R̂UMV U ) does not depend on the underlying distribution function of X and Y . So, we consider GE
distribution in (13) as a distribution of X and Y . To compare the effectiveness of R̂UMV U with considering equal
sample sizes for two schemes, the numerical values of the efficiency of these estimators i.e.

e
(
R̂(RRSS)

UMV U , R̂(R)
UMV U

)
=

V ar(R̂(R)
UMV U )

V ar(R̂(RRSS)
UMV U )

. (15)
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is plotted in Figure 7.
We observe from the figure that the UMVUE based on RRSS scheme is more efficient than the UMVUE on the
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basis of ordinary record.
Similar to ML estimator, the values of relative efficiency in (15), with respect to n

′
= m

′
= 2(1)15 for a given

n = m = 2(1)5 for R = 0.5, 0.95 are plotted in Figure 8.
We observe from the Figure 8 that the performance of R̂(R)

UMV U is better than R̂(RRSS)
UMV U when the number of sample
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Figure 8. The relative efficiency of R̂UMV U given in (15).

observations based on ordinary records is increased namely that n
′
> N and m

′
> M , which is not economical.

So, we prefer R̂(RRSS)
UMV U as a efficient estimator.

•Bayesian estimator: From (12), it can be easily shown that the MSE(R̂B,R) does not depend on the
underlying distribution function of X and Y . Once more, we consider GE distribution to compare the R̂B based
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on two schemes and we use relative efficiency as follow

e
(
R̂(RRSS)

B , R̂(R)
B

)
=

MSE
(
R̂(R)

B ,R
)

MSE
(
R̂(RRSS)

B ,R
) . (16)

The value of relative efficiency for Bayesian estimators based on two schemes are plotted in Figure 9. From Figure
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Figure 9. The relative efficiency of R̂B given in (16).

9, we observe that when n
′
= m

′ ≤ N = M , we have e
(
R̂(RRSS)

B , R̂(R)
B

)
> 1. In this case, the relative efficiency

of R̂(RRSS)
B is better than R̂(R)

B .

4. Interval estimation

A point estimate and CI are closely related. However, CI’s provide much more information and are preferred when
making inferences. A CI will provide valid result most of the time. In this section, four types of CI’s for R will be
derived.

4.1. CI using Pivotal Quantity

The 100(1− γ)% CI for R obtained by using (8) and assuming W =
βNH

′

m

αMT ′
n

as a pivotal quantity as follows

(1 + 1− R̂ML

R̂ML

F
1−

γ

2
(2M,2N)

)−1

,

(
1 +

1− R̂ML

R̂ML

Fγ

2
(2M,2N)

)−1
 , (17)

where F(2M,2N)(γ) is the γ-th quantile of F-distribution with 2M and 2N degrees of freedom.

4.2. Asymptotic CI

If we consider the number of observed data sufficiently large and n,m → ∞, we have (α̂ML − α)
d−→ N(0, σ2

1)

and (β̂ML − β)
d−→ N(0, σ2

2) where (
d−→) denotes convergence in distribution. σ2

1 and σ2
2 are the asymptotic

variances given by σ2
1 = −1/E

(
∂2

∂α2
logL(α,U)

)
and σ2

2 = −1/E

(
∂2

∂β2
logL(β,S)

)
with L given in (3). It
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is easy to show that σ2
1 =

α2

N
and σ2

2 =
β2

M
.

Let n,m are sufficiently large in such a way that,
M

N
−→ p, where p ∈ (0, 1), it follows that

√
N

(
α̂− α

β̂ − β

)
d−→ N2

( 0
0

)
,

 α2 0

0
β2

p

 .

By taking h(t1, t2) =
t2

t1 + t2
and using multivariate delta method (see [29], pp. 5-6) we have

(R̂ML −R)
d−→ N(0, σ2),

where

σ =
αβ

(α+ β)2

√
1

N
(1 +

1

p
), (18)

based on this asymptotic results and applying the Slutsky’s Theorem, a 100(1− γ)% asymptotic CI for R is given
by

(R̂ML − Z
1−

γ

2

σ̂, R̂ML + Z
1−

γ

2

σ̂). (19)

Let Zγ is the γ-th quantile of the distribution of standard normal distribution and σ̂ is obtained by substituting α̂ML

and β̂ML instead of α and β in (18), respectively.

4.3. Bayesian intervals

By using the fact that
(µ1 + T

′

n)(λ2 +M)α

(µ2 +H ′
m)(λ1 +N)β

|(r, s) ∼ F (2(λ1 +N), 2(λ2 +M)), a 100(1− γ)% Bayesian

credible interval (BCI) for R is given by[
(1 +AF

1−
γ

2

)−1, (1 +AFγ

2

)−1

]
(20)

where A =

(
µ2 +H

′

m

µ1 + T ′
n

)(
λ1 +N

λ2 +M

)
.

We can use the Markov Chain Monte Carlo (MCMC) method proposed by Chen and Shao [9] to compute the HPD
interval for R. The construction of HPD intervals requires to find the set,

C(πα) = {θ : π(θ|D) ≥ πα}, (21)

where D denotes data and πα is the largest constant such that p(θ ∈ C(πα)) ≥ 1− α. (see [6] and [22] for more
details).

4.4. Parametric Bootstrap CI’s

We present some bootstrap intervals for comparison. It is important to know that all inference procedures in this
paper depend only on the T

′

n and H
′

m as given in (6) and (7), respectively. So, we use the parametric bootstrap.
There are several bootstrap confidence intervals (see [10]) where we have considered percentile, bootstrap-t and
basic bootstrap CI’s among them. In the following, we will describe the bootstrapping procedure.
Step 1. Calculate α̂, β̂ and R̂ML from (6), (7) and (8), respectively by considering independent observed samples
ui, sj released from Gamma(i, α), i = 1, . . . , n and Gamma(j, β), j = 1, . . . ,m, respectively.
Step 2. Generate u∗

i ∼ Gamma(i, α̂) and s∗j ∼ Gamma(j, β̂) to calculate α̂∗, β̂∗ and then R̂∗
ML.

Step 3. Repeat step 2, B times (b = 1, . . . , B) to obtain R̂∗
(B)ML.
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4.4.1. Bootstrap-t CI based on the asymptotic standard deviation σ: Repeat step 2 for b = 1 . . . , B, to drive σ̂∗ in
(18) with α̂∗, β̂∗ instead of α̂, β̂, respectively. Let Z∗ = (Z∗

(1), . . . , Z
∗
(B))

⊤ where

z∗(b) =
R̂∗

(b)ML − R̂ML

σ̂∗
(b)

, b = 1, . . . , B

then the 100(1− γ)% bootstrap-t CI for R is given byR̂ML − z∗

1−
γ

2

σ̂, R̂ML − z∗γ

2

σ̂

 .

where Z∗
γ is the γ-th quantile of Z∗.

Refer to [22] for algorithms of Percentile CI, Basic bootstrap CI and Bootstrap-t CI based on the asymptotic
standard deviation σ.

5. Simulation Study

In this section, we consider some simulations to compare the performance of the various intervals for R
presented in this paper. In our simulation design, we have used all combinations of n = 3, 5, 7, m = 3, 5, 7,
R = (0.1, 0.3, 0.5, 0.7, 0.9), and β = 0.3. In each combination, 10000 samples are simulated. We have used
B = 1000 and have considered B

′
= 25 samples for the bootstrap variance estimate. Also, we consider the prior

distribution of both α and β to be Gamma(2, 4). We generate the following CI’s, and the results of our simulation
are given in Tables 1 and 2.
Perc: Percentile CI
Boot-t1: Bootstrap-t CI based on the asymptotic standard deviation σ
Boot-t2: Bootstrap-t CI based on bootstrap variance estimate
Basic: the basic bootstrap CI
MLE: CI based on pivotal quantity
AMLE: Approximate CI
Bayes: Bayesian CI
HPD: The approximate HPD interval.

According to the results presented in Tables 1 and 2, we observe the following points:

• As we expected, the EL of all CI’s decreases when the sample size increases.
• It appears that the maximum of the EL occurs at R = 0.5 and the EL are very small for the extreme values

of R, thus the obtained results of simulation study confirm the result of the section 2.
• The Boot-t1 CI works well compared to the Boot-t2, especially in large samples sizes.
• The CP of the exact CI obtained based on the pivotal quantity and the percentile CI are very close to the

true nominal confidence level γ. However, the AMLE CI outperforms the other bootstrap CI’s with respect
to EL. Consequently, by considering the two criteria, i.e., the CP and EL, we observe that percentile CI and
the MLE CI are better than other CI’s.

• As we expected, the HPD CI is better than Bayesian CI. Since the EL of HPD CI is smaller than the EL of
Bayesian CI for all n and m combinations, and the CP of HPD CI is more than the CP of Bayesian CI for
extreme values of R.

Also, according to the results presented in [22] , we observe that when γ = 0.1 the CP and EL are significantly
lower than when γ = 0.05.

5.1. Comparison of interval estimations based on RRSS scheme with ordinary records

Salehi et al. [27], have compared the two sampling schemes in generating record-breaking data. They have obtained
various point estimators for some important parameters of the PHR models based on two sampling schemes and
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Table 1. The CP and EL of R for γ = 0.05.

perc Boot-t1 Boot-t2 Basic

Row R n m CP EL CP EL CP EL CP EL
1 0.1 3 3 0.947 0.244 0.843 0.201 0.881 0.218 0.826 0.243
2 0.1 3 5 0.937 0.176 0.823 0.167 0.846 0.173 0.840 0.176
3 0.1 3 7 0.922 0.156 0.811 0.156 0.829 0.161 0.841 0.155
4 0.1 5 3 0.939 0.217 0.901 0.194 0.930 0.210 0.866 0.216
5 0.1 5 5 0.949 0.140 0.892 0.147 0.908 0.155 0.886 0.139
6 0.1 5 7 0.945 0.116 0.885 0.127 0.896 0.134 0.891 0.116
7 0.1 7 3 0.929 0.206 0.917 0.186 0.944 0.203 0.877 0.205
8 0.1 7 5 0.949 0.124 0.910 0.123 0.928 0.132 0.893 0.123
9 0.1 7 7 0.949 0.098 0.907 0.101 0.923 0.107 0.904 0.098

10 0.3 3 3 0.947 0.449 0.883 0.532 0.907 0.539 0.821 0.447
11 0.3 3 5 0.937 0.366 0.869 0.445 0.882 0.451 0.845 0.364
12 0.3 3 7 0.923 0.337 0.854 0.418 0.864 0.424 0.854 0.336
13 0.3 5 3 0.939 0.399 0.917 0.460 0.931 0.475 0.866 0.398
14 0.3 5 5 0.949 0.294 0.918 0.329 0.930 0.340 0.894 0.293
15 0.3 5 7 0.945 0.255 0.911 0.285 0.921 0.295 0.902 0.254
16 0.3 7 3 0.928 0.380 0.918 0.421 0.930 0.441 0.874 0.378
17 0.3 7 5 0.949 0.263 0.929 0.280 0.941 0.292 0.902 0.261
18 0.3 7 7 0.949 0.217 0.927 0.230 0.937 0.240 0.914 0.216
19 0.5 3 3 0.947 0.501 0.893 0.657 0.910 0.650 0.819 0.499
20 0.5 3 5 0.937 0.433 0.897 0.542 0.909 0.549 0.850 0.431
21 0.5 3 7 0.922 0.407 0.891 0.502 0.898 0.514 0.857 0.406
22 0.5 5 3 0.939 0.433 0.903 0.543 0.915 0.549 0.859 0.432
23 0.5 5 5 0.949 0.339 0.923 0.385 0.933 0.396 0.892 0.338
24 0.5 5 7 0.946 0.301 0.929 0.333 0.938 0.344 0.905 0.300
25 0.5 7 3 0.928 0.408 0.896 0.502 0.904 0.513 0.864 0.406
26 0.5 7 5 0.949 0.301 0.928 0.332 0.936 0.343 0.906 0.300
27 0.5 7 7 0.949 0.254 0.934 0.272 0.943 0.282 0.917 0.253
28 0.7 3 3 0.947 0.447 0.884 0.530 0.907 0.538 0.822 0.445
29 0.7 3 5 0.937 0.399 0.907 0.459 0.925 0.474 0.857 0.397
30 0.7 3 7 0.923 0.380 0.912 0.422 0.926 0.442 0.871 0.378
31 0.7 5 3 0.939 0.365 0.870 0.444 0.885 0.450 0.852 0.364
32 0.7 5 5 0.949 0.294 0.916 0.328 0.928 0.339 0.889 0.293
33 0.7 5 7 0.945 0.263 0.931 0.280 0.942 0.293 0.910 0.262
34 0.7 7 3 0.928 0.338 0.866 0.418 0.875 0.424 0.865 0.336
35 0.7 7 5 0.949 0.256 0.913 0.284 0.924 0.295 0.902 0.255
36 0.7 7 7 0.949 0.217 0.930 0.230 0.941 0.240 0.915 0.216
37 0.9 3 3 0.947 0.243 0.840 0.201 0.880 0.217 0.822 0.241
38 0.9 3 5 0.937 0.216 0.892 0.194 0.925 0.210 0.858 0.215
39 0.9 3 7 0.922 0.206 0.915 0.187 0.943 0.204 0.874 0.205
40 0.9 5 3 0.939 0.176 0.827 0.166 0.848 0.173 0.839 0.175
41 0.9 5 5 0.949 0.140 0.888 0.147 0.908 0.155 0.878 0.139
42 0.9 5 7 0.945 0.125 0.920 0.124 0.935 0.132 0.901 0.124
43 0.9 7 3 0.928 0.156 0.821 0.157 0.839 0.161 0.850 0.156
44 0.9 7 5 0.949 0.117 0.889 0.127 0.902 0.134 0.896 0.116
45 0.9 7 7 0.949 0.099 0.913 0.101 0.925 0.107 0.907 0.098

have compared them with concerning mean squared error and Pitman measure of closeness criteria. It is observed in
most of the situations that estimators derived from RRSS scheme are more efficient than their counterparts derived
from record sampling scheme.
Baklizi [4] has considered the Likelihood and Bayesian estimation of the stress-strength reliability based on lower
record values from the GE distribution. He has achieved exact and approximate confidence intervals and has
compared the performance of the intervals by simulation studies. As a special case of the PRHR model, we consider
GE distribution to compare the interval estimations based on ordinary records (see tables 1 and 2 of [4]) with those

obtained by the RRSS approach. We considered a relative criterion, namely δ =
EL(R)

EL(RRSS)
.

Which EL(R) and EL(RRSS) indicate expected lengths for the CI based on ordinary record and the RRSS approach,
respectively.
In fact, when δ > 1, it yields that the CI based on RRSS performs better than the CI based on ordinary record. For
the GE distribution, we have derived the values of δ for some choices of m and n that presented in [4]. From Table
3 and 4, we observe that δ is greater than one in all cases.

Therefore, as we expected, the RRSS sampling scheme in PRHR models is better than ordinary records.
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Table 2. continue

MLE AMLE Bayes HPD

Row R n m CP EL CP EL CP EL CP EL
1 0.1 3 3 0.949 0.244 0.787 0.144 0.773 0.308 0.853 0.293
2 0.1 3 5 0.938 0.177 0.624 0.080 0.758 0.255 0.860 0.240
3 0.1 3 7 0.922 0.156 0.533 0.060 0.749 0.233 0.857 0.219
4 0.1 5 3 0.940 0.217 0.710 0.099 0.867 0.221 0.906 0.212
5 0.1 5 5 0.951 0.140 0.648 0.063 0.856 0.166 0.900 0.160
6 0.1 5 7 0.947 0.116 0.553 0.044 0.856 0.144 0.903 0.138
7 0.1 7 3 0.928 0.206 0.645 0.079 0.904 0.188 0.924 0.183
8 0.1 7 5 0.949 0.124 0.572 0.047 0.905 0.133 0.917 0.130
9 0.1 7 7 0.950 0.099 0.553 0.037 0.894 0.111 0.927 0.107

10 0.3 3 3 0.949 0.449 0.708 0.264 0.954 0.414 0.939 0.403
11 0.3 3 5 0.938 0.366 0.586 0.166 0.961 0.356 0.957 0.345
12 0.3 3 7 0.922 0.337 0.511 0.129 0.971 0.331 0.963 0.320
13 0.3 5 3 0.940 0.400 0.626 0.181 0.945 0.356 0.927 0.349
14 0.3 5 5 0.951 0.294 0.609 0.132 0.951 0.284 0.942 0.278
15 0.3 5 7 0.947 0.255 0.534 0.097 0.957 0.251 0.946 0.245
16 0.3 7 3 0.928 0.380 0.561 0.145 0.943 0.332 0.927 0.327
17 0.3 7 5 0.949 0.263 0.544 0.100 0.948 0.251 0.937 0.247
18 0.3 7 7 0.950 0.217 0.534 0.082 0.952 0.213 0.945 0.209
19 0.5 3 3 0.949 0.501 0.689 0.295 0.949 0.446 0.920 0.437
20 0.5 3 5 0.938 0.433 0.587 0.196 0.946 0.392 0.923 0.385
21 0.5 3 7 0.922 0.408 0.517 0.156 0.944 0.368 0.918 0.361
22 0.5 5 3 0.940 0.433 0.590 0.197 0.951 0.392 0.922 0.385
23 0.5 5 5 0.951 0.339 0.598 0.153 0.950 0.321 0.932 0.316
24 0.5 5 7 0.947 0.301 0.533 0.114 0.948 0.287 0.932 0.283
25 0.5 7 3 0.928 0.408 0.527 0.156 0.947 0.368 0.921 0.361
26 0.5 7 5 0.949 0.301 0.528 0.114 0.949 0.287 0.931 0.282
27 0.5 7 7 0.950 0.254 0.527 0.096 0.948 0.246 0.937 0.243
28 0.7 3 3 0.949 0.448 0.706 0.263 0.936 0.401 0.911 0.390
29 0.7 3 5 0.938 0.399 0.622 0.181 0.922 0.355 0.905 0.349
30 0.7 3 7 0.922 0.380 0.548 0.145 0.912 0.334 0.896 0.329
31 0.7 5 3 0.940 0.366 0.592 0.166 0.950 0.340 0.924 0.329
32 0.7 5 5 0.951 0.294 0.608 0.132 0.944 0.280 0.930 0.273
33 0.7 5 7 0.947 0.263 0.544 0.100 0.940 0.251 0.931 0.246
34 0.7 7 3 0.928 0.338 0.522 0.129 0.947 0.315 0.921 0.302
35 0.7 7 5 0.949 0.256 0.531 0.097 0.948 0.247 0.932 0.240
36 0.7 7 7 0.950 0.218 0.533 0.083 0.947 0.212 0.937 0.208
37 0.9 3 3 0.949 0.242 0.784 0.143 0.927 0.221 0.927 0.207
38 0.9 3 5 0.938 0.216 0.702 0.098 0.905 0.192 0.919 0.184
39 0.9 3 7 0.922 0.206 0.630 0.080 0.890 0.180 0.905 0.173
40 0.9 5 3 0.940 0.176 0.632 0.080 0.948 0.168 0.932 0.156
41 0.9 5 5 0.951 0.140 0.646 0.063 0.942 0.135 0.939 0.129
42 0.9 5 7 0.947 0.125 0.578 0.048 0.935 0.120 0.937 0.116
43 0.9 7 3 0.928 0.157 0.548 0.060 0.947 0.150 0.924 0.138
44 0.9 7 5 0.949 0.117 0.554 0.045 0.947 0.115 0.938 0.109
45 0.9 7 7 0.950 0.099 0.551 0.038 0.945 0.097 0.942 0.094

6. Data analysis

To demonstrate the procedures proposed in preceding sections, we analyze a real data set. Here, we consider a data
set on the time of successive failures of the air conditioning system of each number of a fleet of Boeing 720 jet
airplanes. The mentioned data are available in [19]. We randomly select two airplanes to study the stress-strength
reliability. Here, we consider plans 7908 and 8045 to see whether the GE distribution is adequate to fit on this data
sets or not. We used the Kolomogrove- Smirnov (K-S) test, and we see that corresponding P-values of the K-S test
for the observations X and Y are 0.372 and 0.667, respectively, which support the adequacy of the GE distribution.
It should be noted that any other airplane that support the adequacy of the specific distribution can be selected for
study. The extracted values of lower RRSS from this data set according to Diagram 1 are presented in Table 5.
From Table 5, we see that each of the numbers 7908 and 8045 of Boeing 720 jet airplanes has a lower RRSS of
size four from air condition data. To study the R =: P (X < Y ), let the X-variable represent the stress which is
demonstrated with the lower RRSS values of number 7908 airplane as u = (413, 9, 34, 7) and Y -variable represent
the strength which is demonstrated with the lower RRSS values of number 8045 airplane as s = (102, 14, 32, 14)
(n = m = 4).
In order to check the performance of the point and interval estimations, the bootstrap method is employed in order
to re-sample the data and so provide more observations for the estimators. To this purpose, 200 bootstrap samples
are generated from the original data sets, and then the RRSS’s are extracted. Based on the obtained RRSS’s, we
get the R̂ML = 0.655 and R̂UMV U = 0.663 as the point estimation of the stress-strength reliability parameter. The
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Table 3. The values of δ for some values of m and n when γ = 0.05

MLE Perc Boot-t1 Boot-t2 HPD

Row n m R δ CPR CPRRSS δ CPR CPRRSS δ CPR CPRRSS δ CPR CPRRSS δ CPR CPRRSS

1 5 5 0.1 1.576 0.832 0.920 2.223 0.912 0.904 2.959 0.881 0.923 3.101 0.883 0.919 1.879 0.877 0.902
2 5 5 0.3 1.476 0.806 0.920 1.701 0.919 0.902 2.599 0.891 0.929 2.315 0.888 0.932 1.679 0.865 0.895
3 5 5 0.5 1.509 0.819 0.920 1.593 0.918 0.898 2.621 0.902 0.930 2.175 0.897 0.938 1.700 0.881 0.908
4 5 10 0.1 1.847 0.886 0.888 3.049 0.845 0.870 2.578 0.932 0.884 2.143 0.949 0.969 2.176 0.900 0.925
5 5 10 0.3 1.669 0.846 0.888 2.078 0.833 0.873 2.539 0.912 0.892 1.881 0.909 0.968 1.991 0.887 0.909
6 5 10 0.5 1.583 0.814 0.888 1.691 0.835 0.869 2.593 0.837 0.897 1.842 0.850 0.966 1.925 0.889 0.907
7 5 15 0.1 1.962 0.910 0.907 3.292 0.779 0.881 2.514 0.938 0.905 1.721 0.943 0.995 2.248 0.899 0.921
8 5 15 0.3 1.726 0.833 0.907 2.124 0.774 0.880 2.504 0.862 0.916 1.553 0.854 0.995 2.027 0.865 0.912
9 5 15 0.5 1.605 0.810 0.907 1.667 0.783 0.878 2.572 0.811 0.917 1.539 0.808 0.991 1.952 0.886 0.902

10 10 5 0.1 1.897 0.868 0.898 1.560 0.887 0.892 3.152 0.820 0.907 2.476 0.763 0.970 1.877 0.899 0.902
11 10 5 0.3 2.004 0.886 0.898 1.570 0.893 0.893 2.953 0.880 0.915 2.058 0.816 0.977 1.864 0.895 0.904
12 10 5 0.5 2.098 0.887 0.898 1.679 0.877 0.887 2.864 0.903 0.916 1.893 0.833 0.976 1.910 0.893 0.921
13 10 10 0.1 2.217 0.903 0.897 2.580 0.933 0.908 3 0.915 0.906 3.167 0.896 0.905 2.559 0.926 0.903
14 10 10 0.3 2.167 0.889 0.897 2.237 0.918 0.907 2.894 0.936 0.908 2.796 0.916 0.915 2.477 0.901 0.901
15 10 10 0.5 2.158 0.858 0.897 2.109 0.910 0.906 2.889 0.914 0.910 2.663 0.911 0.919 2.478 0.907 0.910
16 10 15 0.1 2.448 0.910 0.892 3.105 0.891 0.886 3.085 0.942 0.888 2.831 0.935 0.934 2.879 0.921 0.900
17 10 15 0.3 2.271 0.885 0.892 2.515 0.906 0.886 2.949 0.942 0.892 2.527 0.935 0.937 2.727 0.915 0.897
18 10 15 0.5 2.215 0.876 0.892 2.266 0.900 0.883 2.951 0.910 0.895 2.454 0.921 0.938 2.716 0.923 0.898
19 15 5 0.1 2.330 0.891 0.897 1.413 0.841 0.883 3.291 0.772 0.901 2.059 0.710 0.992 1.869 0.888 0.903
20 15 5 0.3 2.437 0.918 0.897 1.487 0.824 0.884 3 0.814 0.904 1.731 0.739 0.996 1.855 0.885 0.904
21 15 5 0.5 2.636 0.930 0.897 1.681 0.837 0.881 2.907 0.872 0.905 1.613 0.795 0.994 1.944 0.893 0.910
22 15 10 0.1 2.621 0.915 0.890 2.458 0.910 0.888 3.237 0.886 0.874 2.886 0.851 0.940 2.655 0.915 0.894
23 15 10 0.3 2.594 0.922 0.890 2.269 0.923 0.886 3.103 0.932 0.876 2.561 0.891 0.947 2.634 0.920 0.896
24 15 10 0.5 2.652 0.920 0.890 2.259 0.927 0.888 3.118 0.942 0.878 2.482 0.919 0.947 2.703 0.931 0.893
25 15 15 0.1 2.739 0.909 0.915 2.957 0.911 0.906 3.348 0.921 0.904 3.479 0.900 0.910 3.065 0.916 0.901
26 15 15 0.3 2.679 0.913 0.915 2.660 0.927 0.905 3.271 0.945 0.904 3.205 0.926 0.912 3.048 0.932 0.901
27 15 15 0.5 2.690 0.913 0.915 2.568 0.920 0.906 3.299 0.940 0.904 3.128 0.938 0.913 3.130 0.934 0.896

Table 4. The values of δ for some values of m and n when γ = 0.1.

MLE Perc Boot-t1 Boot-t2 HPD

Row n m R δ CPR CPRRSS δ CPR CPRRSS δ CPR CPRRSS δ CPR CPRRSS δ CPR CPRRSS

1 5 5 0.1 1.565 0.774 0.920 2.086 0.846 0.904 2.620 0.841 0.923 2.756 0.836 0.919 1.853 0.802 0.902
2 5 5 0.3 1.476 0.760 0.920 1.669 0.856 0.902 2.361 0.864 0.929 2.135 0.852 0.932 1.764 0.785 0.895
3 5 5 0.5 1.497 0.752 0.920 1.559 0.852 0.898 2.381 0.857 0.930 2.021 0.855 0.938 1.809 0.811 0.908
4 5 10 0.1 1.891 0.815 0.888 2.942 0.736 0.870 2.511 0.895 0.884 2.062 0.900 0.969 2.303 0.817 0.925
5 5 10 0.3 1.665 0.750 0.888 2.021 0.742 0.873 2.390 0.823 0.892 1.771 0.815 0.968 2.118 0.777 0.909
6 5 10 0.5 1.575 0.758 0.888 1.664 0.759 0.869 2.419 0.792 0.897 1.730 0.800 0.966 2.049 0.814 0.907
7 5 15 0.1 2 0.841 0.907 3.175 0.678 0.881 2.477 0.891 0.905 1.667 0.883 0.995 2.369 0.821 0.921
8 5 15 0.3 1.721 0.755 0.907 2.077 0.665 0.880 2.387 0.785 0.916 1.483 0.772 0.995 2.196 0.773 0.912
9 5 15 0.5 1.591 0.736 0.907 1.632 0.671 0.878 2.401 0.735 0.917 1.441 0.737 0.991 2.066 0.794 0.902

10 10 5 0.1 1.888 0.803 0.898 1.516 0.793 0.892 2.804 0.752 0.907 2.202 0.691 0.970 1.820 0.809 0.902
11 10 5 0.3 1.975 0.823 0.898 1.544 0.793 0.893 2.641 0.799 0.915 1.859 0.744 0.977 1.927 0.808 0.904
12 10 5 0.5 2.090 0.846 0.898 1.661 0.818 0.887 2.603 0.857 0.916 1.751 0.797 0.976 2.049 0.844 0.921
13 10 10 0.1 2.263 0.838 0.897 2.509 0.843 0.908 2.879 0.884 0.906 3 0.867 0.905 2.596 0.854 0.903
14 10 10 0.3 2.153 0.828 0.897 2.176 0.846 0.907 2.739 0.881 0.908 2.645 0.858 0.915 2.612 0.846 0.901
15 10 10 0.5 2.174 0.828 0.897 2.071 0.847 0.906 2.766 0.882 0.910 2.573 0.872 0.919 2.691 0.862 0.910
16 10 15 0.1 2.388 0.847 0.892 2.917 0.829 0.886 2.959 0.910 0.888 2.644 0.902 0.934 2.898 0.872 0.900
17 10 15 0.3 2.259 0.825 0.892 2.441 0.818 0.886 2.833 0.890 0.892 2.434 0.890 0.937 2.928 0.851 0.897
18 10 15 0.5 2.195 0.815 0.892 2.203 0.817 0.883 2.830 0.855 0.895 2.358 0.861 0.938 2.946 0.852 0.898
19 15 5 0.1 2.274 0.860 0.897 1.367 0.759 0.883 2.849 0.717 0.901 1.812 0.660 0.992 1.807 0.818 0.903
20 15 5 0.3 2.433 0.869 0.897 1.461 0.751 0.884 2.682 0.751 0.904 1.562 0.682 0.996 1.906 0.807 0.904
21 15 5 0.5 2.618 0.892 0.897 1.653 0.769 0.881 2.628 0.820 0.905 1.487 0.740 0.994 2.075 0.842 0.910
22 15 10 0.1 2.592 0.861 0.890 2.320 0.839 0.888 3.061 0.837 0.874 2.672 0.803 0.940 2.673 0.858 0.894
23 15 10 0.3 2.589 0.868 0.890 2.204 0.845 0.886 2.939 0.873 0.876 2.434 0.843 0.947 2.791 0.859 0.896
24 15 10 0.5 2.639 0.871 0.890 2.195 0.847 0.888 2.933 0.888 0.878 2.364 0.857 0.947 2.938 0.877 0.893
25 15 15 0.1 2.744 0.874 0.915 2.872 0.852 0.906 3.282 0.908 0.904 3.375 0.895 0.910 3.289 0.876 0.901
26 15 15 0.3 2.674 0.857 0.915 2.584 0.855 0.905 3.133 0.896 0.904 3.065 0.879 0.912 3.261 0.871 0.901
27 15 15 0.5 2.660 0.850 0.915 2.472 0.842 0.906 3.140 0.888 0.904 3.018 0.882 0.913 3.385 0.869 0.896

corresponding box-plot of the observations of the point estimates are plotted in Figure 10. According to the values
of point estimators that are around 0.6, we expected R̂ML to have a better efficiency than R̂UMV U . It can be seen
that the interquartile range in R̂ML is less than R̂UMV U . Therefore, as we have already observed in Figure 4, the
performance of R̂ML is better than that of R̂UMV U in estimating the middle value of R. For inspecting the CI’s,
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Table 5. Extracted lower RRSS values from Air condition data

plan
7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 8044 8045
194 413 90 74 55 23 97 50 359 50 130 487 102

9 48 56 87 11 22 3 5 7 14
34 33 3 12 3 32
7 1 14

we have replicated the above procedures 1000 times more. The distribution Gamma(2, 1) and Gamma(2, 2) have
been applied as the prior pdf for α and β, respectively. The EL’s of the intervals are reported in Table 6.

R.star.ml R.star.umvue
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Figure 10. Comparison of R̂ML and R̂UMV U .

Table 6. The values of EL of R based on real data set

γ Perc Boot-t1 Boot-t2 Basic MLE AMLE Bayes HPD
0.05 0.593 0.894 0.598 0.578 0.389 0.396 0.385 0.359
0.1 0.494 0.688 0.431 0.487 0.329 0.332 0.327 0.306

According to the results of Table 6, it is observed that like the previous section the EL of Boot-t1 is smaller than
Boot-t2. Also, the EL of MLE and AMLE are better than the other CI’s, especially in more detail, the MLE CI
has the least expected length. As we expected, the HPD CI has a better performance than Bayesian CI. Thus, the
obtained result in this section are quite consistent with the results of the preceding section.

7. Conclusion

In this paper, we obtained the MLE, UMVUE, as well as the Bayes estimator for stress-strength parameter R
on the basis of lower RRSS from the PRHR model. The MLE and UMVUE are compared with respect to the
relative efficiency criterion. It is observed that the MLE exhibits a better performance when R is close to 0.5, while
UMVUE is better for the extreme values of R. Also, we compared these point estimators based on two schemes
(RRSS and ordinary record) with respect to the relative efficiency criteria. It is observed that the estimators for
R based on RRSS are seemingly superior to ordinary records. We derived various CI’s and compared them via a
simulation study. Based on a simulation result and an illustrative example, we observe that the percentile CI and the
exact CI of MLE are better than the other CI’s. Also, HPD CI has a better performance than Bayesian CI. Finally,
we compared the interval estimations based on ordinary records with those obtained by the RRSS approach for the
GE distribution. We observe that the CI based on RRSS is better than ordinary records and we also proved that all
calculations do not depend on the baseline distribution in the PRHR model.
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