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Abstract In this paper, we study the density of the solution to a class of stochastic functional differential equations driven
by fractional Brownian motion. Based on the techniques of Malliavin calculus, we prove the smoothness and establish upper
and lower Gaussian estimates for the density.
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1. Introduction

In the last decade, Gaussian density estimates for the solutions of various stochastic equations have been intensively
studied. Particularly, the class of stochastic equations with fractional noise has been discussed by several authors,
see [1, 2, 4, 8] and references therein.

We recall that fractional Brownian motion (fBm) of Hurst parameter H ∈ (0, 1) is a centered Gaussian process
BH = (BH

t )t∈R+
with covariance function

RH(t, s) := E[BH
t BH

s ] =
1

2
(t2H + s2H − |t− s|2H).

For H > 1
2 , BH

t admits the so-called Volterra representation

BH
t =

t∫
0

KH(t, s)dBs, (1)

where (Bt)t∈+ is a standard Brownian motion, the kernel KH is defined by

KH(t, s) = CHs1/2−H

t∫
s

(u− s)H− 3
2uH− 1

2 du, s ≤ t

with CH :=
√

H(2H−1)
β(2−2H,H−1/2) , where β is the Beta function.
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In this paper, we consider stochastic functional differential equations of the formXt = η(0) +
t∫
0

[
0∫

−r

ρ(u)g(Xu+s)du+ a(s,Xs)

]
ds+

t∫
0

σ(s,Xs)dB
H
s , t ∈ [0, T ],

Xt = η(t), t ∈ [−r, 0],

(2)

where r > 0 is delay time, the kernel ρ and initial condition η are deterministic functions on [−r, 0]. The stochastic
integral is interpreted as a pathwise Riemann-Stieltjes integral, which has been frequently used in the studies related
to fBm. We refer the reader to [12] for a detailed presentation of this integral.

The density of solutions to the equation (2) has been discussed in some special cases. When H = 1
2 , B

H reduces
to standard Brownian motion and in this case, the existence and smoothness of the probability density of solutions
were proved by Takeuchi in [11]. When H > 1

2 , Gaussian density estimates were obtained by Dung et al. in [6] for
the equation (2) with g = 0. However, the case of g ̸= 0 has not investigated yet. Thus, in the present paper, our
aim is to establish analogue results for the equation (2) with g ̸= 0 and H > 1

2 . More specifically, we obtain the
following properties:

(i) the existence and Gaussian estimates for the density of solutions,
(ii) the smoothness of the density of solutions.
It should be noted that the information about the density will be very useful in practical studies, see e.g. [7]. In a

spirit close to [6, 11], the main tools of this paper are the techniques of Malliavin calculus. However, we would like
to emphasize that the complexity of stochastic integrals with respect to fBm and the appearance of delayed integral
term in (2) require a fine analysis for proving the properties (i) and (ii). The rest of this article is organized as
follows. In Section 2, we recall some fundamental concepts of Malliavin calculus and a general Gaussian estimate
for the density of Malliavin differentiable random variables. The main results of the paper are stated and proved in
Section 3. The conclusion is given in Section 4.

2. Preliminaries

Let us recall some elements of Malliavin calculus with respect to Brownian motion B, where B is used to present
BH

t as in (1) (for more details see [9]). We suppose that (Bt)t∈[0,T ] is defined on a complete probability space
(Ω,F ,F, P ), where F = (Ft)t∈[0,T ] is a natural filtration generated by the Brownian motion B. For h ∈ L2[0, T ],
we denote by B(h) the Wiener integral

B(h) =

T∫
0

h(t)dBt.

Let S denote the dense subset of L2(Ω,F , P ) consisting of smooth random variables of the form

F = f(B(h1), ..., B(hn)), (3)

where n ∈ N, f ∈ C∞
b (n), h1, ..., hn ∈ L2[0, T ]. If F has the form (3), we define its Malliavin derivative as the

process DF := {DtF, t ∈ [0, T ]} given by

DtF =

n∑
k=1

∂f

∂xk
(B(h1), ..., B(hn))hk(t).

More generally, we can define the kth order derivative DkF by iterating the derivative operator k times, i.e.
Dk

t1,...,tk
F = Dtk ...Dt1F . For any integer k and any p ≥ 1, we denote by Dk,p the closure of S with respect to

the norm

∥F∥pk,p := E|F |p + E

[ T∫
0

|Du1F |pdu1

]
+ E

[ T∫
0

...

T∫
0

|Dk
u1,...,uk

F |pdu1....duk

]
.
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824 SMOOTHNESS & GAUSSIAN DENSITY ESTIMATES

A random variable F is said to be Malliavin differentiable if it belongs to D1,2.
In order to obtain Gaussian density estimates for solutions to the equation (2), we will use a general criterion

established recently by Nourdin and Viens in [10]. We recall here [6, Theorem 2.4] for a convenient version which
can be of interest for the readers who are not used to working with the Ornstein-Uhlenbeck operator.

Proposition 1
Let F be in D1,2 with mean zero. If there exist positive constants c, C such that, for all x ∈, almost surely

c ≤
T∫

0

DrFE[DrF |Fr]dr ≤ C,

then the density ρF of F exists and satisfies, for almost all x ∈

E|F |
2C

exp

(
−x2

2c

)
≤ ρF (x) ≤

E|F |
2c

exp

(
− x2

2C

)
. (4)

3. The main results

In the whole this section, we consider the equation (2) with the following fundamental assumptions. Note that the
conditions on a and σ are similar to that required in Section 5 of [6].

(A1) The coefficients a, g, σ ∈ C1,1
b ([0, T ]×), and there exists a constant m > 0 so that |σ(t, x)| ≥ m, for all

(t, x) ∈ [0, T ]×.
(A2) The kernel ρ : [0, T ] → satisfies:

T∫
0

|ρ(s)|ds < ∞.

Let us first give a short discussion about the existence and uniqueness of solutions. We denote by C1,1
b ([0, T ]×) the

space of bounded functions f : [0, T ]×R → R with bounded partial derivatives of the first order and we write

f ′
1(s, x) =

∂f(s, x)

∂s
, f ′

2(s, x) =
∂f(s, x)

∂x
.

We define the function

F (t, x) :=

x∫
0

1

σ(t, u)
du, (t, x) ∈ [0, T ]×R.

For (t, z) ∈ [0, T ]×R, consider the function Φ(t, z) := F (t, z)− x, where x ∈ R is fixed. Since Φ′
2(t, z) =

σ(t, z)−1 ̸= 0, by the Implicit Function Theorem, there exists a function Ḡ(t, x) such as Φ(t, Ḡ(t, x)) = 0, i.e.
F (t, Ḡ(t, x)) = x. Moreover, we have

F ′
2(t, x) = σ(t, x)−1 and F ′

1(t, x) = −
x∫

0

σ′
1(t, u)

(σ(t, u))2
du,

Ḡ′
2(t, x) = (F ′

2(t, Ḡ(t, x)))−1 = σ(t, Ḡ(t, x)), (5)

Ḡ′
1(t, x) = −F ′

1(t, Ḡ(t, x))

F ′
2(t, Ḡ(t, x))

= −F ′
1(t, Ḡ(t, x))σ(t, Ḡ(t, x)). (6)

Set G(t, x) defined by {
G(t, x) := Ḡ(t, x) t ∈ [0, T ]

G(t, x) = η(t) t ∈ [−r, 0]
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We consider stochastic functional differential equation with additive noise

Yt = y0 +

t∫
0

A(s, Ys) +
1

σ(s,G(s, Ys))

s∫
s−r

ρ(u− s)g(u,G(u, Yu))du

 ds+BH
t , (7)

where y0 := F (0, x0), and A(y, s) = F ′
1(s,G(s, y)) + a(s,G(s,y)

σ(s,G(s,y)) .
It was already pointed out in [6] that A(y, s) is Lipschitz and has linear growth. On the other hand, under

Assumptions (A1) and (A2), we can check that the functions 1
σ(s,G(s,y)) and g(s,G(s, y)) are also Lipschitz and

have linear growth. Hence, by repeating the computations presented in the proof of Proposition 3.1 in [3], we can
infer that the equation (7) admits a unique strong solution (Yt)t∈[0,T ].

Based on the properties of (Yt)t∈[0,T ], we have the following propositions.

Proposition 2
Let Assumptions (A1) and (A2) hold. Then, the equation (2) has a unique strong solution given by Xt =
G(t, Yt), −r ≤ t ≤ T. This solution is an Ft-adapted process and, for all ε ∈ (0,H), whose trajectories are Hölder
continuous of order H − ε on [0, T ].

Proof
The proof is similar to that of Lemma 5.1 in [6]. So we omit it.

Proposition 3
Under the Assumptions (A1) and (A2), the unique strong solution (Xt)t∈[−r,T ] to the equation (2) is Malliavin
differentiable and satisfies DθXt = 0 for θ > t or t ∈ [−r, 0], and for all 0 ≤ θ ≤ t ≤ T ,

DθXt = σ(t,Xt)

 t∫
θ

N(s,Xs)DθXsds+

t∫
θ

1

σ(s,Xs)

s∫
s−r

ρ(u− s)g′2(u,Xu)DθXududs+KH(t, θ)

 , (8)

where

N(s,Xs) := −σ′
1(s,Xs)

σ2(s,Xs)
− σ′

2(s,Xs)

σ2(s,Xs)

s∫
s−r

ρ(u− s)g(u,Xu)du+
a′2(s,Xs)σ(s,Xs)− a(s,Xs)σ

′
2(s,Xs)

σ2(s,Xs)
.

Proof
Let (Yt)t∈[0,T ] be the unique strong solution to (7). By using the same argument as in the proof of Lemma 5.3 in
[6], we have Yt ∈ D1,2 and its Malliavin derivative is given by

DθYt = 1[0,t](θ)

( t∫
θ

M(s, Ys)DθYsds+KH(t, θ)

+

t∫
θ

1

σ(s,G(s, Ys))

s∫
s−r

ρ(u− s)g′2(u,G(u, Yu))σ(u,G(u, Yu))DθYududs

)
, 0 ≤ t ≤ T, (9)

where

M(s, Ys) := −σ′
1(s,G(s, Ys))

σ(s,G(s, Ys))
− σ′

2(s,G(s, Ys))

σ(s,G(s, Ys))

s∫
s−r

ρ(u− s)g(u,G(u, Yu))du

+
a′2(s,G(s, Ys))σ(s,G(s, Ys))− a(s,G(s, Ys))σ

′
2(s,G(s, Ys))

σ(s,G(s, Ys))
.
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826 SMOOTHNESS & GAUSSIAN DENSITY ESTIMATES

From the relation Xt = G(t, Yt) and the chain rule of Malliavin derivatives (see Proposition 1.2.3 in [9]), we have
Xt ∈ D1,2, and

DθXt = G′
2(t, Yt)DθYt = σ(t,Xt)DθYt, 0 ≤ θ ≤ t ≤ T. (10)

This, combined with (9), gives us (8). So the proof of Proposition is complete.

From now on, we will use the symbol C to denote a generic constant, whose value may change from one line to
another.

Proposition 4
Let (Xt)t∈[−r,T ] be the solution to the equation (2). Assume that (A1), (A2) hold. Then there exists a finite constant
C > 0 such that:

|DθXt| ≤ CKH(t, θ), a.s.

for all 0 ≤ θ ≤ t ≤ T.

Proof
From (9), (A1), (A2) and the boundedness of A(t, Yt) , we have

|DθYt| ≤
t∫

θ

|M(s, Ys)||DθYs|ds+ C

t∫
θ

|DθYs|ds+KH(t, θ)

≤ C

t∫
θ

|DθYs|ds+KH(t, θ), for all 0 ≤ θ ≤ t ≤ T. (11)

An application of Gronwall’s inequality now gives that

|DθYt| ≤ KH(t, θ) + C

t∫
θ

KH(s, θ) exp{C(t− s)}ds ≤ KH(t, θ) + C

t∫
θ

KH(s, θ)ds.

Since ∂1KH(t, θ) ≥ 0, we have

|DθYt| ≤ KH(t, θ) + C(t− θ)KH(t, θ) ≤ CKH(t, θ). (12)

From (10), (12) and the boundedness of σ(t, x), we have

|DθXt| ≤ C|σ(t,Xt)|KH(t, θ) ≤ CKH(t, θ), for all 0 ≤ θ ≤ t ≤ T. (13)

Proposition 5
Let (Xt)t∈[−r,T ] be the solution to the equation (2). Assume that (A1), (A2) hold. Then there exists a finite constant
c > 0 such that

t∫
0

DθXtE[DθXt|Fθ]dθ ≥ ct2H , a.s

for all t ∈ (0, T ].

Proof
It follows from (9) that (DθYt)t∈[θ,T ] solves the following ordinary differential equation

dDθYt

=

M(t, Yt)DθYt +
1

σ(t, G(s, Yt))

t∫
t−r

ρ(s− t)g′2(s,G(s, Ys))σ(s,G(s, Ys))DθYsds

 dt+ ∂1KH(t, θ)dt,

Stat., Optim. Inf. Comput. Vol. 8, December 2020
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with the initial condition DθYt|t=θ = 0, where ∂1KH(t, θ) = ∂KH(t,θ)
∂t . By the Comparison Theorem and

∂1KH(t, θ) ≥ 0, it is easy that DθYt ≥ 0. So we have that DθXt ≥ 0 when σ(t, x) > 0 and DθXt ≤ 0 when
σ(t, x) < 0. Hence, for all 0 ≤ θ ≤ t ≤ T ,

DθXtE[DθXt|Fθ] ≥ 0 a.s.

Define

h(t) :=

t∫
(1−ε)t

DθXtE[DθXt|Fθ]dθ =

t∫
(1−ε)t

σ(t,Xt)DθYtE[σ(t,Xt)DθYt|Fθ]dθ, 0 < ε ≤ 1.

From the equation (9), we have
DθYt = U(t, θ) +KH(t, θ), θ ≤ t.

where

U(t, θ) :=

t∫
θ

M(s, Ys)DθYsds+

t∫
θ

1

σ(s,G(s, Ys))

s∫
s−r

ρ(u− s)g′2(u,G(u, Yu))σ(u,G(u, Yu))DθYududs

Thus we can rewrite h(t) as follows

h(t) =

t∫
(1−ε)t

σ(t,Xt)U(t, θ)E[σ(t,Xt)U(t, θ)|Fθ]dθ +

t∫
(1−ε)t

σ(t,Xt)U(t, θ)E[σ(t,Xt)KH(t, θ)|Fθ]dθ

+

t∫
(1−ε)t

σ(t,Xt)KH(t, θ)E[σ(t,Xt)U(t, θ)|Fθ]dθ +

t∫
(1−ε)t

σ(t,Xt)KH(t, θ)E[σ(t,Xt)KH(t, θ)|Fθ]dθ.

From (12) and ∂1KH(t, θ) ≥ 0,

|U(t, θ)| ≤ C

t∫
θ

KH(s, θ)ds ≤ CKH(t, θ)(t− θ), θ ≤ t. (14)

On the other hand, for all 0 ≤ s ≤ t, we have

E|BH
t −BH

s |2 =E

 s∫
0

[KH(t, u)−KH(s, u)]dBu +

t∫
s

KH(t, u)dBu

2

= E

 s∫
0

[KH(t, u)−KH(s, u)]dBu

2

+ E

 t∫
s

KH(t, u)dBu

2

≥ E

 t∫
s

KH(t, u)dBu

2

=

t∫
s

K2
H(t, u)du.

Using the fact that E|BH
t −BH

s |2 = |t− s|2H , we deduce

t∫
s

K2
H(t, u)du ≤ |t− s|2H , 0 ≤ s ≤ t. (15)

Stat., Optim. Inf. Comput. Vol. 8, December 2020



828 SMOOTHNESS & GAUSSIAN DENSITY ESTIMATES

From (14) and (15), we can get the following estimates

∣∣∣ t∫
(1−ε)t

σ(t,Xt)U(t, θ)E[σ(t,Xt)KH(t, θ)|Fθ]dθ
∣∣∣ ≤ C

t∫
(1−ε)t

(t− θ)K2
H(t, θ)dθ

≤ C(εt)

t∫
(1−ε)t

K2
H(t, θ)dθ

≤ C(εt)(εt)2H = C(εt)2H+1,

∣∣∣ t∫
(1−ε)t

σ(t,Xt)KH(t, θ)E[σ(t,Xt)U(t, θ)|Fθ]dθ
∣∣∣ ≤ C(εt)2H+1,

∣∣∣ t∫
(1−ε)t

σ(t,Xt)U(t, θ)E[σ(t,Xt)U(t, θ)|Fθ]dθ
∣∣∣ ≤ C

t∫
(1−ε)t

(t− θ)2K2
H(t, θ)dθ

≤ C(εt)2
t∫

(1−ε)t

K2
H(t, θ)dθ = C(εt)2H+2.

From the definition of KH(t, r), for all 0 < r ≤ t, we deduce

KH(t, r) ≥ CH

t∫
r

(u− r)H− 3
2 du =

CH

H − 1
2

(t− r)H− 1
2

So, for all 0 < s ≤ t, we have

t∫
s

K2
H(t, θ)dθ ≥

(
CH

H − 1
2

)2
t∫

s

(t− θ)2H−1dθ

=
1

2H

(
CH

H − 1
2

)2

(t− s)2H

= C ′
H(t− s)2H , (16)

where C ′
H := 1

2H

(
CH

H− 1
2

)2
. Making use of the elementary inequality |a+ b| ≥ |a| − |b| yields

h(t) ≥
∣∣∣ t∫
(1−ε)t

σ(t,Xt)KH(t, θ)E[σ(t,Xt)KH(t, θ)|Fθ]dθ
∣∣∣−2C(εt)2H+1 − C(εt)2H+2

≥ (εt)2H
(
C ′

Hm2 − 2C(εt)− C(εt)2
)
.

Now we choose ε ∈ (0, 1] such that

C(εT )2 + 2C(εT ) ≤ C ′
Hm2

2
.

Stat., Optim. Inf. Comput. Vol. 8, December 2020



NGUYEN VAN TAN 829

Then, we get

h(t) ≥ C ′
Hm2

2
(εt)2H := ct2H .

So we can finish the proof of Proposition because

t∫
0

DθXtE[DθXt|Fθ]dθ ≥ h(t).

We now are ready to formulate and prove the main results of this paper.

Theorem 1
Asume that (A1) and (A2) hold and let (Xt)t∈[−r,T ] be the unique strong solution to the equation (2). Then, for
each t ∈ (0, T ], the density ρXt exists and satisfies the bounds for all x ∈ R

E|Xt − EXt|
2Ct2H

exp

(
− (x− EXt)

2

2ct2H

)
≤ ρXt(x) ≤

E|Xt − EXt|
2ct2H

exp

(
− (x− EXt)

2

2Ct2H

)
. (17)

where c, C are finite positive constants.

Proof
For each t ∈ (0, T ], we consider the random variable F := Xt − EXt. Clearly, F has mean zero and is Malliavin
differentiable with DθF = DθXt. Hence, by Propositions 4 and 5, we can get

0 < ct2H ≤
T∫

0

DθFE[DθF |Fθ]dθ =

t∫
0

DθXtE[DθXt|Fθ]dθ ≤ Ct2H ,

where c, C are some finite positive constants. In view of Proposition 1, we can conclude that the density ρF of the
random variable F exits and satisfies

E|F |
2Ct2H

exp

(
− x2

2ct2H

)
≤ ρF (x) ≤

E|F |
2ct2H

exp

(
− x2

2Ct2H

)
, x ∈ R,

which gives us (17) because ρXt(x) = ρF (x− EXt).

Theorem 2
Suppose the Assumptions (A1) and (A2). Let (Xt)t∈[−r,T ] be the solution to the equation (2). In addition, we
assume that a, g and σ are infinitely differentiable functions in x with bounded derivatives of all orders. Then, for
each t ∈ (0, T ], the random variable Xt has an infinitely differentiable density with respect to Lebesgue measure
on R.

Proof
Fix t ∈ (0, T ], thanks to Theorem 2.1.4 in [9], we have to check the following properties

(a) Xt ∈ D∞ =
∩
i≥1

∩
p≥1

Di,p,

(b)
(

t∫
0

|DθXt|2dθ
)−1

∈
∩
p≥1

Lp(Ω).

Stat., Optim. Inf. Comput. Vol. 8, December 2020



830 SMOOTHNESS & GAUSSIAN DENSITY ESTIMATES

It is easy to verify that the coefficients of the equation (7) are infinitely differentiable in y with bounded derivatives
of all orders. Hence, we can infer that Yt ∈ D∞. So Xt does. Let us now check the property (b).

By Proposition 3, we have

DθXt = σ(t,Xt)

 t∫
θ

N(s,Xs)DθXsds+

t∫
θ

1

σ(s,Xs)

s∫
s−r

ρ(u− s)g′2(u,Xu)DθXududs+KH(t, θ)

 .

Hence,

t∫
0

|DθXt|2dθ

=

t∫
0

σ(t,Xt)

 t∫
θ

N(s,Xs)DθXsds+

t∫
θ

1

σ(s,Xs)

s∫
s−r

ρ(u− s)g′2(u,Xu)DθXududs+KH(t, θ)

2

dθ.

For each y ≥ y0 :=
4

C ′
Ht2Hm2

, where C ′
H = 1

2H

(
CH

H− 1
2

)2
, the real number ε :=

(
4

yC ′
Hm2t2H

) 1
2H

belongs to

(0, 1]. Using the fundamental inequality (a+ b+ c)2 ≥ a2

2 − 2(b2 + c2) and (16) we obtain

t∫
0

|DθXt|2dθ ≥
t∫

t(1−ε)

σ2(t,Xt)K
2
H(t, θ)

2
dθ − 2

t∫
t(1−ε)

σ(t,Xt)

t∫
θ

N(s,Xs)DθXsds

2

dθ

− 2

t∫
t(1−ε)

σ(t,Xt)

t∫
θ

1

σ(s,Xs)

s∫
s−r

ρ(u− s)g′2(u,Xu)DθXududs

2

dθ,

≥ C ′
Hm2(εt)2H

2
− Iy(t)

=
2

y
− Iy(t),

where

Iy(t) =2

t∫
t(1−ε)

σ(t,Xt)

t∫
θ

N(s,Xs)DθXsds

2

dθ

+2

t∫
t(1−ε)

σ(t,Xt)

t∫
θ

1

σ(s,Xs)

s∫
s−r

ρ(u− s)g′2(u,Xu)DθXududs

2

dθ

By Markov’s inequality, we have

P

 t∫
0

|DθXt|2dθ ≤ 1

y

 ≤ P

(
2

y
− Iy(t) ≤

1

y

)
= P

(
Iy(t) ≥

1

y

)
≤ yp/2E

(
|Iy(t)|p/2

)
∀ p ≥ 2. (18)
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Under the assumptions (A1), (A2) and the inequality (|a|+ |b|)p/2 ≤ 2p/2−1(|a|p/2 + |b|p/2) , we can get

E|Iy(t)|p/2 = 2p/2E

( t∫
t(1−ε)

(
σ(t,Xt)

t∫
θ

N(s,Xs)DθXsds

)2

dθ

+

t∫
t(1−ε)

(
σ(t,Xt)

t∫
θ

1

σ(s,Xs)

s∫
s−r

ρ(u− s)g′2(u,Xu)DθXududs

)2

dθ

)p/2

≤ 2p−1E

 t∫
t(1−ε)

(
σ(t,Xt)

t∫
θ

N(s,Xs)DθXsds

)2

dθ


p/2

+ 2p−1E

 t∫
t(1−ε)

(
σ(t,Xt)

t∫
θ

1

σ(s,Xs)

s∫
s−r

ρ(u− s)g′2(u,Xu)DθXududs

)2

dθ


p/2

≤ 2p−1E

(C t∫
t(1−ε)

( t∫
θ

DθXsds

)2

dθ

)p/2

+

(
C

t∫
t(1−ε)

( t∫
θ

s∫
s−r

ρ(u− s)DθXududs

)2

dθ

)p/2


≤ CE

( t∫
t(1−ε)

t∫
θ

|DθXs|2dsdθ
)p/2

+

( t∫
t(1−ε)

( t∫
θ

s∫
s−r

ρ(u− s)DθXududs

)2

dθ

)p/2

 ,

where C is some positive constant. By using Hölder’s inequality we obtain

( t∫
θ

s∫
s−r

ρ(u− s)DθXududs

)2

≤ (t− θ)

t∫
θ

( s∫
s−r

|ρ(u− s)DθXu|du
)2

ds

≤ T

t∫
θ

( s∫
s−r

|ρ(u− s)|du
)( s∫

s−r

|ρ(u− s)||DθXu|2du
)
ds

≤ T

( 0∫
−r

|ρ(u)|du
)2

t∫
θ

|DθXu|2du.

So it holds that

E|Iy(t)|
p
2 ≤ CE

 t∫
t(1−ε)

t∫
θ

|DθXs|2dsdθ


p/2

∀ p ≥ 2.
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Using Proposition 4 and (15), we can verify that

E|Iy(t)|p/2 ≤ CE

 t∫
t(1−ε)

t∫
θ

K2
H(s, θ)dsdθ


p/2

= CE

 t∫
t(1−ε)

t∫
θ

K2
H(s, θ)dsdθ


p/2

= CE

 t∫
t(1−ε)

s∫
t(1−ε)

K2
H(s, θ)dθds


p/2

≤ CE

 t∫
t(1−ε)

(s− t(1− ε))2Hds


p/2

=
C

2H + 1
(εt)p(2H+1)/2 = C

(
4

yC ′
Hm2

) p(2H+1)
4H

= C

(
4

ym2

) p(2H+1)
4H

∀ p ≥ 2. (19)

From (18) and (19), we deduce

P

 t∫
0

|DθXt|2dθ ≤ 1

y

 ≤ Cyp/2
(

4

ym2

) p(2H+1)
4H

∀ p ≥ 2.

Now for any α ≥ 1 and p > 4Hα, we have the following estimates

E

 t∫
0

|DθXt|2dθ

−α

=

∞∫
0

αyα−1P

 t∫
0

|DθXt|2dθ ≤ 1

y

 dy

≤
y0∫
0

αyα−1dy +

∞∫
y0

αyα−1P

 t∫
0

|DθXt|2dθ <
1

y

 dy

≤ yα0 + αC

∞∫
y0

yα−1yp/2
(

4

ym2

) p(2H+1)
4H

dy

= yα0 + αC

(
4

m2

) p(2H+1)
4H y

α− p
4H

0
p
4H − α

.

Recalling y0 =
4

C ′
Ht2Hm2

, we conclude that

E

 t∫
0

|DθXt|2dθ

−α

< ∞ ∀ α ≥ 1.

So the property (b) is proved. This finishes the proof of Theorem.

4. Conclusion

In this paper, we employed the techniques of Malliavin calculus to obtain smoothness and Gaussian density
estimates for solutions to a fundamental class of stochastic functional differential equations with fractional noise.
Our results develop further the studies initated in [6, 11] and hence, our work partly enriches the knowledge of the
theory of stochastic functional differential equations.
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